(完整版)天体运动中的追及相遇问题

合集下载

天体的追及与相遇问题

天体的追及与相遇问题
1t 2t 2n (n 1,2,3)
t t 1n T1 T2 2
[例8] 如图所示,A是地球的同步卫星。另一卫星B的圆形轨道位于赤道平面 内,离地面高度为h。已知地球半径为R,地球自转角速度为ω0,地球表面的 重力加速度为g,O为地心。 (1)求卫星B的运行周期; (2)如果卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、 B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?
T1 T2
一、某星体的两颗卫星从相距最近到再次相距最 近遵从的规律:
内轨道卫星所转过的圆心角与外轨道卫星 所转过的圆心角之差为2π的整数倍。
二、某星体的两颗卫星从相距最近到相距最远遵 从的规律:
内轨道卫星所转过的圆心角与外轨道卫星 所转过的圆心角之差为π的奇数倍。
天体的追及与相遇问题
两天体(行星、卫星或探测器)相遇,实际上是指两天体相距最近。
绕行方向相同的两卫星和天体的连线在同一直线上,处于内轨道的卫 星周期T1小,处于外轨道的卫星周期T2大。
(1)当两卫星都在天体同侧时,那么当t满足下列式子时两卫星相距最近:
1t 2t 2n (n 1,2,3)
t t n T1 T2
(2)当两卫星在天体异侧时,那么当t满足下列式子时两卫星相距最近:
反思提升
对于天体追及问题的处理思路:
(1)根据GM r2 m=mrω2,可判断出谁的角速度大; (2)根据两星追上或相距最近时满足两星运行的角度差等于
2π 的整数倍,相距最远时,两星运行的角度 差等于 π 的奇数倍。
在与地球上物体追及时,要根据地球上
T1 T2
物体与同步卫星角速度相同的特点进行判断。
天体的追及与相遇问题

天体当中的追及问题

天体当中的追及问题
创新微课
对于天体追及问题的处理思路
相距最近ωt-ω t=2πN
T1
相距最近t/T2- t/T1=N
GMm r2
=mr
2
T2
GMm r2
=mr
4
T2
2
相距最远t/T2- t/T1=N+0.5
相距最远ωt/T2-ω t/T1=2πN+π
同学,下节再见
创新微课 现在开始
天体当中的追及问题
天体当中的追及问题
T1 T2
设t为再次相遇时间,则有
t/T2- t/T1=N,其中N 为t时间相遇的次数. 设t为相距最远时间,则有
t/T2- t/T1=N+0.5,其中
N为t时间相遇的次数.
创新微课
一、某星体的两颗卫星从相距最近到 再次相距最近遵从的规律:
内外卫星所转过的圆心角之差
A.各地外行星每年都会出现冲日现象 B.在2015年内一定会出现木星冲日 C.天王星相邻两次冲日的时间间隔为土星的一半 D.地外行星中,海王星相邻两次冲日的时间间隔最短
创新微课
例2.我国女宇航员王亚平搭乘“神舟十号”飞船于2013年6月上旬飞向太空,“神舟十 号”发射初始轨道为近地点约200 km、远地点约330 km的椭圆轨道,升空后再和目标 飞行器“天宫一号”对接,交会对接轨道为距地约343 km的近圆轨道.假设“神舟十号 ”飞船发射升空后,先后经历了多次变轨,调整到处于“天宫一号”目标飞行器后方约 52 km处, 并与“天宫一号”处于距离地面高度相同的同一圆形轨道上,最后与“天宫
1 2 2n
二、某星体的两颗卫星从相距最近到 相距最远遵从的规律:
内外卫星所转过的圆心角之差
1 2 (2n 1)

