各种坐标系的定义

合集下载

各种坐标系的定义

各种坐标系的定义

各种坐标系的定义一:空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

二:大地坐标系:大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高师空间的点沿着参考椭球的法线方向到参考椭球面的距离。

附:经度和纬度的详细概念,呵呵。

经度和纬度都是一种角度。

经度是个面面角,是两个经线平面的夹角。

因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。

本初子午线平面是起点面,终点面是本地经线平面。

某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。

在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。

由此可见,一地的经度是该地对于本初子午线的方向和角距离。

本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。

纬度是个线面角。

起点面是赤道平面,线是本地的地面法线。

所谓法线,即垂直于参考扁球体表面的线。

某地的纬度就是该地的法线与赤道平面之间的夹角。

纬度在本地经线上三:平面坐标系(这里主要将gis中高斯-克吕格尔平面直角坐标系,不是数学里面的平面坐标系)高斯-克吕格尔平面直角坐标系Gauss-Krüger plane rectangular coordinates system 根据高斯-克吕格尔投影所建立的平面坐标系,或简称高斯平面坐标系。

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的
定义
一、基坐标系的定义与应用
基坐标系是一个基本的坐标系,用于描述其他坐标系的位置和姿态。

在机械加工和机器人领域中,基坐标系通常选取固定不变的参考点或参考系,以便于描述工件、工具和机器人的位置和运动。

基坐标系的应用主要包括:加工中心的编程、机器人路径规划、测量和控制等。

二、工件坐标系的定义与应用
工件坐标系是相对于基坐标系的一个局部坐标系,用于描述工件上各点的加工位置和加工轨迹。

工件坐标系的应用主要包括:加工中心的刀具路径规划、加工过程中的刀具补偿、工件尺寸的测量等。

工件坐标系的建立有利于简化编程和提高加工精度。

三、工具坐标系的定义与应用
工具坐标系是相对于工件坐标系的一个局部坐标系,用于描述工具在工件上的位置和姿态。

工具坐标系的应用主要包括:机器人末端执行器的路径规划、工具姿态的控制、工具中心点的测量等。

工具坐标系的建立有助于实现精确的定位和姿态控制。

四、大地坐标系的定义与应用
大地坐标系是相对于地球表面或固定基准的一个全局坐标系,用于描述物体在地球表面上的位置和运动。

大地坐标系的应用主要包括:地理信息系统、导航定位、航空航天、地质勘探等。

大地坐标系为各类工程和科学研究提供了
统一的空间参考基准。

总之,基坐标系、工件坐标系、工具坐标系和大地坐标系在各种领域中发挥着重要作用,它们相互关联、相互补充,为各类工程和科学研究提供了准确、可靠的空间参考体系。

各种坐标系含义

各种坐标系含义

WGS 84 是常用的经纬度的椭球面,也是一个公开的基准面。

正转换:经纬度-->高斯投影坐标。

大地基准面用于高斯投影,或者高斯分带投影,无论是54,80,还是wgs84,都有可能。

在不同的基准面下,同一个点的经纬度不同,投影坐标也不同。

地理坐标网(经纬网)为了制作和使用地图的方便,高斯-克吕格投影的地图上绘有两种坐标网:地理坐标网和直角坐标网。

在我国1:1万-1:10万地形图上,经纬线只以图廓的形式表现,经纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短线表示经差、纬差1’的分度带,需要时将对应点相连接,就构成很密的经纬网。

在1:20万-1:100万地形图上,直接绘出经纬网,有时还绘有供加密经纬网的加密分割线。

纬度注记在东西内外图廓间,经度注记在南北内外图廓间。

直角坐标网(方里网)直角坐标网是以每一投影带的中央经线作为纵轴(X轴),赤道作为横轴(Y轴)。

纵坐标以赤道我0起算,赤道以北为正,以南为负。

我国位于北半球,纵坐标都是正值。

横坐标本应以中央经线为0起算,以东为正,以南为负,但因坐标值有正有负,不便于使用,所以又规定凡横坐标值均加500公里,即等于将纵坐标轴向西移500公里。

横坐标从此纵轴起算,则都成正值。

然后,以公里为单位,按相等的间距作平行于纵、横轴的若干直线,便构成了图面上的平面直角坐标网,又叫方里网。

5Geographic Coordinate System和Projection Coordinate System的区别和联系:地理坐标系统(Geographic Coordinate System)1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。

