概率论与统计原理复习资料
山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。
在山东省考研的数学科目中,概率论与数理统计是必考内容之一。
为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。
一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。
概率论与统计原理复习资料

一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。
参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。
参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。
参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。
参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。
参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。
参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= ,P(B)= ,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。
参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为;至少有一人中靶的概率为。
参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。
概率论与数理统计复习资料(二) (1)

<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论及数理统计要点复习

概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12nA A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12nA A A 或1nii A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立;(ii) 事件A 与B 相互独立;(iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp1 2p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率统计公式大全(复习重点)

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BB⊃,则称事件A与A⊂,A事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。
概率论与数理统计复习汇总

第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)
概率论和数理统计(李慧斌)复习大纲-第7章-置信区间-Confidence-Intervals

概率论与数理统计(李慧斌)复习大纲Chapter 7 Confidence Intervals置信区间7.1 Sampling Distribution 抽样分布统计量的分布称为抽样分布。
在本节中,我们将从正态分布推导出随机样本的样本方差分布,以及样本均值和样本方差的各种函数的分布。
复习:Thm 5.5.2若X1, X2,…, X n独立且满足,i= 1,2,…,n,若C1, C2,…, C n不全为零,则Corollary 5.5.2 设随机变量X1, X2,…, X n组成随机样本,满足正态分布,其中均值μ和方差σ2,则7.2 χ2Distribution卡方分布定义:若随机变量X1, X2,…, X n独立同分布且其中每个随机变量都满足标准正态分布,所以有着以n阶自由度卡方分布(χ2distribution with n degrees of freedom),记作,n来源于独立随机变量中以n阶自由度的χ2分布的概率密度函数其中欧拉函数定义为χ2分布的性质:定理1定理2 (χ2分布的可加性)若X ~χ2 (n) , Y ~χ2(m),X, Y独立,则X+Y ~ χ2 (n+m)例:设X1, X2,…, X n是正态分布的随机样本,证明Thm 7.3.1 设X1, X2,…, X n是正态分布的随机样本,则:(1)与独立;(2)注:,虽然基于n个,但是它们之和为0,所以指定数量的n-1确定剩余值。
因此有n-1阶自由度。
结果表明,只有从正态分布中抽取随机样本,样本均值和样本方差才是独立的。
证明如下:的联合概率分布函数为其中A为正交矩阵(orthogonal matrix),且的联合概率分布函数为因此独立且⇒与独立且7.4 The t Distribution t分布定义:设X ~ N(0, 1), Y ~χ2 (n)且X和Y独立,则随机变量所满足的分布称为n阶自由度t分布,记作,其中的概率密度函数为t分布的性质:(1)f(x)图像呈钟型,且中心为0;(2)它的一般形状类似于平均分布0的正态分布的概率密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与统计原理》复习资料一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。
参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。
参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。
参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。
参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。
参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。
参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A ,B 互不相容,已知P (A )= ,P (B )= ,则P (A+B )= ;P (A +B )= ;P (A B )= ;P (B A )= 。
参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。
参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p (0< p <1),则在5次重复试验中至少成功一次的概率为 。
参考答案:5)1(1p --考核知识点:事件的独立性10、设随机变量X ~N (1,4),则P{0 ≤X <}= ;P{X <1}= ;P{X =x 0}= 。
参考答案:,,0考核知识点:正态分布,参见P61;概率密度的性质11、设随机变量X ~B (n ,p ),已知E X =,D X =,则n = ,p = 。
参考答案:3,考核知识点:随机变量的数学期望和方差12、设随机变量X 服从参数为(100,)的二项分布,则E X = , D X = 。
参考答案:20,16考核知识点:随机变量的数学期望和方差13、设随机变量X 服从正态分布N (,),则E X 2= ,D (2X -3)= 。
参考答案:,1考核知识点:随机变量的数学期望和方差及其性质14、设由来自正态总体)9,(2μN 的容量为9的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间为 。