天体运动中的相遇急追及问题

天体运动中的相遇急追及问题

天体运动中的相遇、急追及问题引言天体运动中的相遇、急追问题是天体力学研究中的一个重要方面。

它能够帮助我们了解天体之间的相互作用规律,及其对天体系统演化的影响。

在太阳系中,行星之间的相对运动状态对于行星成型、轨道演化、甚至是地球存在的稳定性都有着重要的影响。

因此,对于相遇、急追等问题的研究,有着重要的科学意义和应用价值。

相遇问题天体运动中的相遇问题是指两个天体在一个瞬间处于非常接近的状态。

在实际应用中,我们通常定义两个天体之间的相遇状态为:1.两个天体之间的相对距离小于它们的半径之和。

2.两个天体相对运动的曲率半径非常小,它们的运动方向将会接近相反。

在天体力学中,相遇问题是一个非线性的多体系统问题,因此相遇问题的分析非常复杂。

相遇问题的一个经典案例就是恒星聚集星团中的相遇。

相遇问题不仅存在于天体力学中,在社会科学中也具有重要意义。

比如,在交通流中车辆的相遇,或是人类的相遇等。

相遇问题的研究能够帮助我们理解各种物理和社会事件的运动规律。

急追问题急追问题是指在天体运动中,一个天体在追赶另一个天体的过程中,它们之间的相对运动状态。

具体来讲,急追问题包括两种情况:一个天体相对另一个天体的运动速度比它们的距离更快或两个天体沿同一方向运动但速度不同的情况。

在恒星演化中,大质量恒星在一起形成成团状态,且成团状态下的恒星牵涉到的对其他恒星的急追问题有助于解释恒星演化的起源。

问题分析在天体力学中,相遇、急追问题的计算基本上都是建立在二体问题的基础之上。

因此,在分析问题的时候,我们通常也是基于二体问题进行研究。

二体系统主要包括两个方面的因素:运动的质量和运动的形态。

运动的质量代表系统受到的重力和其他外界力量,运动的形态则是由系统运动状态决定的。

对于相遇、急追问题,我们主要考虑的是运动的形态因素。

在求解相遇、急追问题的时候,我们通常会采用数学建模的方法,通过分析已知的物理量来推导出未知的物理量。

在对问题进行建模时,我们通常需要考虑众多因素,如速度、方向、质量等等。

专题 天体的追和相遇问题(课件)高中物理(人教版2019必修第二册)

专题  天体的追和相遇问题(课件)高中物理(人教版2019必修第二册)

C. 经过时间t T1 T2 ,两行星相距最远 2
D. 经过时间t T1T2 ,两行星相距最远
2(T2 T1 )
感谢您的耐心聆听
I'd like to finish by saying how grateful I am for your attention.
第七章 万有引力与宇宙航行
专题 天体的追和相遇问题
目录
contents
01 天体的追及相遇 02 典例分析
导入新课
问题与思考
冲日,是由地球上观察 天体与太阳的位置相差180 度,即天体与太阳各在地 球的两侧的天文现象。所 谓行星冲日,是指地外行 星运行到与太阳、地球形 成一条直线的状态。
你知道什么是冲日了吗?
r1 1
北斗卫星中轨道卫星 A 的轨道半径 r2 R h2 2.74 107 m 可得 r2 4
r3
根据开普勒第三定律 T 2
k
,从而得出二者的周期之比为Fra bibliotekT1 T2
r1 r2
r1 1 r2 8
从图示位置开始,二者转过的角度相差 n2
,得
2
T1
2
T2
t
n2
n
1,2,3
化简 t
nT2 7
卫星B绕行方向与地球自转方向相同,离地面高度为h。已知地球半径为R,地球自
转角速度为ω0,地球表面的重力加速度为g,O为地球中心。 (1)某时刻A、B两卫星相距最近(O、B、A在同一直线上),
则至少经过多长时间,它们再一次相距最近?
(2)某时刻A、B两卫星相距最近,则经过多长时间,
它们相距最远?
【答案】(1) t
如乙图所示,假设有一长度为r的太空电梯连接地球赤道上的固定基地与同步空间