很明显,Geographic coordinate system是球面坐标系统。

第1讲坐标系种类及坐标转换

第1讲坐标系种类及坐标转换

第1讲坐标系种类及坐标转换在数学和物理学中,坐标系是用于表示和定位点的一组数学规则。

它可以帮助我们在平面或空间中精确地描述和测量位置、方向和距离。

坐标系通常由坐标轴和原点组成,坐标轴是一条直线,它们与原点形成直角。

有多种类型的坐标系,每一种都有特定的用途和应用。

以下是常见的几种坐标系:1.直角坐标系:直角坐标系也称为笛卡尔坐标系,是最常见的坐标系。

它由两条垂直的坐标轴和一个原点组成。

坐标轴可以是水平的x轴和垂直的y轴,或者在三维空间中可以加上一个垂直的z轴。

直角坐标系使用(x,y,z)来表示点的坐标,其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。

2.极坐标系:极坐标系用于描述平面上的点,它由一个原点和一个角度和距离组成。

极坐标系以原点为中心,用一个角度(通常用弧度表示)表示点与参考线(通常是x轴)之间的角度,用一个距离表示点与原点之间的距离。

极坐标系使用(r,θ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线之间的角度。

3.柱坐标系:柱坐标系是三维空间中的一种坐标系,它由一个原点、一个角度、一个距离和一个高度组成。

柱坐标系类似于极坐标系,但增加了一个垂直的z轴来表示高度。

柱坐标系使用(r,θ,z)来表示点的坐标,其中r表示点与原点的水平距离,θ表示点与参考线(通常是x轴)之间的角度,z表示点的高度。

4.球坐标系:球坐标系也是三维空间中的一种坐标系,它由一个原点、一个纬度、一个经度和一个距离组成。

球坐标系使用(r,θ,φ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线(通常是z轴)之间的纬度,φ表示点在参考平面上的经度。

在不同的坐标系之间进行转换时,我们需要使用特定的转换公式。

以直角坐标系和极坐标系为例,我们可以使用以下公式进行转换:x = r * cos(θ)y = r * sin(θ)r = sqrt(x^2 + y^2)θ = atan2(y, x)这些公式使我们能够在不同坐标系之间相互转换,并确保保持位置的准确性。

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结

地理信息中各种坐标系区别和转换总结引言简述地理信息系统(GIS)中坐标系的重要性概述坐标系在地理信息处理中的应用一、坐标系基本概念1.1 坐标系定义定义地理坐标系和投影坐标系描述坐标系的组成要素1.2 地理坐标系(GCS)介绍地理坐标系的基本概念描述纬度、经度和高度的概念1.3 投影坐标系(PCS)介绍投影坐标系的基本概念解释地图投影的基本原理二、常见坐标系类型2.1 地理坐标系类型WGS 84北京 54国家大地测量 2000(CGCS2000)2.2 投影坐标系类型UTM(通用横轴墨卡托投影)State Plane Coordinate System(美国州平面坐标系)地方投影坐标系(如高斯-克吕格投影)三、坐标系之间的区别3.1 坐标系参数差异描述不同坐标系的基准面、椭球体和参数差异3.2 应用领域差异讨论不同坐标系在不同领域的应用特点3.3 精度和适用性分析不同坐标系的精度和适用性四、坐标系转换原理4.1 转换基础描述坐标系转换的数学基础解释坐标转换的七参数模型4.2 转换方法平移、旋转和缩放(7参数转换)相似变换(相似因子、旋转和偏移)4.3 转换工具和技术介绍GIS软件中的坐标系转换工具讨论专业的坐标转换软件和技术五、坐标系转换实践5.1 数据准备数据格式和坐标系信息的检查5.2 转换流程描述转换的具体步骤和注意事项5.3 转换精度评估讨论转换后的精度评估方法六、坐标系转换中的常见问题6.1 投影变形问题分析投影过程中可能出现的变形问题6.2 转换误差问题讨论转换过程中可能出现的误差来源6.3 技术限制问题描述现有技术和工具的限制七、坐标系转换案例分析7.1 案例选择选择具有代表性的坐标系转换案例7.2 案例实施过程详细描述案例实施的具体步骤7.3 案例结果分析分析案例的转换效果和经验教训八、未来发展趋势8.1 技术进步预测坐标系转换技术的未来发展趋势8.2 应用拓展探讨坐标系转换在新兴领域的应用前景8.3 标准化和国际化讨论坐标系转换标准化和国际化的重要性结语总结坐标系转换的重要性和本文档的主要内容对未来坐标系转换工作的展望。

