( 一轮复习用卷)计数原理、概率、随机变量及其分布、统计、统计案例

合集下载

(全国版)高考数学一轮复习第十章计数原理、概率、随机变量10概率与统计课件理

(全国版)高考数学一轮复习第十章计数原理、概率、随机变量10概率与统计课件理
第十九页,共45页。
分数 段


[40,50)
3 6
[50,60)
9 4
[60,70)
18 5
[70,80)
15 10
[80,90)
6 13
[90,100]
9 2
(1)估计(gūjì)男、女生各自的成绩平均分(同一组数据 用该组区间中点值作代表),从计算结果看,判断数学成 绩与性别是否有关.
第二十页,共45页。
第五页,共45页。
第六页,共45页。
表 (1中)根wi据=散x点i 图, w判断18 ,i8y1 =wai+. bx与y=c+d
哪一个适宜作为年
销售量y关于年宣传费x的回归方程类型?x(给出判断即可,
不必说明理由)
(2)根据(1)的判断结果( guǒ)及表中数据,建立y关于x
的回归方程.
第三十七页,共45页。
答题规则2:熟练应用相关公式,准确运算 统计、统计案例,概率与离散(lísàn)型随机变量的均值、方差 公式,互斥事件有一个事件发生的概率公式,独立事件同时发生 的概率公式等公式的熟练应用,并能准确运算,是得分的关键, 如本题能正确应用P(C)=P(CB1)P(CA1)+ P(CB2)P(CA2),且能准 确计算,并写出相应步骤即可得分.
第二十七页,共45页。
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通 过茎叶图比较两地区满意度评分的平均值及分散程度 (chéngdù)(不要求计算出具体值,得出结论即可).
第二十八页,共45页。
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等 级:
满意度评分 低于70分 70分到89分 不低于90分 记满事意件度C:等“A级地区用不户的满满意意度等级高满于意B地区用户的非满常意满度意等

2024年高考数学一轮复习课件(新高考版) 第10章 §10.8 概率与统计的综合问题

2024年高考数学一轮复习课件(新高考版)  第10章 §10.8 概率与统计的综合问题

X012 3
P
27 27 9 64 64 64
1 64
则 E(X)=3×14=34.
思维升华
高考常将独立性检验与分布列等交汇在一起进行考查,解决独立性检 验问题,要注意过好“三关”:假设关、公式关、对比关.解决概率 问题要准确地把握题中所涉及的事件,明确所求问题所属的事件类型.
跟踪训练3 (2023·昆明模拟)2022年,举世瞩目的冬奥会在北京举行,冬 奥会吉祥物“冰墩墩”和“雪容融”有着可爱的外表和丰富的寓意,自 亮相以来就好评不断,深受各国人民的喜爱.某市一媒体就本市小学生是 否喜爱这两种吉祥物对他们进行了一次抽样调查,列联表如下(单位:人):
2024年高考数学一轮复习课件(新高考版)
第十章 计数原理、概率、随机变量及其分布
§10.8 概率与统计 的综合问题
题型一 频率分布直方图与分布列的综合问题
例1 2022年是中国共产主义青年团成立100周年,为引导和带动青少年 重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识 竞赛,现从中随机抽取了100名学生的 成绩组成样本,并将得分分成以下6组: [40,50),[50,60),[60,70),…,[90,100], 统计结果如图所示. (1)试估计这100名学生得分的平均数;
^
^
,a= y -b x .
n
x2i -n x 2
i=1
由题意得, x =1+2+3+10…+9+10=5.5,
10
10
又 y =1.5,xiyi=89.1,x2i =385,
i=1
i=1
10
xiyi-10 x y
^ i=1
所以b=
10
=89.318-5-101×0×5.55×.521.5=0.08,