参考答案:5,(,)考核知识点:正态总体参数的极大似然估计以及区间估计15、设由来自正态总体)10,(2μN 的容量为25的简单随机样本,得样本均值X =15,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间长度为 。
参考答案:15,考核知识点:正态总体参数的极大似然估计以及区间估计16、从自动车床加工的一批零件中随机抽取了16件,测得零件长度的平均值为2.125cm ,标准差为0.017cm 。
假设零件的长度服从正态分布,则零件长度均值的点估计值为 ;零件长度标准差的点估计值为 ;零件长度标准差的置信区间为 。
参考答案:,,(,)考核知识点:正态总体标准差的点估计以及区间估计17、设总体X 服从正态分布),(2σμN ,从X 中随机抽取一个容量为36的样本,设X 为样本均值,S 2为样本方差。
当总体方差σ2已知时,检验假设H 0:μ=μ0的统计量为 ,当总体方差σ2未知时,检验假设H 0:μ=μ0的统计量为 。
参考答案:36/0σμ-X ,36/0S X μ- 考核知识点:正态总体均值的假设检验18、设总体X 服从正态分布),(2σμN ,从X 中随机抽取一个容量为n 的样本,设S 2为样本方差,则检验假设H 0:202σσ=的统计量为 。
参考答案:2022)1(σχS n -=考核知识点:正态总体方差的假设检验19、假设检验时若增大样本容量,则犯两类错误的概率都将 。
参考答案:减少考核知识点:假设检验的两类错误20、设随机变量X 在区间[1,3] 上服从均匀分布,则X 的概率密度函数为 ;事件 {<X <}的概率为 参考答案:⎪⎩⎪⎨⎧≤≤其他,031,21x , 考核知识点:连续型随机变量的密度函数和概率21、设随机变量X ~B (3,),则E X = ,D X = 。
参考答案:,考核知识点:二项分布的数字特征22、总体X 服从正态分布N (μ,σ2),从X 中随机抽取一个容量为n 的样本,X 为样本均值,S 2为样本方差。
当总体方差σ2已知时,假设H 0:μ=μ0的检验统计量为 ,当总体方差σ2未知时,假设H 0:μ=μ0的检验统计量为 。
参考答案:n X /0σμ-,n S X /0μ-考核知识点:假设检验23、对于随机试验:观察一台电脑的使用寿命,则其样本空间可表示为 ;事件“使用寿命超过600小时”可表示为 。
参考答案:(0,+∞);(600,+∞)考核知识点:随机试验的样本空间24、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他 ,020 ,cos )(πx x A x f ,则常数A = ,P (6π<X )= ,X 的分布函数F (x )= 。
参考答案:1,,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<=212sin 00)(ππx x x A x x F ,0 , , 考核知识点:连续型随机变量的分布函数25、对于随机试验:记录一段时间内某城市110报警次数,则其样本空间可表示为 ;事件“报警次数小于5次”可表示为 。
参考答案:{0,1,2,…};{0,1,2,3,4}考核知识点:随机试验的样本空间26、同时抛掷3枚均匀的硬币,则恰好有2枚正面都向上的概率为 ,至少有1枚正面向上的概率为 。
参考答案:3/8,7/8考核知识点:古典概率27、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,令X 为两个数之和,则P{X ≤3}= 。
参考答案:考核知识点:古典概率28、每次试验的成功率为p (0< p <1),则在3次重复试验中至少失败一次的概率为 。
参考答案:31p -考核知识点:古典概率29、在假设检验中,一般情况下会犯 错误。
参考答案:第一类错误和第二类错误考核知识点:假设检验30、袋中有50个球,其中有20个是红球,其余为白球,不放回抽样从中任取3次,一次取一个球,则第5次取到红球的概率为 。
参考答案:考核知识点:古典概率31、设随机变量X 在区间[2,7] 上服从均匀分布,则随机变量X 的概率密度函数为 ;随机变量X 的分布函数为 ;P{<X <}= 。
参考答案:⎩⎨⎧≤≤=其他,072,2.0)(x x f ,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=7,172,522,0)(x x x x x F , 考核知识点:连续型随机变量的性质32、设随机变量X 服从参数为(100,)的二项分布,则E X = , D X = 。
参考答案:40,24考核知识点:二项分布的数字特征33、设由来自正态总体)10,(2μN 的容量为25的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间长度为 。
参考答案:5,考核知识点:正态分布的估计值和置信区间34、在假设检验中,第一类错误是指 。
参考答案:原假设本来正确,却被错误地拒绝了考核知识点:假设检验35、袋中有100个球,其中有30个是红球,其余为白球,不放回抽样从中任取4次,一次取一个球,则第二次取到红球的概率为 。
参考答案:考核知识点:古典概率36、设随机变量X 在区间[2,6] 上服从均匀分布,则随机变量X 的概率密度函数为 ;随机变量X 的分布函数为 ;P{<X <}= 。
参考答案: ⎩⎨⎧≤≤=其他,062,25.0)(x x f ,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=6,162,422,0)(x x x x x F , 考核知识点:连续型随机变量的概率37、设随机变量X 服从参数为(10,)的二项分布,则E X = , D X = 。
参考答案: 6,考核知识点:二项分布的数字特征38、设由来自正态总体)9,(2μN 的容量为25的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间为 。
参考答案: 5,(,)考核知识点:正态分布的估计值和置信区间二、单项选择题1、下列数字中不可能是随机事件概率的是( )。
A .- 1/3B .0 C. D.1参考答案:A考核知识点:概率的公理化定义2、某产品共有10件,其中3件为次品,其余为正品。
用不放回方法从中任取两次,一次一件,则第二次取到的是正品的概率为( )。
A .107B .103 C .92 D .151 参考答案:B考核知识点:古典型概率3、设某厂的甲、乙、丙三个车间生产同一种产品,记A 1为“产品是由甲车间生产的”, A 2为“产品是由乙车间生产的”, A 3为“产品是由丙车间生产的”, B 为“产品是次品”。
今从即将出厂的该种产品中任取一件,则取到的是甲车间生产的次品的概率为( )。
A .P (C A 1)B .P (C 2A ) C .P (B A 2)D .P (A 1B )参考答案:D考核知识点:概率的表示与条件概率4、设某厂的甲、乙、丙三个车间生产同一种产品,记A 1为“产品是由甲车间生产的”, A 2为“产品是由乙车间生产的”, A 3为“产品是由丙车间生产的”, B 为“产品是次品”。
今从次品中任取一件,则它是由甲车间生产的的概率为( )。
A .P (C A 1)B .P (C 2A ) C .P (B A 2)D .P (B A 1)参考答案:D考核知识点:概率的表示与条件概率5、任何连续型随机变量的概率密度f (x ) 一定满足( )。
A .1)(0≤≤x fB .在定义域内单调不减C .在定义域内右连续D .⎰∞+∞-=1)(dx x f参考答案:D考核知识点:概率密度的性质6、设随机变量X ~N (2,1002),且P{0<X <4}=,则P{X <0}=( )。