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义 -回复

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义 -回复

简述基坐标系、工件坐标系、工具坐标系、大地坐标系的定义-回复基坐标系、工件坐标系、工具坐标系和大地坐标系是在不同领域中使用的不同坐标系。

在以下文章中,我们将逐步回答并简述这些坐标系的定义和用法。

一、基坐标系:基坐标系是空间中的一个参考点,用于定义其他坐标系的起点。

通常,基坐标系的原点被定义为零点,三个坐标轴被定义为X、Y和Z轴。

这种坐标系可以用于描述物体的位置和姿态。

基坐标系可以是直角坐标系、极坐标系、柱坐标系等。

二、工件坐标系:工件坐标系是在机械加工领域中使用的一种坐标系。

它是基于加工零部件的几何特性而定义的。

通常,工件坐标系的原点和轴都与零件的某个特定特征(例如孔或边缘)相关联。

工件坐标系用于确定零件上各个特征的位置和相对位置,并确定其在整个加工过程中的定位和补偿。

三、工具坐标系:工具坐标系也是在机械加工领域中使用的一种坐标系。

它是基于机床上的工具而定义的。

通常,工具坐标系的原点和轴与切削工具的某个特定部分(例如刀尖或针尖)相关联。

工具坐标系用于确定刀具的位置和方向,以便正确执行切削操作,并确保零件符合预期的几何形状和尺寸要求。

四、大地坐标系:大地坐标系也被称为地理坐标系或地理参考系。

它是用来描述地球表面上的地理位置的一种坐标系。

大地坐标系通常使用经度和纬度来确定一个地点的位置。

经度表示东西方向上的位置,纬度表示南北方向上的位置。

大地坐标系在地图制作、导航、地理信息系统等领域中被广泛使用。

在机械制造领域中,基坐标系、工件坐标系和工具坐标系通常用于确定加工过程中零件和刀具的位置和方向。

这对于确保加工质量和准确性非常重要。

基坐标系提供了一个参考点,用于将工件和工具坐标系与机床进行关联。

工件坐标系用于标定零件上的特征点和特征轴,以便在加工过程中进行位置控制和补偿。

工具坐标系用于标定切削刀具的位置和方向,以确保切削操作的准确性和一致性。

大地坐标系在地理领域中起着关键作用。

它用于确定地球表面上的位置,以便制作地图、进行导航、测量地理现象等。

常用坐标系

常用坐标系

一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

坐标系的概念

坐标系的概念

坐标系的概念坐标系是数学中常用的一种工具,用于描述和表示空间中的点的位置。

它是通过一组数值,将点与参考系之间建立起一种对应关系。

在几何学、物理学、工程学和计算机科学等领域,坐标系被广泛应用。

本文将介绍坐标系的概念、种类以及使用方法。

一、坐标系的概念坐标系是一种描述空间中点位置的方式。

它以参考对象为基准,选取几个互相垂直的线作为参照,通过在这些线上标注数值,来表示点的位置。

一般来说,坐标系由原点和坐标轴组成。

原点是参考对象上的一个点,用于确定坐标轴的位置。

坐标轴是以原点为中心的直线,垂直交叉形成的一组直角线。

二、坐标系的种类1. 二维直角坐标系(笛卡尔坐标系)二维直角坐标系是最常见的坐标系。

它有两个相互垂直的坐标轴,分别是x轴和y轴。

x轴是水平方向的坐标轴,y轴是垂直方向的坐标轴。

坐标系中的点可以通过两个数值(x,y)来表示,即横坐标和纵坐标。

2. 三维直角坐标系三维直角坐标系是在二维直角坐标系的基础上加上了一条垂直于xy 平面的z轴。

该坐标轴与xy平面相交于原点。

在三维直角坐标系中,点的位置需要通过三个数值(x,y,z)来确定。

3. 极坐标系极坐标系是一种使用极径和极角来表示点的位置的坐标系。

它将点的位置与参考点(原点)的距离和与参考方向的角度联系起来。

极径表示点到原点的距离,极角表示与参考方向的夹角。

极坐标系适用于描述圆形和对称图形。

三、坐标系的使用方法1. 确定坐标系类型在使用坐标系之前,需要确定所使用的坐标系类型,根据实际情况选择二维直角坐标系、三维直角坐标系或极坐标系。

2. 标注坐标轴在坐标系中,需要标注坐标轴。

一般来说,x轴通常水平方向,y 轴通常垂直方向。

对于三维直角坐标系,还需要添加垂直于xy平面的z轴。

3. 确定原点在坐标系中,需要确定原点的位置。

原点是坐标轴的交点,通常作为参考对象的起点。

4. 描述点的位置使用坐标系时,需要通过数值来描述点的位置。