高考数学一轮总复习课件第十章 计数原理、概率、随机变量及其分布 10.8精选ppt版本

高考数学一轮总复习课件第十章 计数原理、概率、随机变量及其分布 10.8精选ppt版本
P (A )
求P(B|A).
(2)基本事件法:借助古典概型概率公式,先求事件A包
含的基本事件数n(A),再求事件AB所包含的基本事件数 n(AB),得P(B|A)= n ( A B ) .
n (A )
2.正态分布下两类常见的概率计算 (1)利用正态分布密度曲线的对称性研究相关概率问题, 涉及的知识主要是正态曲线关于直线x=μ对称,曲线与 x轴之间的面积为1.
2.掌握常见五个事件的含义 (1)A,B中至少有一个发生的事件为A∪B. (2)A,B都发生的事件为AB. (3)A,B都不发生的事件为 (4)A,B恰有一个发生的事件为 (5)A,B至多一个发生的事件为
A B.
AB AB.
A BA BA B .
3.二项分布是在独立重复试验中产生的,离开独立重复 试验不存在二项分布. 4.若X~B(n,p),则当k由0增大到n时,P(X=k)先由小到 大然后由大到小,且当k取不超过(n+1)p的最大整数时 P(X=k)最大.
试的概率为
C
2 3
0.62×0.4+0.63=0.648.
5.(2016·济宁模拟)有一批种子的发芽率为0.9,出芽后
的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则
这粒种子能成长为幼苗的概率为
.
【解析】由题意可得所求概率=0.8×0.9=0.72,即这粒
种子能成长为幼苗的概率为0.72.
答案:0.72
结论 错误 错误 正确 错误
4.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中
2次才能通过测试.已知某同学每次投篮投中的概率为
0.6,且各次投篮是否投中相互独立,则该同学通过测试
的概率为 ( )
A.0.648 B.0.432 C.0.36 D.0.312

高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.1 分类加法计数原理与分步乘法计

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.1 分类加法计数原理与分步乘法计

11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版的全部内容。

11.1 分类加法计数原理与分步乘法计数原理真题演练集训理新人教A版1.[2016·新课标全国卷Ⅱ]如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9答案:B解析:由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18(种)走法,故选B。

2.[2016·新课标全国卷Ⅲ]定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个 B.16个C.14个 D.12个答案:C解析:由题意可得,a1=0,a8=1,a2,a3,…,a7中有3个0、3个1,且满足对任意k≤8,都有a1,a2,…,a k中0的个数不少于1的个数,利用列举法可得不同的“规范01数列"有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.3.[2016·四川卷]用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72答案:D解析:由题意可知,个位可以从1,3,5中任选一个,有A1,3种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A4,4种方法,所以奇数的个数为A错误!A错误!=3×4×3×2×1=72,故选D。

(新课标)2019届高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3随机

(新课标)2019届高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3随机

A∩B=______ A∩B=______ P(A∪B)=P(A)+P(B)= _______
对立事件
拓展:“互斥事件”与“对立事件”的区别及联系:两个事件 A 与 B 是互 斥事件,有如下三种情况:①若事件 A 发生,则事件 B 就不发生;②若事件 B 发生,则事件 A 就不发生;③事件 A,B 都不发生.两个事件 A 与 B 是对立事 件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥. 4.概率的几个基本性质 (1)概率的取值范围:____________. (2)必然事件的概率 P(E)=____________. (3)不可能事件的概率 P(F)=____________. (4)互斥事件概率的加法公式 ①如果事件 A 与事件 B 互斥,则 P(A∪B)=___________________. 推广: 如果事件 A1, A2, …, An 两两互斥(彼此互斥), 那么事件 A1+A2+… +An 发生的概率, 等于这 n 个事件分别发生的概率的和, 即 P(A1+A2+…+An) =____________________________. ②若事件 B 与事件 A 互为对立事件,则 P(A)=_______________.
有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、 西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( A.互斥事件但非对立事件 B.对立事件但非互斥事件 C.互斥事件也是对立事件 D.以上都不对 )
解:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是 互斥事件,但不是对立事件.故选 A.
第十章 第一章
集合与常用逻辑用语 计数原理、概率、随机变量及其分布
10.3 随机事在条件 S 下,一定会发生的事件,叫做相对于条件 S 的 ____________. (2) 在条件 S 下,一定不会发生的事件,叫做相对于条件 S 的 ____________. 必然事件与不可能事件统称为相对于一定条件 S 的确定事件. (3)在条件 S 下可能发生也可能不发生的事件,叫做相对于条件 S 的__________. (4)____________和____________统称为事件, 一般用大写字母 A, B,C,…表示.