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
A. B. C. D.
【答案】D
【解析】设未知的行星的周期为T,依题意有: ,则 ,根据开普勒第三定律: ,联立解得: ,D正确,ABC错误.故选:D。
【类题训练4】如图建筑是厄瓜多尔境内的“赤道纪念碑”。设某人造地球卫星在赤道上空飞行,卫星的轨道平面与地球赤道重合,飞行高度低于地球同步卫星。已知卫星轨道半径为r,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g,某时刻卫星通过这一赤道纪念碑的正上方,该卫星过多长时间再次经过这个位置?( )
A. B. C. D.
【答案】A
【解析】对双黑洞中的任一黑洞: 得
对另一黑洞: 得
又 联立可得:
则 即
双黑洞总质量 。故A项正确。
点睛:双星模型与卫星模型是万有引力部分的典型模型,要能熟练应用。
【类题训练1】引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代有科学家发现高速转动的双星,可能由于辐射引力波而使质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将( )
A. A星的轨道半径为
B. A星和B星的线速度之比为m1:m2
C.若A星所受B星的引力可等效为位于O点处质量为 的星体对它的引力,则
D.若在O点放一个质点,它受到的合力一定为零
【答案】C
【解析】试题分析:双星系统是一个稳定的结构,它们以二者连线上的某一点为圆心做匀速圆周运动,角速度相等,万有引力提供向心力,根据牛顿第二定律列式求解.
A. B. C. D.
【答案】D
【解析】试题分析:在地球表面重力与万有引力大小相等,根据卫星的轨道半径求得卫星的角速度,所以卫星再次经过这个位置需要最短时间为卫星转动比地球转动多一周,从而求得时间

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

一轮天体运动中的变轨、对接、追及相遇问题

一轮天体运动中的变轨、对接、追及相遇问题
自主对接的优点在于可以减少对地面控制中心的依赖,提高对接的灵活 性和可靠性。同时,自主对接还可以缩短对接时间,提高空间任务的效
率。
自主对接面临的挑战包括航天器导航精度要求高、控制算法复杂以及需 要克服空间环境中的干扰因素等。
遥控对接
遥控对接是指通过地面控制中心对航天器进行远程操控,完成与 天体的对接任务。这种对接方式需要地面控制中心与航天器之间 建立稳定的通信链路,以便实时传输指令和数据。
天体追及相遇问题
同向追及
同向追及是指两个天体在同一直线上运动,一个天体在另一 个天体的前方,并保持一定的距离,相对地面速度较快的天 体将会追上并超过相对地面速度较慢的天体。
解决同向追及问题时,需要先确定两个天体的相对位置和速 度,然后根据相对速度和时间计算出两者之间的距离,最后 根据距离和速度关系确定相遇时间。
无人值守对接是指在没有地面控制中心干预的情况下 ,航天器自动完成与天体的对接任务。这种对接方式 需要航天器具备高度智能化的自主导航和控制系统, 以实现自主规划、决策和执行。
无人值守对接面临的挑战包括航天器自主导航和控制 技术难度大、需要克服空间环境中的不确定性和干扰 因素等。
03
CATALOGUE
遥控对接的优点在于可以对航天器进行精确的操控,确保对接的 准确性和安全性。同时,地面控制中心可以实时监测和评估对接 过程,及时发现和解决问题。
遥控对接面临的挑战包括对地面控制中心的技术要求高、通信链 路可能受到干扰或中断以及对接过程中需要快速响应意外情况等 。
无人值守对接
无人值守对接的优点在于可以进一步减少对地面控制 中心的依赖,降低对接成本和风险。同时,无人值守 对接还可以提高空间任务的灵活性和适应性,更好地 应对意外情况。

(完整版)天体运动中的追及相遇问题

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题信阳高中陈庆威2013.09.17在天体运动的问题中,我们常遇到一些这样的问题。

比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。

而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。

根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。

天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。

而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。

一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。

可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了π。

所以再次相距最近的时间t 1,由;第一次相距最远的时间t 2,由。

如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。

【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。

地球的轨道半径为R ,运转周期为T 。

地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。

已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动中的追及相遇问题
信阳高中 陈庆威 2013.09.17
在天体运动的问题中,我们常遇到一些这样的问题。

比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。

而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。

根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。

天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。

而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。

、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则
①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远?
有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π;