在二维直角坐标系中,点的位置通过横坐标和纵坐标来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种坐标系的定义一:空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。

空间直角坐标系可用如下图所示:二:大地坐标系:大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。

纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间的点沿着参考椭球的法线方向到参考椭球面的距离。

附:经度和纬度的详细概念,呵呵。

经度和纬度都是一种角度。

经度是个面面角,是两个经线平面的夹角。

因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。

本初子午线平面是起点面,终点面是本地经线平面。

某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。

在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。

由此可见,一地的经度是该地对于本初子午线的方向和角距离。

本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。

纬度是个线面角。

起点面是赤道平面,线是本地的地面法线。

所谓法线,即垂直于参考扁球体表面的线。

某地的纬度就是该地的法线与赤道平面之间的夹角。

纬度在本地经线上三:平面坐标系(这里主要将gis中高斯-克吕格尔平面直角坐标系,不是数学里面的平面坐标系)高斯-克吕格尔平面直角坐标系 Gauss-Krüger plane rectangular coordinates system根据高斯-克吕格尔投影所建立的平面坐标系,或简称高斯平面坐标系。

它是大地测量、城市测量、普通测量、各种工程测量和地图制图中广泛采用的一种平面坐标系。

高斯-克吕格尔投影是德国的 C.F.高斯于1822年提出的,后经德国的克吕格尔(J.H.L.Krüger)于1912年加以扩充而完善。

用大地经度和纬度表示的大地坐标是一种椭球面上的坐标,不能直接应用于测图。

因此,需要将它们按一定的数学规律转换为平面直角坐标。

大地坐标(B,L)转换为平面直角坐标(X,Y)的一般数学表示法为:X=F1(B,L), Y=F2(B,L), 式中F1、F2为投影函数。

高斯-克吕格尔投影的投影函数是根据以下两个条件确定的:第一,投影是正形的,即椭球面上无穷小的图形和它在平面上的表象相似,故又称保角投影或保形投影;投影面上任一点的长度比(该点在椭球面上的微分距离与其在平面上相应的微分距离之比)同方位无关。

第二,椭球面上某一子午线在投影平面上的表象是一直线,而且长度保持不变,即长度比等于1。

该子午线称为中央子午线,或称轴子午线。

这两个条件体现了高斯-克吕格尔投影的特性。

大地坐标系是大地测量的基本坐标系。

常用于大地问题的细算,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。

所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。

椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。

测量上常以投影变形不影响工程要求为条件选择投影方法。

地图投影有等角投影、等面积投影和任意投影三种。

其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。

这是地形图的基本要求。

正形投影有两个基本条件:①保角条件,即投影后角度大小不变。

②长度变形固定性,即长度投影后会变形,但是在一点上各个方向的微分线段变形比m是个常数k:式中:ds—投影后的长度,dS—球面上的长度。

1.高斯投影的概念高斯是德国杰出的数学家、测量学家。

高斯-克吕格尔投影是德国的 C.F.高斯于1822年提出的,后经德国的克吕格尔(J.H.L.Krüger)于1912年加以扩充而完善。

他提出的横椭圆柱投影是一种正形投影。

它是将一个横椭圆柱套在地球椭球体上,如下图所示:1.gif椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。