2025届高考数学一轮复习讲义计数原理、概率、随机变量及其分布之 两个计数原理 (1)

2025届高考数学一轮复习讲义计数原理、概率、随机变量及其分布之 两个计数原理 (1)
C. 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完
成这件事
D. 从甲地经丙地到乙地是分步问题
2. [教材改编]已知某公园有4个门,从一个门进,另一个门出,则不同的进出公园的
方式有
1,4,从1号门进入后,有3种出门的方式,同
理,从2,3,4号门进入,也各有3种出门的方式,故不同的进出公园的方式共有
211,121,112.共计3+6+3+3=15(个).
(2)满足 a , b ∈{-1,0,1,2},且关于 x 的方程 ax 2+2 x + b =0有实数解的有序
数对( a , b )的个数为
13 .

[解析] 当 a =0时, b 的值可以是-1,0,1,2,( a , b )的个数为4.当 a ≠0时,要

独立完成这件事.
区别 各类方法之间是相互独立的,

既不能重复也不能遗漏.
每一种方法都不能独立完成这件事).
各步之间是相互依存的,缺一不可.
二、基础题练习
1. [多选]下列说法正确的是 (
BD )
A. 在分类加法计数原理中,两类不同方案中的方法可以相同
B. 在分类加法计数原理中,每类方案中的方法都能直接完成这件事
Q . 把满足上述条件的一对有序整数对( x , y )作为一个点的坐标,则这样的点的个
数是(
A. 9
B )
B. 14
C. 15
D. 21
[解析] 当 x =2时, x ≠ y , y 可从3,4,5,6,7,8,9中取,有7种方法.当 x ≠2
时,由 P ⊆ Q ,得 x = y , x 可从3,4,5,6,7,8,9中取,有7种方法.综上,满足

