同济大学有限元讲义06_有限元网格划分注意事项

合集下载

有限元网格分别的基本原则

有限元网格分别的基本原则

有限元网格划分的基本原则划分网格是建立有限元模型的一个重要环节,它要求考虑的题目较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目网格数目的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。

可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。

当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。

所以应留意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数目的变化在决定网格数目时应考虑分析数据的类型。

在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。

假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔四周存在应力集中,采用了比较密的网格。

有限元网格划分(讲稿) 27页PPT文档

有限元网格划分(讲稿) 27页PPT文档

Surface 采 用quad
Face 采用 quad
通过 sweep quad 创建Hex
Associated points 用于网格生成 Points 可 associated 于 curve 、 surface 硬点布置受global model tolerance 限制 被关联几何网格生成亦受限制 仅应用于 Paver 关联点亦可给被关联去除
在线curve或边edge上设置mesh seed 用以控制欲建模型的元素数目 与大小。
mesh seed 也用于调整网格密度 MSC.Patran 提供多种方法产生 seed
Uniform seed bias (等间隔) Non-uniform seed bias (不等间隔) Curve based seeding (依曲线参数而定) Tabular (列表输入) PCL function (PCL函数)
性,可进行parasolid 装配
有限元网格划分基础
ISOMESH 与 TETMESH的区别
由原丝体创建简单体 用Isomesh 划网格 附加工作多,但可使用hex
元素
Parasolid 体(复杂体)
简单体分割
对 parasolid 体直接划mesh
有限元网格划分基础
左图是一个硬点的
例子。说明了硬点 与网格之间的关系
硬线用于面网格生成 硬线布置受global model tolerance 限制 被关联几何网格生成亦受限制 硬线本身可加mesh seeded 仅应用于 Paver 关联线亦可给被关联去除
有限元网格划分基础
IsoMesher 可用于参数体
有限元网格划分基础
Mirror Plane
通过Create/Element/Edit菜单可以手动创建单元 需要注意的是:

有限元网格划分心得

有限元网格划分心得

有限元网格划分的基本原则划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

有限元网格划分的基本原则与通用方法!

有限元网格划分的基本原则与通用方法!

有限元网格划分的基本原则与通用方法!本文首先研究和分析有限元网格划分的基本原则,再对当前典型网格划分方法进行科学地分类,结合实例系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等。

最后阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术,展望有限元网格划分的发展趋势。

引言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素,在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss) 积分,而壳、板、梁单元的厚度方向采用辛普生 (Simpson) 积分。

有限元网格划分基本原则有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。

所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。

为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1. 网格数量网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。

当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。

所以在确定网格数量时应权衡这两个因素综合考虑。

2. 网格密度为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。

在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。

由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。

有限元网格划分注意事项

有限元网格划分注意事项

有限元网格划分的基本原则划分网格是建立有限元模型的一个重要环节,它要求考虑的题目较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目网格数目的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。

可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。

当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。

所以应留意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数目的变化在决定网格数目时应考虑分析数据的类型。

在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。

假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔四周存在应力集中,采用了比较密的网格。

有限元的网格划分技术

有限元的网格划分技术

有限元的网格划分技术对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

网格化有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

定义网格的属性主要是定义单元的外形、大小。

单元大小基本上在线段上定义,可以用线段数目或长度大小来划分,可以在线段建立后立即声明,或整个实体模型完成后逐一声明。

采纳BottOm-UP方式建立模型时,采纳线段建立后立即声明比较便利且不易出错。

例如声明线段数目和大小后,叁制对象时其属性将会一•起夏制,完成上述操作后便可进行网格化命令。

网格化过程也可以逐步进行,即实体模型对象完成到某个阶段就进行网格话,如所得结果满足,则连续建立其他对象并网格化。

网格的划分可以分为自由网格(free meshing)、映射网格(mapped meshing)和扫略网格(SWeeP meshing)等。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四周体网格。

通常状况下,可采用ANSYS的智能尺寸掌握技术(SMARTSIZE命令)来自动掌握网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并掌握疏密分布以及选择分网算法等( MOPT 命令)。

对于简单几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维简单模型只能生成四周体单元,为了获得较好的计算精度,建议采纳二次四周体单元(92号单元)。

假如选用的是六面体单元,则此方法自动将六面体单元退化为阶次全都的四周体单元,因此,最好不要选用线性(•阶次)的六面体单元(没有中间节点,比如45号单元),由于该单元退化后为线性的四周体单元,具有过大的刚度,计算精度较差;假如选用二次的六面体单元(比如95 号单元),由于其是退化形式,节点数与其六面体原型单元全都,只是有多个节点在同一位置而己,因此,可以采用TCHG命令将模型中的退化形式的四周体单元变化为非退化的四周体单元(如92号单元),削减每个单元的节点数量,提高求解效率。

有限元网格划分

有限元网格划分

本文讨论了有限元网格的重要概念,包括单元的分类、有限元误差的分类与影响因素;并讨论分析结果的收敛性控制方法,并由实例说明了网格质量及收敛性对取得准确分析结果的重要性。

同时讨论了一些重要网格控制的建议及其他网格设定的说明。

一、基本有限元网格概念1.单元概述几何体划分网格之前需要确定单元类型。

单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。

为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。

2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。

根据不同的分类方法,上述单元可以分成以下不同的形式。

3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。

一维单元的网格为一条直线或者曲线。

直线表示由两个节点确定的线性单元。

曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。

杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。

二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。

这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。

二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。

采用薄壳单元通常具有相当好的计算效率。

三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。

在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。

4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。

有限元网格划分的基本原则-fem mesh quality

有限元网格划分的基本原则-fem mesh quality

有限元网格划分的基本原则杜平安 《机械设计与制造》划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。

为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。

可以度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

图1位移精度和计算时间随网格数量的变化在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果时可划分较少的网格。

2网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。

小圆孔附近存在应力集中,采用了比较密的网格。

板的四周应力梯度较小,网格分得较稀。

其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
划分有限元网格的若干注意事项
在存在应力集中的区域,需要划分比较密集的网格;
ห้องสมุดไป่ตู้
应当利用结构的对称性和反对称性划分网格;
2m
y
2N/m
x 0
2N/m
2m
2m
(a)
y
1N/m
1
(1)
2
3
(3)
4 (2)
(4)
5
6x
(b)
2m
每个单元应该尽量靠近正三角形,避免同一单元的 边长相差过大、角度太小或太大;
单元间在交界面处必须协调
相互作用的杆单元、实体单元等的结点一定要耦合。
对于边界或材料的交接处,应该把交界线作为单元的边线, 且在交界面处的单元一定要共用同一结点;
如果是裂缝等完全不连续面,则在裂缝处应使用不同的分 开的结点
如何用三角形单元合理划分上述有限元分析模型? 给出示意图
相关文档
最新文档