解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没
果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了
距最远的时间 t 2,由。

如果在问题中把“再次”
或“第一次”这样的词去掉,那么就变成了多解性问题。

【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。

地球的轨道半径为 R ,运转周期为 T 。

地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。

已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。

若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题
【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从
P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件,
求地球与太阳之间的万有引力大小。

π。

所以再次相距最近的时间
太阳
R 3 T 2
3
T r
2 ,得:T T sin 3
绕向相同, 行星的角速度比地球大,行星相对地球
2 2 (1 sin
3 )
行星
视角 地球 图2
T T sin 3 某时刻该行星正好处于
最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。

观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳
两者都顺时针运转:
t
1
2 ) sin 3
?T
3
2 (1 sin 3
)
两者都逆时针运转:
t
2
( 2 ) sin 3
?T 2 (1 sin 3 )
太阳
行星
θθ
地球 图3
t 1, ;第一次相
解析:飞船开始与地球相当于在 D 点相遇,经过3个月后, 它们又在 Q 点相遇,
因此在这段时间内, 地球与太阳的连线转过的角度 。

设地球的
公转周期为 T ,飞船由静止开始做加速 度为 a 的匀加速 直线 运动 ,则
【例 4】从地球表面向火星发射火星探测器,设地球和火星都在同一平面上绕太 阳做同向圆周运动, 火星轨道半径 r 火为地球轨道半径 r 地的 1.50 倍,简单而又 比较节省能量的发射过程可分为两步进行:
第一步:在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱 离地球引力作用成为一个沿地球轨道运动的人造卫星 (如图 5);
第二步:在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探 测器沿原方向加速, 使其速度数值增加到适当值, 从而使得探测器沿着一个与地 球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上
( 如图
6)。

当探测器脱离地球并沿地球公转轨道稳定运行后, 在某年 3 月 1日零时测得 探测器与火星之间的角距离为 60°(火星在前,探测器在后),如图 7 所示。

问应在何年何月何日点燃探测器上的火箭发动机, 方能使探测器恰好落在火星表

地球的公转半径为
所以,地球与太阳之间的万有引力大小为
面?(时间计算仅需精确到日),已知:
火星 火星
671
得: T 火 (1.5)3T 地 =1.840 ×365=671d
初始相对角距离 =600。

点火前,探测器与地球在同一公转轨道同向运行, 周期跟地球的公转周期相同,故相对火星的角位移为
3600 3600 1? t1 (
365 671
)? t1 太阳
探测器 地球
探测器
太阳
地球
图 5
图6
火星 0
探测器
太阳
地球
解析: 根据根据开普勒第三定律,可求出火星的公转周期
T 火:
点火
图7
3
3
r 地
2
,题设 r 火 1.5r 地 ,
T 地
火星 火星
671
2.5r 第 3 (2.52r 第)3
得:t T 2d = (1.25)3 T 2地
=255d
在这段时间 t 内,探测器的绝对角位移为
1800,火星的绝对角位移为
3600
255 137
探测器在适当位置点火后,沿椭圆轨道到与火星相遇所需时间 t T 2d 火
探测器相对火星的角位移为 2 1800 1370 430
到探测器与火星相遇时,初始相对角距离 (=600),应等于点火前探测
器相对火星的角位移△θ 1,与探测器沿椭圆轨道运动时间内相对火星的角位移 △θ 2之
和,即
已知某年 3月1 日零时,探测器与火星角距离为 60°(火星在前,探测器在后) , 点燃发动机时刻应选在当年 3月 1日后 38天,注意到“ 3月大”(有 31号), 即应在 4 月 7日零时点燃发动机。

以上几例中,有的问题我们采用了“相对角速度”处理同心圆周运动中的追 击和相遇问题, 就是以角速度较小的物体为参照物, 把它看作静止不动, 则角速 度较大的物体以 “相对角速度” 绕它做圆周运动, 这样计算起来就比运用几何知 识来找角度间的关系来的要简单。

故得:
600 430 t
1
t
1
170
170
3600
3600
38d
365
671。

相关文档
最新文档