北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 概率与统计中的综合问题

北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 概率与统计中的综合问题

解答题专项六概率与统计中的综合问题解答题专项练《素养分级练》P3961.(河北张家口三模)港珠澳大桥桥隧全长55千米,桥面为双向六车道高速公路,设计速度为100千米/小时,限制速度为90~120千米/小时,通车后由桥上监控显示每辆车行车和通关时间的频率分布直方图如图所示:(1)估计车辆通过港珠澳大桥的平均时间t(单位:分钟)(精确到0.1);(2)以(1)中的平均时间t作为μ,车辆通过港珠澳大桥的时间X近似服从正态分布N(μ,36),任意取通过大桥的1 000辆汽车,求所用时间少于39.5分钟的车辆大致数目(精确到整数).附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.6826,P(μ-2σ<X≤μ+2σ)≈0.954 4.解:(1)由频率分布直方图可得t =32.5×0.015+37.5×0.18+42.5×0.27+47.5×0.3+52.5×0.2+57.5×0.035≈45.5(分钟). (2)由题知X~N(45.5,36),所以P(X<39.5)=P(X<μ-σ)=12[1-P(μ-σ<X≤μ+σ)]=0.1587,所以1000×0.1587≈159,故所用时间少于39.5分钟的车辆大致数目为159. 2.一场科普知识竞答比赛由笔试和抢答两部分组成,若笔试和抢答满分均为100分,其中5名选手的成绩如下表所示:对于这5名选手,根据表中的数据,试解答下列两个小题: (1)求y 关于x 的线性回归方程;(2)现要从笔试成绩在90分或90分以上的选手中选出2名参加一项活动,以ξ表示选中的选手中笔试和抢答成绩的平均分高于90分的人数,求随机变量ξ的分布列及数学期望E(ξ). 附:b ^=∑i=1n(x i -x )(y i -y )∑i=1n(x i -x )2,a ^=y −b ^x .解:(1)x =87+90+91+92+955=91,y =86+89+89+92+945=90,∑i=15(x i -x )2=(-4)2+(-1)2+02+12+42=34,∑i=15(x i -x )(y i -y )=(-4)×(-4)+(-1)×(-1)+0×(-1)+1×2+4×4=35,所以b ^=3534,a ^=y −b ^x =90-3534×91=-12534,故线性回归方程为y ^=3534x-12534.(2)随机变量ξ的可能取值为0,1,2.因为笔试成绩在90分或90分以上的选手有S 2,S 3,S 4,S 5,共4人,他们笔试和抢答的成绩平均分分别为89.5,90,92,94.5,平均分高于90分的有2人,所以P(ξ=0)=C 22C2=16;P(ξ=1)=C 21C 21C 2=23;P(ξ=2)=C 22C 2=16,故ξ的分布列为所以E(ξ)=0×16+1×23+2×16=1.3.(湖北襄阳高三检测)为落实教育部的双减政策,义务教育阶段充分开展课后特色服务.某校初中部的篮球特色课深受学生喜爱,该校期末将进行篮球定点投篮测试,规则为:每人至多投3次,先在M 处投一次三分球,投进得3分,未投进不得分,以后均在N 处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如下图表:甲乙若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)已知该校有300名学生的投篮水平与甲同学相当,求这300名学生通过测试人数的数学期望;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.解:(1)甲同学两分球投篮命中的概率为510+410+310+610+7105=0.5,甲同学三分球投篮命中的概率为110+0+110+210+1105=0.1,设甲同学累计得分为X,则P(X=4)=0.9×0.5×0.5=0.225,P(X=5)=0.1×0.5+0.1×0.5×0.5=0.075,则P(X≥4)=P(X=4)+P(X=5)=0.3,所以甲同学通过测试的概率为0.3.设这300名学生通过测试的人数为Y,由题设Y~B(300,0.3),所以E(Y)=300×0.3=90.(2)乙同学两分球投篮命中率为210+410+310+510+6105=0.4,乙同学三分球投篮命中率为110+210+310+110+3105=0.2.设乙同学累计得分为Y,则P(Y=4)=0.8×0.4×0.4=0.128,P(Y=5)=0.2×0.4+0.2×0.6×0.4=0.128.设“甲得分比乙得分高”为事件A,“甲、乙两位同学均通过了测试”为事件B,则P(AB)=P(X=5)·P(Y=4)=0.075×0.128=0.0096,P(B)=[P(X=4)+P(X=5)]·[P(Y=4)+P(Y=5)]=0.0768,由条件概率公式可得P(A|B)=P(AB)P(B)=0.00960.0768=18.4.(山东潍坊三模)盲盒,是指消费者不能提前得知具体产品款式的玩具盒子,具有随机性.因其独有的新鲜性、刺激性及社交属性而深受各个年龄段人们的喜爱.已知M系列盲盒共有12个款式,一批盲盒中,每个盲盒随机装有一个款式,甲同学已经买到3个不同款,乙、丙同学分别已经买到m 个不同款,已知三个同学各自新购买一个盲盒,且相互之间无影响,他们同时买到各自的不同款的概率为13.(1)求m;(2)设X 表示三个同学中各买到自己不同款的总人数,求X 的分布列和数学期望.解:(1)由题意三个同学同时买到各自的不同款的概率为912×12-m 12×12-m 12=13,解得m=20或4,因为0<m≤12,所以m=4.(2)由题意知X 的所有可能取值为0,1,2,3, P(X=0)=312×412×412=136; P(X=1)=912×412×412+312×812×412×2=736;P(X=2)=912×812×412×2+312×812×812=49;P(X=3)=13. 其分布列为所以数学期望E(X)=0×136+1×736+2×49+3×13=2512.5.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)是否可以认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,P(B|A)|A)P(B|A)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:R=P(A|B)·(A|B) P(A|B);(ⅱ)利用该调查数据,给出P(A|B),P(A|B)的估计值,并利用(ⅰ)的结果给出R的估计值.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解:(1)由题意可知,n=200,所以χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=200×(40×90-10×60)2100×100×50×150=24>6.635,所以我们有99%的把握可以推断患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(ⅰ)证明:R=P(B|A)P(B|A)P(B|A)=P(B|A)·(B|A) P(B|A)=P(AB)P(A)P(AB)P(A)·P(AB)P(A)P(AB)P(A)=(AB)P(AB)·P(AB)=P(AB)P(B)P(AB)P(B)·(AB)P(B)P(AB)P(B)=P(A|B)·(A|B)P(A|B).(ⅱ)P(A|B)=P(AB)P(B)=n(AB)n(B)=40100=0.4,P(A|B)=AB)P(B)=AB)n(B)=10100=0.1,同理P(A|B)=(AB)P(B)=(AB)n(B)=90100=0.9,P(A|B)=P(AB)P(B)=n(AB)n(B)=60100=0.6,所以R=P(A|B)·(A|B)P(A|B)=0.4×0.90.6×0.1=6.所以指标R的估计值为6.6.(江西鹰潭二模)为迎接北京冬季奥运会,某市对全体高中学生举行了一次关于冬季奥运会相关知识的测试.统计人员从全市高中学生中随机抽取200名学生成绩作为样本进行统计,测试满分为100分,统计后发现所有学生的测试成绩都在区间[40,100]内,并制成如下所示的频率分布直方图.(1)估计这200名学生的平均成绩(同一组中的数据用该区间的中点值为代表);(2)在这200名学生中用分层随机抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了10人,再从这10人中随机抽取3人,记X为3人中成绩在[80,90)的人数,求X的分布列和数学期望; (3)规定成绩在[90,100]的为A等级,成绩在[70,90)的为B等级,其他为C 等级.以样本估计总体,用频率代替概率,从所有参加测试的同学中随机抽取10人,其中获得B等级的人数恰为k(k≤10)人的概率为P,当k为何值时P的值最大?解:(1)这200名学生的平均成绩为(45×0.005+55×0.02+65×0.025+75×0.03+85×0.015+95×0.005)×10 =69.5(分).(2)由[70,80),[80,90),[90,100]的三组频率之比为0.3∶0.15∶0.05=6∶3∶1,从[70,80),[80,90),[90,100]中分别抽取6人,3人,1人,X所有可能取值为0,1,2,3,则P(X=0)=C 73C 103=724,P(X=1)=C 72C 31C 103=2140,P(X=2)=C 71C 32C 103=740,P(X=3)=C 33C 103=1120.故X 的分布列为故E(X)=0×724+1×2140+2×740+3×1120=910.(3)依题意,B 等级的概率为(0.03+0.015)×10=0.45,且k~B(10,0.45), 所以P(k)=C 10k0.45k (1-0.45)10-k ,而{P (k )≥P (k -1),P (k )≥P (k +1),则{C 10k 0.45k (1-0.45)10-k≥C 10k -10.45k -1(1-0.45)10-k+1,C 10k 0.45k (1-0.45)10-k ≥C 10k+10.45k+1(1-0.45)10-k -1,即{10-k+1k×0.45≥0.55,0.55≥0.45×10-(k+1)+1k+1,解得7920≤k≤9920, 因为k ∈N *,所以k=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数原理、概率、随机变量及其分布、统计、统计案例第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( )A .0.16B .0.32C .0.68D .0.842.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( )A .2,6B .2,7C .3,6D .3,73.将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,f xg x=a x,f 1g 1+f -1g -1=52,则关于x 的方程abx 2+2x +52=0(b ∈(0,1))有两个不同实根的概率为( )A.35B.25C.15D.125.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .2796.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ② y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④7.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为( )A .10000B .20000C .25000D .300008.在区间[-π,π]随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π49.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 合计 爱好 40 20 60 不爱好 20 30 50 总计6050 110由K 2=n ad -bc 2a +bc +d a +cb +d,得K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 10.二项式(x 2+2x)10的展开式中的常数项是( )A .第10项B .第9项C .第8项D .第7项11.给出下列五个命题:①将A 、B 、C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体为9个,则样本容量为30;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲; ④已知具有相关关系的两个变量满足的回归直线方程为y =1-2x ,则x 每增加1个单位,y 平均减少2个单位;⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)的频率为0.4.其中真命题为( ) A .①②④ B .②④⑤ C .②③④ D .③④⑤ 12.已知x ,y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a ^=( ) A .2.5 B .2.6 C .2.7 D .2.8第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13从某500件产品中随机抽取50件进行质检,利用随机数表法抽取样本时,先将这500件产品按001,002,003,…,500进行编号.如果从随机数表第7行第4列的数2开始,从左往右读数,则依次抽取的第4个个体的编号是________.(下面摘录了随机数表第6行至第8行各数)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 72 06 50 25 83 42 16 33 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7914.若对任意的实数x,有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,则a3的值为________.15.在三棱锥P-ABC中,任取两条棱,则这两条棱异面的概率是________.16.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X,Y,设ξ=Y-X,则E(ξ)=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99乙:110,115,90,85,75,115,110(1)画出这两组数据的茎叶图;(2)求出这两组数据的平均值和方差(用分数表示);并说明哪个车间的产品较稳定.(3)从甲中任取一个数据x(x≥100),从乙中任取一个数据y(y<100),求满足条件|x-y|≤20的概率.18.(本小题满分12分)在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,选课情况如下表:(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.19.(本小题满分12分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(1)计算样本的平均成绩及方差;(2)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为ξ,求随机变量ξ的分布列和均值.20.(本小题满分12分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).21.(本小题满分12分)某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这两族人数占各自小区总人数的比例如下:A小区低碳族非低碳族比例1212B小区低碳族非低碳族比例4515C小区低碳族非低碳族比例2313(1)从A,B(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列和期望E(X).22.(本小题满分14分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(1)打满4局比赛还未停止的概率;(2)比赛停止时已打局数ξ的分布列与期望E (ξ).数学卷(十九)1. A 因为ξ服从正态分布N (1,σ2),所以P (ξ≤4)=P (ξ≥-2)=0.84,故P (ξ≤-2)=1-P (ξ≥-2)=1-0.84=0.16.2. D x =17×5-(9+12+10+27+24)=3,∵15<10+y <18且中位数为17,∴y =7,故选D.3. A 根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C 24种放法,第二类,2号盒子里放3个球,有C 34种放法,剩下的小球放入1号盒中,共有不同放球方法C 24+C 34=10种.4. B 令h (x )=f xg x =a x,则h ′(x )=f ′x g x -f x g ′x [g x ]2<0,∴h (x )是减函数,∴0<a <1.又f 1g 1+f -1g -1=52,∴a +1a =52,∴a =12.由Δ>0得b <25.又b∈(0,1),由几何概型概率公式得:p =25,选B.5. B 有两个重复数字时,①含2个0,有9种,②含1个0,0不能排在百位,∴有C 12C 19=18种;③不含0,有C 19C 13C 18=216种(或C 29C 12C 13=216种);有三个重复数字时,有C 19=9种,∴共有含重复数字的三位数9+18+216+9=252个,故选B.6. D y 与x 正(或负)相关时,线性回归直线方程y =b ^x +a ^中,x 的系数b ^>0(或b ^<0),故①④错.7. C 设估计该水池中鱼的尾数为n ,根据题意可得2000n =40500,解得n =25000.故C 正确.8. B ∵f (x )有零点,∴Δ=(2a )2-4(-b 2+π2)≥0,∴a 2+b 2≥π2,∵a ,b ∈[-π,π],∴所求概率P =4π2-π·π24π2=1-π4,故选B. 9. C10. B 通项T r +1=C r10·(x 2)10-r·(2x)r =2r ·C r10x 20-5r 2,令20-5r 2=0得r =8,∴常数项为第9项.11. B ①样本容量为9÷36=18,①是假命题;②数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③x -乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=15×(4+1+4+9+4)=4.4,∵s 2甲>s 2乙,∴乙稳定,③是假命题;④是真命题;⑤数据落在[114.5,124.5)的有:120,122,116,120共4个,故所求概率为410=0.4,⑤是真命题.12. B x -=2,y -=4.5, ∵回归直线过样本点中心(2,4.5), ∴4.5=0.95×2+a ^, ∴a ^=2.6,故选B.13. 206 按规定的读数方法,依次读取的数是:217,157,245,217,206,…,由于重复的数字应只保留1个,故读取的第4个个体的编号为206.14. -2 ∵x 4=[(x +2)-2]4=(x +2)4-2(x +2)3+4(x +2)2-8(x +2)+16,∴a 3=-2.15. 15 三棱锥中两条相对的棱所在直线是异面直线,共有3对,从6条棱中任取两条,可知有15种取法,∴取到两条棱异面的概率P =315=15. 16. 43由题意知ξ的取值为0,1,2,ξ=0,表示X =Y ,ξ=1表示X =1,Y =2;或X =2,Y =3;ξ=2表示X =1,Y =3.∴P (ξ=0)=333=19,P (ξ=1)=2×2×333=49, P (ξ=2)=2×3+A 3333=49, ∴E (ξ)=0×19+1×49+2×49=43.17.解: (1)茎叶图如图:………………………………………………3分(2)x -甲=17(102+101+99+98+103+98+99)=100;x -乙=17(110+115+90+85+75+115+110)=100;S 2甲=17(4+1+1+4+9+4+1)=247; S 2乙=17(100+225+100+225+625+225+100)=16007, ∵S 2甲<S 2乙,故甲车间产品比较稳定.………………………………………………6分 (3)所有可能的情况有:(102,90),(102,85),(102,75),(101,90),(101,85),(101,75),(103,90),(103,85),(103,75),不满足条件的有:(102,75),(101,75),(103,75),所以P (|x -y |≤20)=1-39=23.………………………………………………10分18.解: (1)设“从第一小组选出的2人选科目乙”为事件A , “从第二小组选出的2人选科目乙”为事件B .由于事件A 、B 相互独立, 且P (A )=C 25C 26=23,P (B )=C 24C 26=25,………………………………………2分所以选出的4人均选科目乙的概率为P (A ·B )=P (A )·P (B )=23×25=415.………………………………………………4分(2)由条件知ξ可能的取值为0,1,2,3.P (ξ=0)=415,P (ξ=1)=C 25C 26·C 12C 14C 26+C 15C 26·C 24C 26=2245,P (ξ=3)=C 15C 26·1C 26=145,P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=29,………………………………………………9分ξ的分布列为:ξ 0 1 2 3 P415224529145∴ξ的数学期望E (ξ)=0×15+1×45+2×9+3×145=1. ………………………………………………12分19.解: (1)样本的平均成绩x -=92+98×2+85×2+74×3+60×210=80,………………………………………2分方差s 2=110[(92-80)2+(98-80)2×2+(85-80)2×2+(74-80)2×3+(60-80)2×2]=175. ………………………………………………5分(2)由题意知选出学生的分数为90分以上的人数为ξ,得到随机变量ξ=0,1,2. P (ξ=0)=C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 210=115,……………………………………………9分 分布列为:E (ξ)=0×715+1×715+2×15=5.………………………………………………12分20.解: (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=2466=411.………………………4分(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 212=111, 于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,………………………………………………8分所以随机变量ξ的分布列是因此E (ξ)12分21.解: (1)记这3人中恰好有2人是低碳族为事件A ,P (A )=12×45×13+12×15×23+12×45×23=715,………………………………………5分(2)在B 小区中随机选择20户中,“非低碳族”有4户,P (X =k )=C k 4C 3-k16C 320,(k =0,1,2,3),E (X )=0×2857+1×819+2×895+3×1285=0.6. ………………………………………………12分22.解:令A k ,B k ,C k 分别表示甲、乙、丙在第k 局中获胜.(1)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满4局比赛还未停止的概率为P (A 1C 2B 3A 4)+P (B 1C 2A 3B 4)=124+124=18.………………………………4分(2)ξ的所有可能值为2,3,4,5,6,且P (ξ=2)=P (A 1A 2)+P (B 1B 2)=122+122=12, P (ξ=3)=P (A 1C 2C 3)+P (B 1C 2C 3)=123+123=14. P (ξ=4)=P (A 1C 2B 3B 4)+P (B 1C 2A 3A 4)=124+124=18. P (ξ=5)=P (A 1C 2B 3A 4A 5)+P (B 1C 2A 3B 4B 5)=125+125=116.P (ξ=6)=P (A 1C 2B 3A 4C 5)+P (B 1C 2A 3B 4C 5)=125+125=116.……………………………9分故分布列为∴E (ξ)=2×2+3×4+4×8+5×16+6×16=16.…………………………………12分。

相关文档
最新文档