此子午线称中央子午线。

然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S点母线割开,并展成平面,即成为高斯投影平面。

在此平面上:①中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。

离开中央子午线越远,变形越大。

②投影后赤道是一条直线,赤道与中央子午线保持正交。

③离开赤道的纬线是弧线,凸向赤道。

高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。

为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。

这种方法称为分带投影。

投影带宽度是以相邻两个子午线的经差来划分。

有6°带、3°带等不同投影方法。

6°带投影是从英国格林尼治子午线开始,自西向东,每隔6°投影一次。

这样将椭球分成60个带,编号为1~60带,如下图所示:2.jpg各带中央子午线经度(L)可用下式计算:式中n为6°带的带号。

已知某点大地经度L,可按下式计算该点所属的带号:有余数时,为n的整数商+1。

3°带是在6°带基础上划分的,其中央子午线在奇数带时与6°带中央子午线重合,每隔3°为一带,共120带,各带中央子午线经度(L)为:式中n′为3°带的带号。

我国幅员辽阔,含有11个6°带,即从13~23带(中央子午线从75°~135°),21个3°带,从25~45带。

北京位于6°带的第20带,中央子午线经度为117°。

2.高斯平面直角坐标系Gauss-Krüger plane rectangular coord inates system根据高斯-克吕格尔投影所建立的平面坐标系,或简称高斯平面坐标系。

它是大地测量、城市测量、普通测量、各种工程测量和地图制图中广泛采用的一种平面坐标系。

用大地经度和纬度表示的大地坐标是一种椭球面上的坐标,不能直接应用于测图。

因此,需要将它们按一定的数学规律转换为平面直角坐标。

大地坐标(B,L)转换为平面直角坐标(X,Y)的一般数学表示法为:X=F1(B,L), Y=F2(B,L), 式中F1、F2为投影函数。

高斯-克吕格尔投影的投影函数是根据以下两个条件确定的:第一,投影是正形的,即椭球面上无穷小的图形和它在平面上的表象相似,故又称保角投影或保形投影;投影面上任一点的长度比(该点在椭球面上的微分距离与其在平面上相应的微分距离之比)同方位无关。

第二,椭球面上某一子午线在投影平面上的表象是一直线,而且长度保持不变,即长度比等于1。

该子午线称为中央子午线,或称轴子午线。

这两个条件体现了高斯-克吕格尔投影的特性。

根据高斯投影的特点,以赤道和中央子午线的交点为坐标原点。

,中央子午线方向为x轴,北方向为正。

赤道投影线为y轴,东方向为正。

象限按顺时针Ⅰ、Ⅱ、Ⅲ、Ⅳ排列,如下图所示:3.gif在同一投影带内y值有正有负。

这对计算和使用很不方便。

为了使y值都为正,将纵坐标轴西移500km,并在y坐标前面冠以带号,如在第20带,中央子午线以西P点:4.jpg在20带中高斯直角坐标为:5.jpg高斯直角坐标系与数学中的笛卡尔坐标系不同,如下图所示:6.gif高斯直角坐标系纵坐标为x轴,横坐标为y轴。

坐标象限为顺时针划分四个象限。

角度起算是从x轴的北方向开始,顺时针计算。

这些定义都与数学中的定义不同。

这样的做法是为了将数学上的三角和解析几何公式直接用到测量的计算上。

中国于50年代正式决定在大地测量和国家地形图中采用高斯-克吕格尔平面直角坐标系。

中国除了天文大地网平差采用椭球面上的大地坐标之外,高斯平面直角坐标系被广泛应用于其他各等大地控制网的平差和计算中。

为此,一般先将椭球面上的方向、角度、长度等观测元素经方向改化和距离改化,归化为相应的平面观测值,然后在平面上进行平差和计算,这要比直接在地球椭球面上进行简单得多。

大地坐标、大地线长度和大地方位角与高斯平面上相应的直角坐标,平面边长和坐标方位角之间的相互换算工作,一般是借助于专门的计算用表进行,或者直接在电子计算机上进行。

通用横轴墨卡托投影高斯-克吕格尔投影的一种变体,简称UTM投影。

它同高斯-克吕格尔投影的差别仅在于中央子午线的长度比不是1,而是0.9996。

UTM投影带中的两条标准线在中央子午线东、西各约 180公里处,这两条标准线上没有任何变形,离开这两条线愈远变形愈大。

在这两条线之内长度缩小,两线之外长度放大。

UTM投影应用比较广泛,目前世界上已有100多个国家和地区采用这种投影作为南纬80°至北纬84°的地区中测制地形图的数学基础。

相关文档
最新文档