数控技术发展趋势外文翻译参考文献
数控技术英文参考文献(精选118个最新)

数控技术,英文名称:Numerical Control (简称NC),即采用电脑程序控制机器的方法,按工作人员事先编好的程式对机械零件进行加工的过程。
下面是搜索整理的关于数控技术英文参考文献,欢迎借鉴参考。
数控技术英文参考文献一:[1]Xing Li,Zhouhua Jiang,Xin Geng,Fubin Liu,Leizhen Peng,Shuai Shi. Numerical simulation of a new electroslag remelting technology with current conductive stationary mold[J]. Applied Thermal Engineering,2019,147.[2]Malgorzata Plaza,Wojciech Zebala. A decision model for investment analysis in CNC centers and CAM technology[J]. Computers & Industrial Engineering,2019,131.[3]Rui He,Guoming Chen,Che Dong,Shufeng Sun,Xiaoyu Shen. Data-driven digital twin technology for optimized control in process systems[J]. ISA Transactions,2019.[4]M.J. Zhan,G.F. Sun,Z.D. Wang,X.T. Shen,Y. Yan,Z.H. Ni. Numerical and experimental investigation on laser metal deposition as repair technology for 316L stainless steel[J]. Optics and Laser Technology,2019,118.[5]Andrew Tait,Jonathan G.M. Lee,Bruce R. Williams,Gary A. Montague. Numerical analysis of in-flight freezing droplets: Application to novel particle engineering technology[J]. Food and Bioproducts Processing,2019,116.[6]Gautier Laurent,Caroline Izart,Bénédicte Lechenard,Fabrice Golfier,Philippe Marion,Pauline Collon,Laurent Truche,Jean-Jacques Royer,Lev Filippov. Numerical modelling of column experiments to investigate in-situ bioleaching as an alternative mining technology[J]. Hydrometallurgy,2019,188.[7]. Information Technology; Researchers from University of Orebro Report New Studies and Findings in the Area of Information Technology (Data-driven Conceptual Spaces: Creating Semantic Representations For Linguistic Descriptions Of Numerical Data)[J]. Computers, Networks & Communications,2019.[8]. Energy; Findings from Beijing University of Technology Reveals New Findings on Energy (Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe ...)[J]. Energy Weekly News,2019.[9]. Numerical Modeling; Findings on Numerical Modeling Reported by Investigators at University of Shanghai for Science & Technology (Experimental and numerical study on loss characteristics of main steam valve strainer in steam turbine)[J]. Energy Weekly News,2019.[10]. Numerical Modeling; Studies from University of Science and Technology in the Area of Numerical Modeling Described (Modeling of electrochemical properties of potential-induced defects in butane-thiol SAMs by using artificial neural network and impedance ...)[J]. Computers, Networks & Communications,2019.[11]. Numerical Modeling; Study Findings from National University of Defence Science and Technology Provide New Insights into Numerical Modeling (Numerical simulation and structural optimization based on an elliptical and cylindrical raft wave energy conversion device)[J]. Energy Weekly News,2019.[12]. Materials Science - Composite Materials; Investigators at Norwegian University of Science and Technology (NTNU) Detail Findings in Composite Materials (Comparison of numerical modelling techniques for impact investigation on a wind turbine blade)[J]. Energy Weekly News,2019.[13]. Heat Transfer Research; Data on Heat Transfer Research Described by Researchers at AGH University of Science and Technology (A Numerical Analysis of Unsteady Transport Phenomena In a Direct Internal Reforming Solid Oxide Fuel Cell)[J]. Energy Weekly News,2019.[14]. Science - Combustion Science; Investigators at Indian Institute of Technology Describe Findings in Combustion Science (Numerical Simulations of Turbulent Lifted Jet Diffusion Flames In a Vitiated Coflow Using the Stochastic Multiple Mapping Conditioning Approach)[J]. Science Letter,2019.[15]. Science - Combustion Science; Findings from Swiss Federal Institute of Technology in Zurich Provides New Data about Combustion Science (Direct Numerical Simulations of Turbulent Catalytic and Gas-phase Combustion of H-2/air Over Pt At Practically-relevant Reynolds Numbers)[J]. Science Letter,2019.[16]. Science - Combustion Science; Findings from Indian Institute of Technology in Combustion Science Reported (Numerical Modeling of Turbulent Premixed Combustion Using Rans Based Stochastic Multiple Mapping Conditioning Approach)[J]. Science Letter,2019.[17]. Mining and Minerals - Mining Science and Technology; Data on Mining Science and Technology Described by Researchers at Centers for Disease Control and Prevention (Development of a fault-rupture environment in 3D: A numerical tool for examining the mechanical impact of a fault on underground ...)[J]. Medical Letter on the CDC & FDA,2019.[18]. Science - Scientific Computing; Study Results from Missouri University of Science and Technology in the Area of Scientific Computing Reported (A Second Order In Time, Decoupled, Unconditionally Stable Numerical Scheme for theCahn-hilliard-darcy System)[J]. Science Letter,2019.[19]. Science - Applied Sciences; Findings from University of Science and Technology in Applied Sciences Reported (Numerical Study of the Effect of Inclusions On the Residual Stress Distribution In High-strength Martensitic Steels During Cooling)[J]. Science Letter,2019.[20]. Science - Crystallography; New Crystallography Findings Has Been Reported by Investigators at Royal Institute of Technology (On Plowing Frictional Behavior During Scratch Testing: a Comparison Between Experimental and Theoretical/numerical Results)[J]. Science Letter,2019.[21]. Information Technology; Report Summarizes Information Technology Study Findings from University of Defense (Comparison of Static Aerodynamic Data Obtained In Dynamic Wind Tunnel Tests and Numerical Simulation Research)[J]. Computers, Networks & Communications,2019.[22]. Energy; New Findings from Hefei University of Technology Describe Advances in Energy (Numerical Study of the Effect of Combustion Chamber Structure On Scavenging Process In a Boosted Gdi Engine)[J]. Energy Weekly News,2019.[23]. Fuel Research; Study Results from Sahand University of Technology Update Understanding of Fuel Research (Advanced Numerical Analyses On Thermal, Chemical and Dilution Effects of Water Addition On Diesel Engine Performance and Emissions Utilizing Artificial ...)[J]. Energy Weekly News,2019.[24]. Energy - Energy and the Environment; Researchers from Iran University of Science and Technology Describe Findings in Energy and the Environment (Numerical Investigation of the Power Extraction Mechanism of Flapping Foil Tidal Energy Harvesting Devices)[J]. Energy Weekly News,2019.[25]. Energy; Findings from Cracow University of Technology Provide New Insights into Energy (Numerical and Experimental Study On the Thermal Performance of the Concrete Accumulator for Solar Heating Systems)[J]. Energy Weekly News,2019.[26]. Energy; Studies from Huazhong University of Science and Technology Yield New Information about Energy (Numerical Study On Heat Transfer Performance In Packed Bed)[J]. Energy Weekly News,2019.[27]. Energy; Studies from Jiangsu University of Science and Technology Describe New Findings in Energy (Numerical Study On Thermal Hydraulic Performance of Supercritical Lng In Zigzag-type Channel Pches)[J]. Energy Weekly News,2019.[28]. Energy; Studies from Harbin Institute of Technology Add New Findings inthe Area of Energy (A Numerical Study On the Development of Self-similarity In a Wind Turbine Wake Using an Improved Pseudo-spectral Large-eddy Simulation Solver)[J]. Energy Weekly News,2019.[29]. Science - Combustion Science; Studies from Massachusetts Institute of Technology Reveal New Findings on Combustion Science (Numerical Investigation of Strained Extinction At Engine-relevant Pressures: Pressure Dependence and Sensitivity To Chemical and Physical Parameters ...)[J]. Energy Weekly News,2019.[30]. Energy; Findings on Energy Discussed by Investigators at Federal University of Technology Parana (Numerical Two-dimensional Steady-state Evaluation of the Thermal Transmittance Reduction In Hollow Blocks)[J]. Energy Weekly News,2019.数控技术英文参考文献二:[31]. Geofluids; Investigators at China University of Mining and Technology Detail Findings in Geofluids (Numerical Simulations On the Front Motion of Water Permeation Into Anisotropic Porous Media)[J]. Science Letter,2019.[32]. Science - Combustion Science; Studies from National University of Defence Science and Technology Add New Findings in the Area of Combustion Science (Numerical Study of Cellular Detonation Wave Reflection Over a Cylindrical Concave Wedge)[J]. Energy Weekly News,2019.[33]. Energy; Reports Summarize Energy Findings from Darmstadt University of Technology (Numerical Investigation of an Oxyfuelnon-premixed Combustionusing a Hybrid Eulerian Stochastic Field/flamelet Progress Variable Approach: Effects of H-2/co2 Enrichment ...)[J]. Energy Weekly News,2019.[34]. Energy - Hydrogen Energy; Data on Hydrogen Energy Described by Researchers at King Mongkut's University of Technology Thonburi (Comparative Numerical Evaluation of Autothermal Biogas Reforming In Conventional and Split-and-recombine Microreactors)[J]. Energy Weekly News,2019.[35]. Food and Bioproducts; New Data from Indian Institute for Technology Illuminate Findings in Food and Bioproducts (Heat Transfer Analysis During Mixed-mode Solar Drying of Potato Cylinders Incorporating Shrinkage: Numerical Simulation and Experimental Validation)[J]. Food Weekly News,2019.[36]. Energy - Energy Materials; Findings from Dalian University of Technology Broaden Understanding of Energy Materials (Tailoring Active Sites In Mesoporous Defect-rich Nc/v-o-won Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution)[J]. Energy Weekly News,2019.[37]. Science - Water Science and Technology; New Water Science and Technology Study Findings Recently Were Reported by Researchers at Zhejiang University (Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion During Bubble Collapse)[J]. Energy Weekly News,2019.[38]. Energy - Renewable Energy; Reports from Sharif University of Technology Advance Knowledge in Renewable Energy (A Numerical Study of Dust Deposition Effects On Photovoltaic Modules and Photovoltaic-thermal Systems)[J]. Energy Weekly News,2019.[39]. Science - Combustion Science; New Combustion Science Findings from Beijing Institute of Technology Discussed (Experimental and Numerical Studies On Detonation Reflections Over Cylindrical Convex Surfaces)[J]. Energy Weekly News,2019.[40]Maryann Valentine. CNC Technology at Fresno City College[J]. Tech Directions,2019,78(9).[41]. Science - Applied Sciences; Investigators at Czestochowa University of Technology Describe Findings in Applied Sciences (Numerical Analysis of Flow In Building Arrangement: Computational Domain Discretization)[J]. Science Letter,2019.[42]. Science; Reports Summarize Science Study Results from Indian Institute of Technology Madras (Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review)[J]. Energy Weekly News,2019.[43]. Science - Fire Science; Dalian University of Technology Details Findings in Fire Science (Fire Resistance of Steel Beam To Square Cfst Column Composite Joints Using Rc Slabs: Experiments and Numerical Studies)[J]. Science Letter,2019.[44]. Energy; Researchers' Work from Sharif University of Technology Focuses on Energy (An Improved Actuator Disc Model for the Numerical Prediction of the Far-wake Region of a Horizontal Axis Wind Turbine and Its Performance)[J]. Energy Weekly News,2019.[45]. Engineering - Wind Engineering; Hefei University of Technology Details Findings in Wind Engineering (Numerical Simulation of Wind-driven Rain Distribution On Building Facades Under Combination Layout)[J]. Energy Weekly News,2019.[46]. Western Digital Technologies Inc.; Patent Issued for Switching Period Control Of Microwave Assisted Magnetic Recording For Pole Erasure Suppression (USPTO 10,283,159)[J]. Computers, Networks & Communications,2019.[47]. Energy - Wind Turbines; Investigators at Huazhong University of Science and Technology Describe Findings in Wind Turbines (Numerical Analysis of a CatenaryMooring System Attached By Clump Masses for Improving the Wave-resistance Ability of a Spar Buoy-type Floating ...)[J]. Energy Weekly News,2019.[48]. Energy - Nuclear Power; New Data from Karlsruhe Institute of Technology Illuminate Findings in Nuclear Power (Numerical Study of Thermal Hydraulics Behavior On the Integral Test Facility for Passive Containment Cooling System Using Gasflow-mpi)[J]. Energy Weekly News,2019.[49]. Energy - Energy Exploration; Researchers from Dawood University of Engineering & Technology Detail Findings in Energy Exploration (Numerical Simulation of Lignocellulosic Biomass Gasification In Concentric Tube Entrained Flow Gasifier Through Computational Fluid Dynamics)[J]. Energy Weekly News,2019.[50]. Fuel Research; Researchers at King Abdullah University of Science and Technology Have Reported New Data on Fuel Research (An Experimental/numerical Investigation of the Role of the Quarl In Enhancing the Blowout Limits of Swirl-stabilized Turbulent ...)[J]. Energy Weekly News,2019.[51]. Technology - Green Technology; Findings from National Institute of Technology Has Provided New Data on Green Technology (Influence of Thermal Energy Storage System On Flow and Performance Parameters of Solar Updraft Tower Power Plant: a Three Dimensional Numerical Analysis)[J]. Energy Weekly News,2019.[52]. Atmosphere Research; Studies from AGH University of Science and Technology Update Current Data on Atmosphere Research (Prediction of Air Temperature In the Polish Western Carpathian Mountains With the Aladin-hirlam Numerical Weather Prediction System)[J]. Science Letter,2019.[53]. Energy - Oil and Gas Research; Researchers at Amirkabir University of Technology Release New Data on Oil and Gas Research (Numerical Investigation for Determination of Aquifer Properties In Newly Developed Reservoirs: a Case Study In a Carbonate Reservoir)[J]. Energy Weekly News,2019.[54]. Science - Refrigeration Science; Findings from Indian Institute of Technology Kanpur Provides New Data about Refrigeration Science (Numerical Investigation of Isothermal and Non-isothermal Ice Slurry Flow In Horizontal Elliptical Pipes)[J]. Science Letter,2019.[55]. Energy - Renewable Energy; Researchers from Delft University of Technology Detail Findings in Renewable Energy (The Dynamic Wake of an Actuator Disc Undergoing Transient Load: a Numerical and Experimental Study)[J]. Energy Weekly News,2019.[56]. Energy; Researchers from Wroclaw University of Science and Technology Describe Findings in Energy (Theoretical and Numerical Analysis of Freezing RiskDuring Lng Evaporation Process)[J]. Energy Weekly News,2019.[57]. Geomechanics; Researchers from Chengdu University of Technology Report Findings in Geomechanics (Behavior and Numerical Evaluation of Cement-fly Ash-gravel Pile-supported Embankments Over Completely Decomposed Granite Soils)[J]. Science Letter,2019.[58]. Macromolecular Research; Investigators from Swiss Federal Institute of Technology Have Reported New Data on Macromolecular Research (Numerical Estimates of the Topological Effects In the Elasticity of Gaussian Polymer Networks and Their Exact Theoretical Description)[J]. Science Letter,2019.[59]. Food Processing; Findings from Institute of Chemical Technology Reveals New Findings on Food Processing (Comparison Between Multiresponse-robust Process Design and Numerical Optimization: a Case Study On Baking of Fermented Chickpea Flour-based Wheat Bread)[J]. Food Weekly News,2019.[60]. Technology; Studies from Sun Yat Sen University Yield New Information about Technology (Numerical Investigation of Influence of Reservoir Heterogeneity On Electricity Generation Performance of Enhanced Geothermal System)[J]. Energy Weekly News,2019.数控技术英文参考文献三:[61]. Energy - Solar Energy; Study Results from Izmir Institute of Technology in the Area of Solar Energy Reported (Experimental and Numerical Investigation of Forced Convection In a Double Skin Facade By Using Nodal Network Approach for Istanbul)[J]. Energy Weekly News,2019.[62]. Science - Earth and Space Science; Investigators at Massachusetts Institute of Technology Report Findings in Earth and Space Science (Esh3d, an Analytical and Numerical Hybrid Code for Full Space and Half-space Eshelby's Inclusion Problems)[J]. Science Letter,2019.[63]. Science - Forensic Science; New Findings from Beijing Institute of Technology in Forensic Science Provides New Insights (The Experimental and Numerical Investigation On the Ballistic Limit of Bb-gun Pellet Versus Skin Simulant)[J]. Science Letter,2019.[64]. Hydrodynamics; Research Conducted at Jiangsu University of Science and Technology Has Updated Our Knowledge about Hydrodynamics (Numerical Investigations of the Effects of Blade Shape On the Flow Characteristics In a Stirred Dead-end Membrane Bioreactor)[J]. Science Letter,2019.[65]. Technology - Fuel Technology; Data on Fuel Technology Reported by Researchers at Northeast Petroleum University (Numerical Simulation of the Air Injection Process In Low Permeability Reservoirs)[J]. Energy Weekly News,2019.[66]. Energy; New Energy Findings from Anhui University of Technology Described (Numerical Study On the Effect of Separated Over-fire Air Ratio On Combustion Characteristics and Nox Emission In a 1000 Mw Supercritical Co2 Boiler)[J]. Energy Weekly News,2019.[67]. Fuel Research; Findings from East China University of Science and Technology Broaden Understanding of Fuel Research (Numerical Study of Dynamic Response Analysis of Slag Behaviors In an Entrained Flow Gasifier)[J]. Energy Weekly News,2019.[68]. Energy; Findings from Babol Noshirvani University of Technology Has Provided New Data on Energy (Numerical Study of Heat Transfer On Using Lobed Cross Sections In Helical Coil Heat Exchangers: Effect of Physical and Geometrical Parameters)[J]. Energy Weekly News,2019.[69]. Energy; New Energy Study Results Reported from Nanjing University of Science and Technology (Numerical Investigation of the Effect of Sudden Expansion Ratio of Solid Fuel Ramjet Combustor With Swirling Turbulent Reacting Flow)[J]. Energy Weekly News,2019.[70]. Energy; Reports from Amirkabir University of Technology Add New Data to Findings in Energy (Numerical Study of Anode Side Co Contamination Effects On Pem Fuel Cell Performance; and Mitigation Methods)[J]. Energy Weekly News,2019.[71]. Science - Geoscience; Findings from China University of Mining and Technology Broaden Understanding of Geoscience (The Exhumation Along the Kenyase and Ketesso Shear Zones In the Sefwi Terrane, West African Craton: a Numerical Study)[J]. Science Letter,2019.[72]. Science - Refrigeration Science; Findings from Sirjan University of Technology Broaden Understanding of Refrigeration Science (A geometric model for a vortex tube based on numerical analysis to reduce the effect of nozzle number)[J]. Science Letter,2019.[73]. Science - Topography and Metrology; Researchers from Isfahan University of Technology Detail New Studies and Findings in the Area of Topography and Metrology (Numerical and experimental study on the effect of considering plastic and elastoplastic deformation of each asperity in ...)[J]. Science Letter,2019.[74]. Science; New Science Findings from Dalian University of Technology Outlined(Numerical research on the anti-sloshing effect of a ring baffle in an independent type C LNG tank)[J]. Science Letter,2019.[75]. Science - Terramechanics; Findings from National University of Defence Science and Technology in Terramechanics Reported (Development and numerical validation of an improved prediction model for wheel-soil interaction under multiple operating conditions)[J]. Science Letter,2019.[76]. Science - Textile Research; Findings from Lodz University of Technology Update Knowledge of Textile Research (Numerical Analysis of Free Folding of Flat Textile Products and Proposal of New Test Concerning Bending Rigidity)[J]. Science Letter,2019.[77]. Science - Technical Sciences; Findings from Warsaw University of Technology in the Area of Technical Sciences Reported (Pulse Powered Turbine Engine Concept - Numerical Analysis of Influence of Different Valve Timing Concepts On Thermodynamic Performance)[J]. Science Letter,2019.[78]. Energy - Energy Storage; Findings from Iran University of Science and Technology Has Provided New Data on Energy Storage (Numerical investigation of different PCM volume on cold thermal energy storage system)[J]. Energy Weekly News,2019.[79]. Science - Maritime Research; New Maritime Research Findings from Wuhan University of Technology Described (Numerical Simulation of Solid-fluid 2-phase-flow of Cutting System for Cutter Suction Dredgers)[J]. Science Letter,2019.[80]. Energy; Investigators at Swiss Federal Institute of Technology in Zurich Describe Findings in Energy (Numerical Optimization of Methane-based Fuel Blends Under Engine-relevant Conditions Using a Multi-objective Genetic Algorithm)[J]. Energy Weekly News,2019.[81]. Science - Refrigeration Science; Study Data from Jiangsu University of Science and Technology Update Understanding of Refrigeration Science (A Numerical Study On Condensation Flow and Heat Transfer of Refrigerant In Minichannels of Printed Circuit Heat Exchanger)[J]. Science Letter,2019.[82]. Information Technology; Researchers from Sao Paulo State University Provide Details of New Studies and Findings in the Area of Information Technology (Effective Force Area and Discharge Coefficient for Reed Type Valves: a Comprehensive Data Set From a Numerical Study)[J]. Computers, Networks & Communications,2019.[83]. Science - Applied Sciences; Findings on Applied Sciences Discussed by Investigators at Czestochowa University of Technology (A Sequential Approach toNumerical Simulations of Solidification with Domain and Time Decomposition)[J]. Science Letter,2019.[84]. Energy; New Energy Findings from National University of Defence Science and Technology Described (A 3D Numerical Study of Supersonic Steam Dumping Process of the Pressurizer Relief Tank)[J]. Energy Weekly News,2019.[85]. Science and Technology; Study Findings on Science and Technology Are Outlined in Reports from H. Yi and Colleagues (Simulations and error analysis of the CNC milling of a face gear tooth with given tool paths)[J]. Science Letter,2019.[86]. Energy - Wind Turbines; Data on Wind Turbines Reported by Researchers at Lulea University of Technology (Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades)[J]. Energy Weekly News,2019.[87]. Information Technology - Information and Data Aggregation; Studies from Marchuk Institute of Numerical Mathematics in the Area of Information and Data Aggregation Reported (Domain Decomposition Method for the Variational Assimilation of the Sea Level in a Model of Open Water Areas Hydrodynamics)[J]. Computers, Networks & Communications,2019.[88]. Energy; Investigators at Kaunas University of Technology Describe Findings in Energy (Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall)[J]. Energy Weekly News,2019.[89]. Geomechanics; Data from Wuhan University of Science and Technology Advance Knowledge in Geomechanics (Strength and Failure Characteristics of Rocklike Material Containing a Large-opening Crack Under Uniaxial Compression: Experimental and Numerical Studies)[J]. Science Letter,2019.[90]. Energy - Wind Turbines; