变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译
自动变速器的工作原理外文翻译、中英文翻译、外文文献翻译

How Automatic Transmissions Workby Karim NiceIntroduction to How Automatic Transmissions WorkIf you have ever driven a car with an automatic transmission, then you know that there are two big differences between an automatic transmission and a manual transmission:There is no clutch pedal in an automatic transmission car.There is no gear shift in an automatic transmission car. Once you put the transmission into drive, everything else is automatic.Both the automatic transmission (plus its torque converter) and a manual transmission (with its clutch) accomplish exactly the same thing, but they do it in totally different ways. It turns out that the way an automatic transmission does it is absolutely amazing!Automatic Transmission Image GalleryIn this article, we'll work our way through an automatic transmission. We'll start with the key to the whole system: planetary gearsets. Then we'll see how the transmission is put together, learn how the controls work and discuss some of the intricacies involved in controlling a transmission.Just like that of a manual transmission, the automatic transmission's primary job is to allow the engine to operate in its narrow range of speeds while providing a wide range of output speeds.Photo courtesy DaimlerChryslerMercedes-Benz CLK, automatic transmission, cut-away modelWithout a transmission, cars would be limited to one gear ratio, and that ratio would have to be selected to allow the car to travel at the desired top speed. If you wanted a top speed of 80 mph, then the gear ratio would be similar to third gear in most manual transmission cars.You've probably never tried driving a manual transmission car using only third gear. If you did, you'd quickly find out that you had almost no acceleration when starting out, and at high speeds, the engine would be screaming along near the red-line. A car like this would wear out very quickly and would be nearly undriveable.So the transmission uses gears to make more effective use of the engine's torque, and to keep the engine operating at an appropriate speed.The key difference between a manual and an automatic transmission is that the manual transmission locks and unlocks different sets of gears to the output shaft to achieve the various gear ratios, while in an automatic transmission, the same set of gears produces all of the different gear ratios. The planetary gearset is the device that makes this possible in an automatic transmission.Let's take a look at how the planetary gearset works.Planetary Gearsets & Gear RatiosWhen you take apart and look inside an automatic transmission, you find a huge∙An ingenious planetary gearset∙ A set of bands to lock parts of a gearset∙ A set of three wet-plate clutches to lock otherparts of the gearset∙An incredibly odd hydraulic system that controlsthe clutches and bands∙ A large gear pump to move transmission fluidaroundThe center of attention is the planetary gearset. About the size of a cantaloupe, this one part creates all of the different gear ratios that the transmission can produce. Everything else in the transmission is there to help the planetary gearset do its thing. This amazing piece of gearing has appeared on HowStuffWorks before. You may recognize it from the electric screwdriver article. An automatic transmission contains two complete planetary gearsets folded together into one component. See How Gear Ratios Work for an introduction to planetary gearsets.From left to right: the ring gear, planet carrier, and two sun gearsAny planetary gearset has three main components:∙The sun gear∙The planet gears and the planet gears' carrier∙The ring gearEach of these three components can be the input, the output or can be held stationary. Choosing which piece plays which role determines the gear ratio for the gearset. Let's take a look at a single planetary gearset.One of the planetary gearsets from our transmission has a ring gear with 72 teeth and a sun gear with 30 teeth. We can get lots of different gear ratios out of this gearset.Also, locking any two of the three components together will lock up the whole device at a 1:1 gear reduction. Notice that the first gear ratio listed above is a reduction -- the output speed is slower than the input speed. The second is an overdrive -- the output speed is faster than the input speed. The last is a reduction again, but the output direction is reversed. There are several other ratios that can be gotten out of this planetary gear set, but these are the ones that are relevant to our automatic transmission. You can try these out in the animation below:So this one set of gears can produce all of these different gear ratios without having to engage or disengage any other gears. With two of these gearsets in a row, we can get the four forward gears and one reverse gear our transmission needs. We'll put the two sets of gears together in the next section.Compound Planetary GearsetThis automatic transmission uses a set of gears, called a compound planetary gearset, that looks like a single planetary gearset but actually behaves like two planetary gearsets combined. It has one ring gear that is always the output of the transmission, but it has two sun gears and two sets of planets.Let's look at some of the parts:How the gears in the transmission are put togetherLeft to right: the ring gear, planet carrier, and two sun gearsThe figure below shows the planets in the planet carrier. Notice how the planet on the right sits lower than the planet on the left. The planet on the right does not engage the ring gear -- it engages the other planet. Only the planet on the left engages the ring gear.Planet carrier: Note the two sets of planets.Next you can see the inside of the planet carrier. The shorter gears are engaged only by the smaller sun gear. The longer planets are engaged by the bigger sun gear and by the smaller planets.Inside the planet carrier: Note the two sets of planets.Automatic Transmission GearsFirst GearIn first gear, the smaller sun gear is driven clockwise by the turbine in the torque converter. The planet carrier tries to spin counterclockwise, but is held still by the one-way clutch (which only allows rotation in the clockwise direction) and the ring gear turns the output. The small gear has 30 teeth and the ring gear has 72, so the gear ratio is:Ratio = -R/S = - 72/30 = -2.4:1So the rotation is negative 2.4:1, which means that the output direction would be opposite the input direction. But the output direction is really the same as the input direction -- this is where the trick with the two sets of planets comes in. The first set of planets engages the second set, and the second set turns the ring gear; this combination reverses the direction. You can see that this would also cause the bigger sun gear to spin; but because that clutch is released, the bigger sun gear is free to spin in the opposite direction of the turbine (counterclockwise).Second GearT his transmission does something really neat in order to get the ratio needed for second gear. It acts like two planetary gearsets connected to each other with a common planet carrier.The first stage of the planet carrier actually uses the larger sun gear as the ring gear. So the first stage consists of the sun (the smaller sun gear), the planet carrier, and the ring (the larger sun gear).The input is the small sun gear; the ring gear (large sun gear) is held stationary by the band, and the output is the planet carrier. For this stage, with the sun as input, planet carrier as output, and the ring gear fixed, the formula is:1 + R/S = 1 + 36/30 = 2.2:1The planet carrier turns 2.2 times for each rotation of the small sun gear. At the second stage, the planet carrier acts as the input for the second planetary gear set, the larger sun gear (which is held stationary) acts as the sun, and the ring gear acts as the output, so the gear ratio is:1 / (1 + S/R) = 1 / (1 + 36/72) = 0.67:1To get the overall reduction for second gear, we multiply the first stage by the second, 2.2 x 0.67, to get a 1.47:1 reduction. This may sound wacky, but it works.Third GearMost automatic transmissions have a 1:1 ratio in third gear. You'll remember from the previous section that all we have to do to get a 1:1 output is lock together any two of the three parts of the planetary gear. With the arrangement in this gearset it is even easier -- all we have to do is engage the clutches that lock each of the sun gears to the turbine.If both sun gears turn in the same direction, the planet gears lockup because they can only spin in opposite directions. This locks the ring gear to the planets and causes everything to spin as a unit, producing a 1:1 ratio.OverdriveBy definition, an overdrive has a faster output speed than input speed. It's a speed increase -- the opposite of a reduction. In this transmission, engaging the overdrive accomplishes two things at once. If you read How Torque Converters Work, you learned about lockup torque converters. In order to improve efficiency, some cars have a mechanism that locksup the torque converter so that the output of the engine goes straight to the transmission.In this transmission, when overdrive is engaged, a shaft that is attached to the housing of the torque converter (which is bolted to the flywheel of the engine) is connected by clutch to the planet carrier. The small sun gear freewheels, and the larger sun gear is held by the overdrive band. Nothing is connected to the turbine; the only input comes from the converter housing. Let's go back to our chart again, this time with the planet carrier for input, the sun gear fixed and the ring gear for output.Ratio = 1 / (1 + S/R) = 1 / ( 1 + 36/72) = 0.67:1So the output spins once for every two-thirds of a rotation of the engine. If the engine is turning at 2000 rotations per minute (RPM), the output speed is 3000 RPM. This allows cars to drive at freeway speed while the engine speed stays nice and slow.ReverseReverse is very similar to first gear, except that instead of the small sun gear being driven by the torque converter turbine, the bigger sun gear is driven, and the small one freewheels in the opposite direction. The planet carrier is held by the reverse band to the housing. So, according to our equations from the last page, we have:Ratio = -R/S = 72/36 = 2.0:1So the ratio in reverse is a little less than first gear in this transmission.Gear RatiosThis transmission has four forward gears and one reverse gear. Let's summarize the gear ratios, inputs and outputs:After reading these sections, you are probably wondering how the different inputs get connected and disconnected. This is done by a series of clutches and bands inside the transmission. In the next section, we'll see how these work.Clutches and Bands in an Automatic TransmissionIn the last section, we discussed how each of the gear ratios is created by the transmission. For instance, when we discussed overdrive, we said:In this transmission, when overdrive is engaged, a shaft that is attached to the housing of the torque converter (which is bolted to the flywheel of the engine) is connected by clutch to the planet carrier. The small sun gear freewheels, and the larger sun gear is held by the overdrive band. Nothing is connected to the turbine; the only input comes from the converter housing.To get the transmission into overdrive, lots of things have to be connected and disconnected by clutches and bands. The planet carrier gets connected to the torque converter housing by a clutch. The small sun gets disconnected from the turbine by a clutch so that it can freewheel. The big sun gear is held to the housing by a band so that it could not rotate. Each gear shift triggers a series of events like these, with different clutches and bands engaging and disengaging. Let's take a look at a band.BandsIn this transmission there are two bands. The bands in a transmission are, literally, steel bands that wrap around sections of the gear train and connect to the housing. They are actuated by hydraulic cylinders inside the case of the transmission.One of the bandsIn the figure above, you can see one of the bands in the housing of the transmission. The gear train is removed. The metal rod is connected to the piston, which actuates the band.The pistons that actuate the bands are visible here.Above you can see the two pistons that actuate the bands. Hydraulic pressure, routed into the cylinder by a set of valves, causes the pistons to push on the bands, locking that part of the gear train to the housing.The clutches in the transmission are a little more complex. In this transmission there are four clutches. Each clutch is actuated by pressurized hydraulic fluid that enters a piston inside the clutch. Springs make sure that the clutch releases when the pressure is reduced.Below you can see the piston and the clutch drum. Notice the rubber seal on the piston -- this is one of the components that is replaced when your transmission gets rebuilt.One of the clutches in a transmissionThe next figure shows the alternating layers of clutch friction material and steel plates. The friction material is splined on the inside, where it locks to one of the gears. The steel plate is splined on the outside, where it locks to the clutch housing. These clutch plates are also replaced when the transmission is rebuilt.The clutch platesThe pressure for the clutches is fed through passageways in the shafts. The hydraulic system controls which clutches and bands are energized at any given moment.FROM: /automatic-transmission.htm自动变速器的工作原理耐斯·卡瑞姆介绍自动变速器的工作原理如果你驾驶过带有自动变速器的汽车,那么你一定知道手动变速器与自动变速器之间存在两个很大的区别:·自动变速器中没有离合器踏板·自动变速器中没有换档手柄,一旦让变速器传递动力,那么接下来的一切都是自动完成的了。
变速器介绍外文文献翻译、中英文翻译、外文翻译

附录附录A 英文文献Transmission descriptionTransmission gearbox's function the engine's output rotational speed is high, the maximum work rate and the maximum torque appears in certain rotational speed area. In order to display engine's optimum performance, must have a set of variable speed gear, is coordinated the engine the rotational speed and wheel's actual moving velocity. The transmission gearbox may in the automobile travel process, has the different gear ratio between the engine and the wheel, through shifts gears may cause the engine work under its best power performance condition. Transmission gearbox's trend of development is more and more complex, the automaticity is also getting higher and higher, the automatic transmission will be future mainstream.Automotive Transmission's mission is to transfer power, and in the process of dynamic change in the transmission gear ratio in order to adjust or change the characteristics of the engine, at the same time through the transmission to adapt to different driving requirements. This shows that the transmission lines in the automotive transmission plays a crucial role. With the rapid development of science and technology, people's car is getting higher and higher performance requirements, vehicle performance, life, energy consumption, such as vibration and noise transmission depends largely on the performance, it is necessary to attach importance to the study of transmission.Transmission gearbox's pattern the automobile automatic transmission common to have three patterns: Respectively is hydraulic automatic transmission gearbox (AT), machinery stepless automatic transmission (CVT), electrically controlled machinery automatic transmission (AMT). At present what applies is most widespread is, AT becomes automatic transmission's pronoun nearly.AT is by the fluid strength torque converter, the planet gear and the hydraulic control system is composed, combines the way through the fluid strength transmission and the gear to realize the speed change bending moment. And the fluid strength torque converter is the most important part, it by components and so on pump pulley, turbine wheel and guide pulley is composed, has at the same time the transmission torque and the meeting and parting function.And AT compare, CVT has omitted complex and the unwieldy gear combination variable transmission, but is two groups of band pulleys carries on the variable transmission. Through changes the driving gear and the driven wheel transmission belt's contact radius carries on the speed change. Because has cancelled the gear drive, therefore its velocity ratio may change at will, the speed change is smoother, has not shifted gears kicks the feeling.AMT and the hydraulic automatic transmission gearbox (AT) is the having steps automatic transmission equally. It in the ordinary manual transmission gearbox's foundation, through installs the electrically operated installment which the microcomputer controls, the substitution originally coupling's separation which, the joint and the transmission gearbox completes by the manual control elects to keep off, to shift gears the movement, realizes fluid drive.Manual transmission gear mainly uses the principle of deceleration. Transmission within the group have different transmission ratio gear pair, and the car at the time of shift work, that is, through the manipulation of institutions so that the different transmission gear pair work. Manual transmission, also known as manual gear transmission, with axial sliding in the gears, the meshing gears through different speed to achieve the purpose of torque variation. Manual shift transmission can operate in full compliance with the will of the driver, and the simple structure, the failure rate is relatively low, value for money.Automatic transmission is based on speed and load (throttle pedal travel) fortwo-parameter control gear in accordance with the above two parameters to automatically take-off and landing. Automatic transmission and manual transmission in common, that is, there are two-stage transmission, automatic transmission can only speed the pace to automatically shift, manual transmission can be eliminated, "setback" of the shift feel.Automatic transmission is a torque converter, planetary gears and hydraulic manipulation of bodies, through the hydraulic transmission and gear combination to achieve the purpose of variable-speed torque variation.Also known as CVT-type continuously variable CVT. This transmission and automatic transmission gear generally the biggest difference is that it eliminates the need of complex and cumbersome combination of variable-speed gear transmission, and only two groups to carry out variable-speed drive pulley.CVT transmission than the traditional structure of simple, smaller and it is not the number of manual gear transmission, no automatic transmission planetary gear complex group, mainly rely on the driving wheel, the driven wheel and the transmission ratio brought about by the realization of non-class change.Widely used in automotive internal combustion engine as a power source, the torque and speed range is very small, and complex conditions require the use of motor vehicles and the speed of the driving force in the considerable changes in the scope. To resolve this contradiction, in the transmission system to set up the transmission to change transmission ratio, the expansion of the driving wheel torque and speed range in order to adapt to constantly changing traffic conditions, such as start, acceleration, climbing and so on, while the engine in the most favorable conditions to work under the scope; in the same direction of rotation of the engine under the premise of the automobile can be driven back; the use of neutral, interruption of power transmission, in order to be able to start the engine, idle speed, and ease of transmission or power shift . Transmission is designed to meet the above requirements, so that the conditions in a particular vehicle stability.In addition to transmission can be used to meet certain requirements, but also to ensure that it and the car can have a good match, and can improve the car's power andeconomy to ensure that the engine in a favorable condition to increase the scope of the work of the use of motor vehicles life, reduce energy consumption, reduce noise, such as the use of motor vehicles.Today the world's major car companies CVT are very active in the study. The near future, with electronic control technology to further improve, electronically controlled Continuously Variable Transmission-type is expected to be a wide range of development and application.附录B 文献翻译变速器介绍发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。
机械加工工艺夹具类外文翻译、中英文翻译、外文文献翻译

附录翻译部分Lathe and TurningThe Lathe and Its ConstructionA lathe is a machine tool used primarily for producing surfaces of revolution flat edges. Based on their purpose ,construction , number of tools that can simultaneously be mounted , and degree of automation ,lathes or, more accurately, lathe-type machine tools can be classified as follows:(1) Engine lathes(2) Toolroom lathes(3) Turret lathes(4) Vertical turning and boring mills(5) Automatic lathes(6) Special-purpose lathesIn spite of that diversity of lathe-type machine tools, they all have all have common features with respect to construction and principle of operation .These features can best be illustrated by considering the commonly used representative type, the engine lathe. Following is a description of each of the main elements of an engine lathe , which is shown in Fig.11.1.Lathe bed . The lathe bed is the main frame , involving a horizontal beam on two vertical supporis. It is usually made of grey or nodular cast iron to damp vibrations and is made by casting . It has guideways to allow the carriage to slide easily lengthwise. The height of the lathe bed should be appropriate to enable the technician to do his or her jib easily and comfortably.Headstock. The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways (the silde surface of the bed) . The spindle is driven through the gearbox , which is housed within the headstock. The function of the gearbox is to provide a number of different spindle speeds (usually 6 up to 18 speeds) . Some modern lathes have headstocks with infinitely variable spindle speeds, which employ frictional , electrical , or hydraulic drives.The spindle is always hollow , I .e ,it has a through hole extending lengthwise. Bar stocks can be fed througth that hole if continous production is adopted . A lso , that hole has a taperedsurface to allow mounting a plain lathe center . The outer surface of the spindle is threaded to allow mounting of a chuck , a face plate , or the like .Tailstock . The tailstock assembly consists basically of three parts , its lower base, an intermediate part, and the quill . The lower base is a casting that can slide on the lathe bed along the guidewayes , and it has a clamping device to enable locking the entire tailstock at any desired location , depending upon the length of the workpiece . The intermediate parte is a casting that can be moved transversely to enable alignment of the axis of the the tailstock with that of the headstock . The third part, the quill, is a hardened steel tube, which can be moved longitudinally in and out of the intermediate part as required . This is achieved through the use of a handwheel and a screw , around which a nut fixed to the quill is can be locked at any point along its travel path by means of a clamping device.The carriage. The main function of the carriage is mounting of the cutting tools and generating longitudinal and /or cross feeds. It is actually an H-shaped block that slides on the lathe bed between the headstock and tailstock while being guided by the V-shaped guideways of the bed . The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage. The lead screw goes through a pair o half nuts , which are fixed to the rear of the apron . When actuating a certain lever, the half nuts are clamped together and engage with the rotating lead screw as a single nut, which is fed , together with carriage, along the bed . when the lever is disengaged , the half nuts are released and the carriage stops. On the other hand , when the feed rod is used, it supplies power to the apron through a wrom gear . The latter is keyed to feed rod and travels with the apron along the feed rod , which has a keyway extending to cover its whole length. A modern lathe usually has a quick-change gearbox located under the headstock and driven from the spindle through a train of gears. It is connected to both the feed rod and the lead screw and enables selecting a variety of feeds easily and rapidly by simply shifting the appropriate levers, the quick-change gearbox is employed in plain turning, facing and thread cutting operations. Since that gearbox is linked to spindle, the distance that the apron (and the cutting tool) travels for each revolution of the spindle can be controlled and is referred to as the feed.Lathe Cutting ToolsThe shape and geometry of the lathe tools depend upon the purpose for which they are employed. Turning tools can be classified into tow main groups,namely,external cutting tools andinternal cutting tools , Each of these groups include the following types of tools: Turning tools. Turing tools can be either finishing or rough turning tools . Rough turning tools have small nose radii and are used for obtaining the final required dimensions with good surface finish by marking slight depth of cut . Rough turning tools can be right –hand or left-hand types, depending upon the direction of feed. They can have straight, bent, or offset shanks.Facing tools . Facing tools are employed in facing operations for machining plane side or end surfaces. There are tools for machining left-hand-side surfaces and tools for right-hand-side surfaces. Those side surfaces are generated through the use of the cross feed, contrary to turning operations, where the usual longitudinal feed is used.Cutoff tools. Cutoff tools ,which are sometimes called parting tools, serve to separate the workpiece into parts and/or machine external annual grooves.Thread-cutting tools. Thread-cutting tools have either triangular, square, or tranpezoidal cutting edges, depending upon the cross section of the desired thread .Also , the plane angles of these tools must always be identical to those of the thread forms. Thread-cutting tools have straight shanks for external thread cutting and are of the bent-shank type when cutting internal threads .Form tools. Form tools have edges especially manufactured to take a certain form, which is opposite to the desired shape of the machined workpiece . An HSS tools is usually made in the form of a single piece ,contrary to cemented carbides or ceramic , which are made in the form of tipes. The latter are brazed or mechanically fastened to steel shanks. Fig.1indicates an arrangement of this latter type, which includes the carbide tip , the chip breaker ,the pad ,the clamping screw (with a washer and a nut ) , and the shank.. As the name suggests, the function of the chip breaker is to break long chips every now and then , thus preventing the formation of very long twisted ribbons that may cause problems during the machining operations . The carbide tips ( or ceramic tips ) can have different shapes, depending upon the machining operations for which they are to be employed . The tips can either be solid or with a central through hole ,depending on whether brazing or mechanical clamping is employed for mounting the tip on the shank.Fig.1Lathe OperationsIn the following section , we discuss the various machining operations that can be performed on a conventional engine lathe. It must be borne in mind , however , that modern computerized numerically controlled lathes have more capabiblities and do other operations ,such as contouring , for example . Following are conventional lathe operations.Cylindrical turning . Cylindrical turning is the the simplest and the most common of all lathe operations . A single full turn of the workpiece generate a circle whose center falls on the lathe axis; this motion is then reproduced numerous times as a result of the axial feed motion of the tool. The resulting machining marks are , therefore ,a helix having a very small pitch, which is equal to the feed . Consequently , the machined surface is always cylindrical.The axial feed is provided by the carriage or the compound rest , either manually or automatically, whereas the depths of cuts is controlled by the cross slide . In roughing cuts , it is recommended that large depths of cuts (up to 0.25 in. or 6 mm, depending upon the workpiece material) and smaller feeds would be used. On the other hand , very fine feeds, smaller depth of cut (less than 0.05in. , or 0.4 mm) , and high cutting speeds are preferred for finishing cuts.Facing . The result of a facing operation is a flat surface that is either the whole end surface of the workpiece or an annular intermediate surface like a shoulder . During a facing operation ,feed is provided by the cross slide, whereas the depth of cut is controlled by the carriage or compound rest . Facing can be carried out either from the periphery in ward or from the center of the workpiece outward . It is obvious that the machining marks in both cases tack the form of a spiral. Usually, it is preferred to clamp the carriage during a facing operation, since the cutting force tends to push the tool ( and , of course , the whole carriage ) away from the workpiece . In most facing operations , the workpiece is held in a chuck or on a face plate.Groove cutting. In cut-off and groove-cutting operations ,only cross feed of the tool isemployed. The cut-off and grooving tools , which were previously discussed, are employed.Boring and internal turning . Boring and internal are performed on the internal surfaces by a boring bar or suitable internal workpiece is solid, a drilling operation must be performed first . The drilling tool is held in the tailstock, and latter is then fed against the workpiece.Taper turning . Taper turning is achieved by driving the tool in a direction that is not paralled to the lathe axis but inclined to it with an angle that is equal to the desired angle of the taper . Following are the different methods used in taper-turning practice:(1)Rotating the disc of the compound rest with an angle to half the apex angle of the cone . Feed is manually provided by cranking the handle of the compound rest . This method is recommended for taper turning of external and internal surfaces when the taper angle is relatively large.(2)Employing special form tools for external , very short ,conical surfaces . The width of the workpiece must be slightly smaller than that of the tool ,and the workpiece is usually held in a chuck or clamped on a face plate . I n this case , only the cross feed is used during the machining process and the carriage is clamped to the machine bed .(3)Offsetting the tailstock center . This method is employed for esternal tamper turning of long workpiece that are required to have small tamper angles (less than 8 ) . The workpiece is mounted between the two centers ; then the tailstock center is shifted a distance S in the direction normal to the lathe axis.(4)Using the taper-turning attachment . This method is used for turning very long workpoece , when the length is larger than the whole stroke of the compound rest . The procedure followed in such cases involves complete disengagement of the cross slide from the carriage , which is then guided by the taper-turning attachment . During this process, the automatic axial feed can be used as usual . This method is recommend for very long workpiece with a small cone angle , i.e. , 8 through 10 .Thread cutting . When performing thread cutting , the axial feed must be kept at a constant rate , which is dependent upon the rotational speed (rpm) of the workpiece . The relationship between both is determined primarily by the desired pitch of the thread to be cut .As previously mentioned , the axial feed is automatically generated when cutting a thread by means of the lead screw , which drives the carriage . When the lead screw rotates a single revolution, the carriage travels a distance equal to the pitch of the lead screw rotates a single revolutional speed of the lead screw is equal to that of the spindle ( i. e . , that of the workpiece ),the pitch of the resulting cut thread is exactly to that of the lead screw . The pitch of the resulting thread being cut therefore always depends upon the ratio of the rotational speeds of the lead scew and the spindle :workpiece of pitch screw lead the of Pitch Desired = screwlead of workpiece the of rpm rpm = spindle-to-carriage gearing ratio This equation is usefully in determining the kinematic linkage between the lathe spindle and the lead screw and enables proper selection of the gear train between them .In thread cutting operations , the workpiece can either be held in the chuck or mounted between the two lathe centers for relatively long workpiece . The form of the tool used must exactly coincide with the profile the thread to be cut , I . e . , triangular tools must be used for triangular threads , and so on .Knurling . knurling is mainly a forming operation in which no chips are prodyced . Tt involves pressing two hardened rolls with rough filelike surfaces against the rotating workpiece to cause plastic deformation of the workpiece metal.Knurling is carried out to produce rough , cylindrical ( or concile )surfaces , which are usually used as handles . Sometimes , surfaces are knurled just for the sake of decoration ; there are different types of patterns of knurls from which to choose .Cutting Speeds and FeedsThe cutting speed , which is usually given in surface feet per minute (SFM), is the number of feet traveled in circumferential direction by a given point on the surface (being cut ) of the workpiece in one minute . The relationship between the surface speed and rpm can be given by the following equation :SMF=πDNWhereD= the diameter of the workpiece in feetN=the rpmThe surface cutting speed is dependent primarily upon the machined as well as the material of the cutting and can be obtained from handbooks , information provided by cutting tool manufacturera , and the like . generally , the SFM is taken as 100 when machining cold-rolled or mild steel ,as 50 when machining tougher metals , and as 200 when machining sofer materials . For aluminum ,the SFMis usually taken as 400 or above . There are also other variables that affect the optimal value of the surface cutting speed . These include the toolgeometry, the type of lubricant or coolant , the feed , and the depth of cut . As soon as the cutting sped is decided upon , the rotational speed (rpm) of the spindle can be obtained as follows :N = DSFW π The selection of a suitable feed depends upon many factors , such as the required surface finish , the depth of cut , and the geometry of the tool used . Finer feeds produce better surface finish ,whereas higher feeds reduce the machining time during which the tool is in direct contact with the workpiece . Therefore ,it is generally recommended to use high feeds for roughing operations and finer feeds for finishing operations. Again, recommend values for feeds , which can be taken as guidelines , are found in handbooks and information booklets provided by cutting tool manufacturers.Here I want to introduce the drilling:Drilling involves producing through or blind holes in a workpiece by forcing a tool , which rotates around its axis , against the workpiece .Consequently , the range of cutting from that axis of rotation is equal to the radius of the required hole .In practice , two symmetrical cutting edges that rotate about the same axis are employed .Drilling operations can be carried out by using either hand drills or drilling machines . The latter differ in size and construction . nevertheless , the tool always rotates around its axis while the workpiece is kept firmly fixed . this is contrary to drilling on a lathe .Cutting Tool for Drilling OperationsIn drilling operations , a cylindrical rotary-end cutting , called a drill , is employed . The drill can have either one or more cutting edges and corresponding flutes , which can be straight or helical . the function of the flutes is to provide outlet passages for the chips generated during the drilling operation and to allow lubricants and coolants to reach the cutting edges and the surface being machined . Following is a survey of the commonly used drills.Twist drill . The twist drill is the most common type of drill .It has two cutting edges and two helical flutes that continue over the length of the drill body , The drill also consist of a neck and a shake that can be either straight or tapered .In the latter case , the shank is fitted by the wedge action into the tapered socket of the spindle and has a tang , which goes into a slot in the spindle socket ,thus acting as a solid means for transmitting rotation . On the other hand , straight –shank drills are held in a drill chuck that is , in turn , fitted into the spindle socket in the same way as tapered shank drills.The two cutting edges are referred to as the lips , and are connected together by a wedge , which is a chisel-like edge . The twist drill also has two margins , which enable proper guidance and locating of the drill while it is in operation . The tool point angle (TPA) is formed by the lips and is chosen based on the properties of the material to be cut . The usual TAP for commercial drills is 118 , which is appropriate for drilling low-carbon steels and cast irons . For harder and tougher metals , such as hardened steel , brasss and bronze , larger TPAs (130 OR 140 ) give better performance . The helix angle of the flutes of the commonly used twist drills ranges between 24 and 30 . When drilling copper or soft plastics , higher values for the helix angle are recommended (between 35 and 45).Twist drills are usually made of high speed steel ,although carbide tipped drills are also available . The size of twist drills used in industrial range from 0.01 up to 3.25 in . (i.e.0.25 up to 80 mm ) .Core drills . A core drill consists of the chamfer , body , neck ,and shank . This type of drill may be have either three or four flutes and an equal number of margins , which ensure superior guidance , thus resulting in high machining accuracy . It can also be seen in Fig 12.2 that a core drill has flat end . The chamfer can have three or four cutting edges or lips , and the lip angle may vary between 90 and 120 . Core drills are employed for enlarging previously made holes and not for originating holes . This type of drill is characterized by greater productivity , high machining accuracy , and superior quality of the drilled surfaces .Gun drills . Gun drills are used for drilling deep holes . All gun drills are straight fluted , and each has a single cutting edge . A hole in the body acts as a conduit to transmit coolant under considerable pressure to the tip of the drill .There are two kinds of gun drills , namely , the center cut gun drill used for drilling blind holes and the trepanning drill . The latter has a cylindrical groove at its center , thus generating a solid core , which guides the tool as it proceeds during the drilling operation.Spade drills . Spade drills are used for drilling large holes of 3.5 in .(90 mm ) or more . Their design results in a marked saving in cost of the tool as well as a tangible reduction in its weight , which facilitates its handling . moreover , this type of drill is easy to be ground .[13]车床和车削车床及它的结构车床是一个主要用来生产旋转表面和端面的机床。
变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译

变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译This article discusses the design of a gearbox shell machining process。
The process includes rough machining。
semi-finishing。
and finishing ns。
The article also covers the n of cutting tools。
cutting parameters。
and cutting fluids。
The goal of the process design is to achieve high n and efficiency XXX.nThe gearbox shell XXX power from the engine to the wheels。
The shell must be machined to high n to XXX n。
In this article。
we will discuss the design of a machining process for the gearbox shell.Rough MachiningXXX of the material from the gearbox shell。
This n is XXX。
care must be XXX to the workpiece。
The use of cutting fluids is also important to ce heat n and XXX.Semi-FinishingThe semi-XXX shape and size。
This n is XXX n and surface quality。
The use of cutting fluids is also important to ce heat n and XXX finish.FinishingXXX finishing n is the final step in the machining process。
机械毕业设计英文外文翻译45变速箱各档齿轮基本参数的选择

附录:THE FILE TRANSMISSION GEAR SELECTIONOF THE BASIC PARAMETERS1, Reasonable choice of module:Modulus is an important gear basic parameters, the greater the modulus, the greater the tooth thickness, the bending strength of gear is also greater, and its greater carrying capacity. Instead modulus smaller tooth thickness will be thinner, the bending strength of gear will be smaller. The low profile of the gear, due to the low rotational speed, torque, and gear of the relatively large bending stress, so need to choose a larger module in order to ensure its strength. And high-speed file gear, due to the high-speed, torque small gear bending stress is relatively small, so to ensure that the bending strength of gear under the premise of the general selection of the smaller module, so that gear teeth can be increased in order to obtain larger degree of overlap, so as to achieve the purpose of reducing noise.In a modern gearbox design, the file selection module gear is different. For example, a transmission gear of a file to the five-gear gear module are: 3.5; 3; 2.75; 2.5; 2; to change over the past modulus or modulus of the same can not be the situation of Latin America. 2, a reasonable selection of pressure angle:When a gear module and set the number of teeth, the gear diameter is determined, and the gear tooth involute base circle depends on the size, the size of the base circle and under pressure angle. For the same pitch circle of gear, if its pitch circle a different pressure angle, base circle is different. When the greater the pressure angle, the base circle diameter of the smaller, more curved involute, tooth root of the tooth will thicken, increase the tooth surface radius of curvature, which can increase the tooth bending strength and contact strength. When reducing the pressure angle, the base will become larger diameter, involute tooth profile will change some of the straight, thinning of the tooth root, tooth smaller radius of curvature, making the tooth bending strength and contact intensity will decrease, but decrease with the pressure angle, to increase the contact ratio gears, reducing the stiffness of the tooth, and can reduce the entry and exit load at the time of engagement, all of which are beneficial to reduce noise. There-fore, low profile gear, often larger pressure angle in order to meet the strength requirements; and regular use of high-speed file smaller gear pressure angle in order to meet the requirements of its lower noise.For example: a gear module 3, the number of teeth of 30, when the pressure angle of 17.5 degrees for the circular tooth thickness of the base to 5.341; when the pressure angle of 25 degrees, the tooth thickness of the base circle to 6.716; its base circle to increase the tooth thickness 25%, so increase the pressure angle to increase their flexural strength.3, A reasonable selection of Helix Angle:Compared with the straight gear, helical gear drive with a smooth, coincidence degree, the impact is small and the advantages of small noise. As a result of the present with synchronous transmission, and transmission will no longer be a direct mobile gear meshing with another gear, but with all the gears are meshing, so that'll bring convenience to the use of helical gear, so to bring the gearbox synchronizer Most of the use of helical gear.Helical gear as a result of the characteristics of the entire tooth width decision not to enter the mesh at the same time all but one end of first gear into the mesh, with the drive gear along the tooth width direction mesh gradually until all the teeth have wide access to mesh, so the actual meshing helical gear spur the region than the large. When the tooth when a certain width, the contact ratio of helical gear with helix angle increases. Carrying capacity is also stronger, have better stability. In theory, the better helix angle, but the helix angle increases, the axial force will also increase, so that reduces the transmission efficiency.In the modern design of the gearbox, in order to ensure smooth gear drive, low noise and less impact, all . Files for gear should choose a larger helix angle, generally about 30 high-speed gear as a result of the higher speed, for a smooth, low impact, low noise, so the use of small modulus, large helical angle; and low-profile gear module using the larger, smaller helix angle.4, The perspective of a reasonable modification is selected:With good conditions for the lubrication of the hardened gear is generally believed that the main danger is in the cycle under alternating stress, the fatigue crack Dedendum gradual expansion of the tooth root fracture caused by the failure. Failure in the gear transmission is a part of this. In order to avoid a broken tooth, should be to maximize the tooth root bending strength, and the use is changed, and can achieve this objective. Under normal circumstances, the greater the coefficient, the smaller values tooth, tooth bending stress on the smaller, the higher the bending strength of teeth.In the hardened gear, the tooth surface pitting failure is one of the reasons off. Increased engagement angle, can reduce the inter-tooth contact stress and maximum slip rates, can greatly increase the ability of anti-pitting. And increased engagement angle, itmust have a gear shift is introduced, thereby enhancing contact strength of tooth surface can improve the flexural strength of tooth roots, so as to enhance the effect of the carrying capacity of gears. However, for helical gear drive, variable coefficient is too large, and will total tooth length of the contact line, but to reduce its carrying capacity. At the same time, the greater the coefficient, as a result of tooth to tip increases, the thickness of the tip will be smaller, which will affect the strength of the top teeth.Therefore, in the design of a modern gearbox, the majority of all reasonable use of gear shift is the angle in order to maximize its advantages. Mainly in the following design criteria:low profile for the gear pair, the driving gear of the coefficient should be larger than the passive gear shift coefficient, and pair of high-speed profile, the driving gear of the coefficient should be less than passive coefficient gear.gear with the modification coefficient increased gradually stalls xiajiang. This is because low-grade zones as a result of low rotational speed, torque, and gear for high intensity, so the need to use more of the modification coefficient da.The total of the gear profile shift coefficient is positive (of the angle shift as amended), and increased with the stalls and gradually decreased. The smaller the total coefficient, a pair of pair of tooth root of the thickness of the total will be thin, tooth root becomes weak, the lower the bending strength, but decreased as a result of the stiffness of the tooth, easy to absorb shock and vibration, so can reduce the noise. And tooth contact ratio will increase, which bear a single tooth at the time of maximum load Dedendum recent focus distance, the reduced bending moment, which is equivalent to increase the strength of the tooth root, which as a result of thinning and weakened tooth root strength offset factor. Therefore, the greater the overall coefficient, the higher the strength of the tooth root, but the noise may increase. Thus high-speed gear to choose a smaller file of the total coefficient, and low-profile gear must be chosen larger coefficient5, to improve tip high coefficient:Top gear in the transmission of high quality factor, the impact of focusing on adaptation, in the main impact of helical gear contact ratio face. Coincidence degree by the end of the formula, we can see that when the number of teeth and meshing certain angle, the tooth tip is affected by tooth pressure angle coefficient of the top high impact factor the greater the high-tip, round tip the greater the pressure angle, contact ratio is The greater and ore stable drive. However, the high coefficient the greater the tip, the thickness of the top teth will become thin, thus affecting the strength tip. At the same time,at least not from the tooth root formula, the high coefficient the greater the tip, at least not the root will increase the number of gear, otherwise, they would have a root cutting. As a result, guarantees of non-root tip-cut and sufficient strength, increased tooth top high coefficient of coincidence degree for the increase is significant.Top gear in the transmission of high quality factor, the impact of focusing on adaptation, in the main impact of helical gear contact ratio face. Coincidence degree by the end of the formula, we can see that when the number of teeth and meshing certain angle, the tooth tip is affected by tooth pressure angle coefficient of the top high impact factor the greater the high-tip, round tip the greater the pressure angle, contact ratio is The greater and more stable drive. However, the high coefficient the greater the tip, the thickness of the top teeth will become thin, thus affecting the strength tip. At the same time, at least not from the tooth root formula, the high coefficient the greater the tip, at least not the root will increase the number of gear, otherwise, they would have a root cutting. As a result, guarantees of non-root tip-cut and sufficient strength, increased tooth top high coeff-icient of coincidence degree for the increase is significant.The above is from the module, pressure angle, helix angle, coefficient and a high coefficient of this addendum to an independent analysis of the five aspects of gear design trends. In fact between the various para-meters are inter-related, involved with each other, the choice of transmission parameters, it is necessary to take into account their strengths and weaknesses, but also consider the relationship between them, so in order to maximize their strengths and avoid weaknesses to improve transmission performance.变速箱各档齿轮基本参数的选择1、合理选用模数模数是齿轮的一个重要基本参数,模数越大,齿厚也就越大,齿轮的弯曲强度也越大,它的承载能力也就越大。
自动五速手动变速箱- EASYTRONIC 3.0外文文献翻译、中英文翻译

附录1:外文翻译自动五速手动变速箱- EASYTRONIC 3.0。
The new Opel/Vauxhall公司在2014年秋季推出了自动化五速手动变速箱(MTA) Easytronic 3.0。
该变速器使用电动液压离合器和位移控制,其主要部件主来自手动变速箱(F17-5)。
这个新的变速器新增了停止/启动功能,而他的控制系统是根据安全标准ISO 26262设计的。
DIPL.-ING。
THOMAS ZEMMRICH是德国Adam Opel公司变速器自动化MT系统组长和技术专家。
持续战略2014年秋季,欧宝/沃克斯豪尔公司引进了新一代自动化手动变速器MTA(手动变速器) Easytronic 3.0。
这延续了公司自2001年开始战略,通过这种低成本的变速器有效代替小型车辆的常规自动变速器。
由于传统变速器在传动过程中有扭矩中断会使车辆在驾驶时舒适度不佳。
因此,他们设计了与传统变速箱相比操作操作更简便,燃油经济性更好的,并且带有运动驾驶风格的自动化变速器。
这篇文章介绍了欧宝新推出的MTA 的设计和性能特点。
变速器的设计这款新推出的变速器是在Opel公司五速手动变速箱(F17-5)的基础上开发的,它的扭矩容量为190Nm。
这款变速器用在中小型汽油发动机手动档车型上的排量高达1.4L,用在材油机手动挡车型上的排量为1.3L。
虽然拥有高达200Nm转矩容量的6速变速箱越来越受到欢迎,但是考虑到成本,目前五速版的变速箱任是小型汽车的首选。
这款变速器采用拨叉和同步器进行换档,所选的齿轮组传动比范围为5.53,这对于一个五速变速箱来说是一个相当大的传动比范围。
由于较大的传动比范围,使得一档工作时不需要输入较大的转矩,使驾驶舒适性能得到提高,且在五档工作时不需要发动机输入较高的转速就可以获得较高的驾驶速度,还能够降低噪音,提高燃油经济性。
后者是实现自动手动变速器而不损失任何性能,因为加速度可以通过快速自动降档来实现。
机械专业外文翻译中英文翻译外文文献翻译

英文资料High-speed millingHigh-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs.1 One of the advantages of high-speed machiningHigh-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved.1.1 Increase productivityHigh-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reduced by 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market.1.2 Improve processing accuracy and surface qualityHigh-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.1.3 Cutting reduce the heatBecause the main axis milling machine high-speed rotation, cutting a shallow cutting, and feed very quickly, and the blade length of the workpiece contacts and contact time is very short, a decrease of blades and parts of the heat conduction. High-speed cutting by dry milling or oil cooked up absolute (mist) lubrication system, to avoid the traditional processing tool in contact with the workpiece and a lot of shortcomings to ensure that the tool is not high temperature under the conditions of work, extended tool life.1.4 This is conducive to processing thin-walled partsHigh-speed cutting of small cutting force, a higher degree of stability, Machinable with high-quality employees compared to the company may be very good, but other than the company's employees may Suanbu Le outstanding work performance. For our China practice, we use the models to determine the method of staff training needs are simple and effective. This study models can be an external object, it can also be a combination of internal and external. We must first clear strategy for the development of enterprises. Through the internal and external business environment and organizational resources, such as analysis, the future development of a clear business goals and operational priorities. According to the business development strategy can be compared to find the business models, through a comparative analysis of the finalization of business models. In determining business models, a, is the understanding of its development strategy, or its market share and market growth rate, or the staff of the situation, and so on, according to the companies to determine the actual situation. As enterprises in different period of development, its focus is different, which means that enterprises need to invest the manpower and financial resources the focus is different. So in a certain period of time, enterprises should accurately selected their business models compared with the departments and posts, so more practical significance, because the business models are not always good, but to compare some aspects did not have much practical significance, Furthermore This can more fully concentrate on the business use of limited resources. Identify business models, and then take the enterprise of the corresponding departments and staff with the business models for comparison, the two can be found in the performance gap, a comparative analysis to find reasons, in accordance with this business reality, the final identification of training needs. The cost of training is needed, if not through an effective way to determine whether companies need to train and the training of the way, but blind to training, such training is difficult to achieve the desired results. A comparison only difference between this model is simple and practical training.1.5 Can be part of some alternative technology, such as EDM, grinding high intensity and high hardness processingHigh-speed cutting a major feature of high-speed cutting machine has the hardness of HRC60 parts. With the use of coated carbide cutter mold processing, directly to the installation of ahardened tool steel processing forming, effectively avoid the installation of several parts of the fixture error and improve the parts of the geometric location accuracy. In the mold of traditional processing, heat treatment hardening of the workpiece required EDM, high-speed machining replace the traditional method of cutting the processing, manufacturing process possible to omit die in EDM, simplifying the processing technology and investment costs .High-speed milling in the precincts of CNC machine tools, or for processing centre, also in the installation of high-speed spindle on the general machine tools. The latter not only has the processing capacity of general machine tools, but also for high-speed milling, a decrease of investment in equipment, machine tools increased flexibility. Cutting high-speed processing can improve the efficiency, quality improvement, streamline processes, investment and machine tool investment and maintenance costs rise, but comprehensive, can significantly increase economic efficiency.2 High-speed millingHigh-speed milling the main technical high-speed cutting technology is cutting the development direction of one of it with CNC technology, microelectronic technology, new materials and new technology, such as technology development to a higher level. High-speed machine tools and high-speed tool to achieve high-speed cutting is the prerequisite and basic conditions, in high-speed machining in the performance of high-speed machine tool material of choice and there are strict requirements.2.1 High-speed milling machine in order to achieve high-speed machiningGeneral use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:General use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:High-speed milling machine must have a high-speed spindle, the spindle speed is generally 10000 ~ 100000 m / min, power greater than 15 kW. But also with rapid speed or in designated spots fast-stopping performance. The main axial space not more than 0 .0 0 0 2 m m. Often using high-speed spindle-hydrostatic bearings, air pressure-bearing, mixed ceramic bearings, magneticbearing structure of the form. Spindle cooling general use within the water or air cooled.High-speed processing machine-driven system should be able to provide 40 ~ 60 m / min of the feed rate, with good acceleration characteristics, can provide 0.4 m/s2 to 10 m/s2 acceleration and deceleration. In order to obtain good processing quality, high-speed cutting machines must have a high enough stiffness. Machine bed material used gray iron, can also add a high-damping base of concrete, to prevent cutting tool chatter affect the quality of processing. A high-speed data transfer rate, can automatically increase slowdown. Processing technology to improve the processing and cutting tool life. At present high-speed machine tool manufacturers, usually in the general machine tools on low speed, the feed of the rough and then proceed to heat treatment, the last in the high-speed machine on the half-finished and finished, in improving the accuracy and efficiency at the same time, as far as possible to reduce processing Cost.2.2 High-speed machining toolHigh-speed machining tool is the most active one of the important factors, it has a direct impact on the efficiency of processing, manufacturing costs and product processing and accuracy. Tool in high-speed processing to bear high temperature, high pressure, friction, shock and vibration, such as loading, its hardness and wear-resistance, strength and toughness, heat resistance, technology and economic performance of the basic high-speed processing performance is the key One of the factors. High-speed cutting tool technology development speed, the more applications such as diamond (PCD), cubic boron nitride (CBN), ceramic knives, carbide coating, (C) titanium nitride Carbide TIC (N) And so on. CBN has high hardness, abrasion resistance and the extremely good thermal conductivity, and iron group elements between the great inertia, in 1300 ℃ would not have happened significant role in the chemical, also has a good stability. The experiments show that with CBN cutting toolHRC35 ~ 67 hardness of hardened steel can achieve very high speed. Ceramics have good wear resistance and thermal chemical stability, its hardness, toughness below the CBN, can be used for processing hardness of HRC <5 0 parts. Carbide Tool good wear resistance, but the hardness than the low-CBN and ceramics. Coating technology used knives, cutting tools can improve hardness and cutting the rate, for cutting HRC40 ~ 50 in hardness between the workpiece. Can be used to heat-resistant alloys, titanium alloys, hightemperature alloy, cast iron, Chungang, aluminum and composite materials of high-speed cutting Cut, the most widely used. Precision machining non-ferrous metals or non-metallic materials, or the choice of polycrystalline diamond Gang-coated tool.2.3 High-speed processing technologyHigh-speed cutting technology for high-speed machining is the key. Cutting Methods misconduct, will increase wear tool to less than high-speed processing purposes. Only high-speed machine tool and not a good guide technology, high-speed machining equipment can not fullyplay its role. In high-speed machining, should be chosen with milling, when the milling cutter involvement with the workpiece chip thickness as the greatest, and then gradually decreased. High-speed machining suitable for shallow depth of cut, cutting depth of not more than 0.2 mm, to avoid the location of deviation tool to ensure that the geometric precision machining parts. Ensure that the workpiece on the cutting constant load, to get good processing quality. Cutting a single high-speed milling path-cutting mode, try not to interrupt the process and cutting tool path, reducing the involvement tool to cut the number to be relatively stable cutting process. Tool to reduce the rapid change to, in other words when the NC machine tools must cease immediately, or Jiangsu, and then implement the next step. As the machine tool acceleration restrictions, easy to cause a waste of time, and exigency stop or radical move would damage the surface accuracy. In the mold of high-speed finishing, in each Cut, cut to the workpiece, the feed should try to change the direction of a curve or arc adapter, avoid a straight line adapter to maintain the smooth process of cutting.3 Die in high-speed milling processing ofMilling as a highly efficient high-speed cutting of the new method,inMould Manufacturing has been widely used. Forging links in the regular production model, with EDM cavity to be 12 ~ 15 h, electrodes produced 2 h. Milling after the switch to high-speed, high-speed milling cutter on the hardness of HRC 6 0 hardened tool steel processing. The forging die processing only 3 h20min, improve work efficiency four to five times the processing surface roughness of Ra0.5 ~ 0.6m, fully in line with quality requirements.High-speed cutting technology is cutting technology one of the major developments, mainly used in automobile industry and die industry, particularly in the processing complex surface, the workpiece itself or knives rigid requirements of the higher processing areas, is a range of advanced processing technology The integration, high efficiency and high quality for the people respected. It not only involves high-speed processing technology, but also including high-speed processing machine tools, numerical control system, high-speed cutting tools and CAD / CAM technology. Die-processing technology has been developed in the mold of the manufacturing sector in general, and in my application and the application of the standards have yet to be improved, because of its traditional processing with unparalleled advantages, the future will continue to be an inevitable development of processing technology Direction.4 Numerical control technology and equipping development trend and countermeasureEquip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce,produce with some means of labor ". Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc..Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus.5 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies forthis, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machining center from 3~5μm, rise to 1~1.5μm, and ultraprecision machining accuracy is i t enter nanometer grade to begin already (0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .5.2 Link and process and compound to process the fast development of the lathe in 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gearbeds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realize the inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUVoution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.5.3 Become the main trend of systematic development of contemporary numerical control intelligently, openly, networkedly.The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc.. The numerical control system melts tobecome the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the serration, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the internationally famous lathe in the past two years. Meeting production line , manufacture system , demand for the information integration of manufacturing company networkedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make too. Some domestic and international famous numerical control lathes and systematic manufacturing companies of numerical control have all introduced relevant new concepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Cyber Production Center " that the company exhibits of mountain rugged campstool gram in Japan (Mazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Okuma ) exhibits " IT plaza " (the information technology square , is abbreviated as IT square ); Open Manufacturing Environment that the company exhibits of German Siemens (Siemens ) (open the manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction.5.4 Pay attention to the new technical standard, normal setting-up5.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expanding in the open numerical control system, such countries as U.S.A. ,European Community and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned and standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000.5.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development of manufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes,。
汽车变速器的设计外文文献翻译、中英文翻译、外文翻译

汽车变速器的设计外文文献翻译、中英文翻译、外文翻译A manual n。
also known as a standard n。
XXX。
It consistsof gears。
synchros。
roller bearings。
shafts。
and gear selectors。
The main clutch assembly is used to engage and disengage the engine from XXX gears are used to select the desired。
and the sector fork moves gears from one to another using the gearshift knob。
Synchros are used to slow the gear to a。
before it is XXX。
The counter shaft holds the gears in place and against the main input and output shaft。
Unlike automatic ns。
XXX。
as there isno XXX。
Note: XXX "n Shifter" was deleted as it had no XXX.)XXX have four to six forward gears and one reverse gear。
However。
some cars may have up to eight forward gears。
while semi trucks XXX by the number of forward gears。
such as a 5-speed standard n.The n of a standard n includes three shafts: the input shaft。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gearbox shell machining process design《Manufacturing Engineering and Technology—Machining》Mechanical Industry Press In March 2004, version 1 p560—564(Serope kalpakjian)(Steven R.Schmid)AbstractGearbox shell is a more complex structure of spare parts box, its high precision, complex process, and the processing quality will affect the overall performance engine, so it has become the engine manufacturer's focus parts one.Machining process planning must guarantee the machining quality of parts, to meet the technical requirements stipulated in drawings, at the same time should also have high productivity and efficiency. Therefore, machining process planning design is an important work, requires designers must have a rich experience in production practice and wide range of mechanical manufacturing technology basic theory knowledge. In the specified procedure, should according to the production of parts and the existing equipment conditions, taking the processing quality into account, productivity and economy requirements, after repeated analysis and comparison, to determine the optimal or the best solution.1.Technical Characteristics of the gearbox shellThe gearbox shell process features are: the structure of complex shape; processing plane, more than holes; uneven wall thickness and stiffness is low; processing of high precision typical of box-type processing part. The main processing of the surface of cylinder block top surface, the main bearing side, cylinder bore, the main and camshaft bearing bore holes and so on, they will directly affect the machining accuracy of the engine assembly precision and performance, mainly rely on precision equipment, industrial fixtures reliability and processing technology to ensure the reasonableness.2.The gearbox shell process design principles and the basisDesign Technology program should be to ensure product quality at the same time, give full consideration to the production cycle, cost and environmental protection; based on the enterprises ability to actively adopt advanced process technology and equipment, and constantly enhance their level of technology. Gearbox shell machining process design should follow the following basic principles: 2.1 The selection of processing equipmentThe principle of selection adopted the principle of selection adopted the principle of combining rigid-flexible, processing each horizontal machining center is located mainly small operations with vertical machining center, the key process a crank hole, cylinder hole, balancer shaft hole High-speed processing of high-precision horizontal machining center, an upper and lower non-critical processes before and after the four-dimensional high-efficiency rough milling and have a certain adjustment range of special machine processing;2.2 Concentration process principleFocus on a key process in principle process the body cylinder bore, crankshaft hole, Balance Shaft hole surface finishing and the combination of precision millingcylinder head, using a process focused on a setup program to complete all processing elements in order to ensure product accuracy The key quality processes to meet the cylinder capacity and the relevant technical requirements;3.The gearbox shell machining process design the main contentGearbox shell complex structure, high precision, arge size, is thin-walled parts, there are a number of high precision plane and holes. Engine block machining process characteristics; mainly flat and the hole processing, processing of flat generally use planing, milling methods such as processing, processing of hole used mainly boring, processing and multi-purpose drilling holes. As the cylinder complex structure. so how to ensure that the mutual position of the surface processing precision is an important issue.3.1 The selection of blankGearbox shell on the materials used are generally gray cast iron HT150,HT200,HT250,there is also cast aluminum or steel plate, this engine block using high-strength alloy cast iron. Cylinder in the processing prior to aging treatment in order to eliminate stress and improve the rough casting mechanical properties. Improve the rough accuracy, reduction of machining allowance, is to improve the automated production line system productivity and processing quality of the important measures. As the foreign box-type parts of rough quality and high precision, and its production-line system has been implemented directly on the blank line, not only eliminating the need for blank check device also saves the rough quality problems due to waste of machining time, increase overall efficiency. Therefore, the refinement of rough is to improve the productivity of the most promising way out. For the engine block production line, can be rough in parts on-line pre-milling six face, removing most of the margin, to facilitate direct on-line parts.3.2 Machining process selection and processing of the benchmarkChoose the right processing technology base is directly related to the processing quality can ensure the parts. Generally speaking, process benchmarking can be divided into coarse and fine reference base.3.2.1 Coarse reference baseThe baseline for the on-line thick rough ,which is particularly important the choice of benchmark crude, if crude benchmark choice unreasonable, will the uneven distribution of machining allowance, processing and surface offsets, resulting in waste. In the cylinder production line, we have adopted for the coarse side of the base;3.2.2 Fine reference baseRefined the base of this box for the engine block parts, the general use of "side two sales "for a full range of uniform benchmarks, For the longer automated production positioning. In the gearbox shell of the process, we have adopted to the side, bottom and the spindle hole positioning, in the processing center on the process.3.3 Machining Processing Stages and processes of the arrangementsOften a part of many apparent need for processing, of course, the surface machining accuracy are different. Processing of high precision surface, often afterrepeated processing; As for the processing of the surface of low precision, only need to go through one or two on the list. Thus, when the development process in order to seize the "processing high precision surface, "this conflict, the reasonable arrangement processes and rational division stage of processing. Arrange the order of the principle of process is: after the first coarse refined, the first surface after the hole, the first benchmark other. In the engine block machining, the same should follow this principle.3.3.1 roughing stage engine block machining processThe arrangements for roughing process, to fully carry out rough rough, trim most of the margin in order to ensure production efficiency;3.3.2 semi-finishing phase of the engine block machiningIn order to ensure the accuracy of the middle of some important surface processing, and arrange some semi-finishing operations, will be required accuracy and surface roughness of the surface of the middle of some processing to complete, while demanding the surface of semi-finished, to prepare for future finishing;3.3.3 The finishing stageThe finishing stage of requiring high accuracy and surface roughness of the surface processing; 3.3.4 secondary processingSecondary processing such as small surface screw holes, you can finish of the major surface after the one hand, when the workpiece deformation process little impact at the same time also reduced the rejection rate;In addition,if the main surface of a waste,these small the surface will not have to be processed,thus avoiding a waste of man-hours.However,if the processing is very easy for a small surface bumps the main surface,it should be placed on a small surface finish prior to the main surface finishing;3.3.5 make proper arrangements for secondary processesMake proper arrangements for secondary processes such as product inspection process,in part roughing stage,the key process before and after processing,spare parts all the processing has been completed,should be appropriate arrangements. Stage of processing division,has the following advantages:First,it can take measures to eliminate the rough workpiece after the stress,to ensure accuracy; second,finishing on the back,and will not damage during transport the surface of the workpiece has been processed;again,first roughing the surface defects can be detected early and promptly deal with rough,do not waste working hours.But most small parts,do not sub very thin.3.4 The gearbox shell surface of the main processing and secondary processes3.4.1 Plane processingPlane processing at present, the milling of engine blocks is the primary means of planar processing,domestic milling feed rate is generally 300-400mm/min,and foreign 2000-4000mm/min milling feed rate compared to far cry,to be on increasing,therefore,improve the milling feed rate,reduce overhead time is to improve the productivity of the major means of finishing a number of plane engine block when the milling feed rate to reach 2399mm/min,greatly improved efficiency; Top surface of the cylinder milling is a key process in the process,the flatnessrequirements for 0.02/145mm,the surface roughness of Ra1.6um.Processing in the cylinder,the use of side and spindle bearing bore positioning,top,bottom and middle vagay only aperture while processing used in the processing line outside of the knife device can better meet the engine block machining accuracy;3.4.2 General holes MachiningGeneral holes Machining holes in general are still using the traditional processing of drilling,expansion,boring,reaming,tapping and other craft approach. Issues in the design process of specific programs,use of coated cutting tools,cutting tools and other advanced tools within the cooling,and using a large flow of cooling systems,greatly improving the cutting speed,improved productivity;3.4.3 Deep hole processingDeep hole processing of the traditional processing method is used to grade twist drill feed,low efficiency of their production,processing and quality is poor.The deep hole in the engine block processing,the use of gun drilling process;3.4.4 CleaningCleaning is divided into wet cleaning and dry cleaning.Machining cylinder automatic production line using a large flow of wet cleaning;3.4.5 DetectionDetect points outside the line detection and line detection of two kinds. Quality inspection in the engine block,according to the actual situation with lines outside the detection,the main use of coordinate measuring machine integrated measurements of the cylinder,each 200 samples 1-5 pieces,each class random one.变速箱壳体机械加工工艺设计摘自:《机械工程与技术(机加工)》(英文版)机械工业出版社2004年3月第1版美国卡卡尔帕基安·施密德摘要变速箱壳体是变速器机零件中结构较为复杂的箱体零件,其精度要求高,加工工艺复杂,并且加工加工质量的好坏直接影响发动机整个机构的性能,因此,它成为各个发动机生产厂家所关注的重点零件之一。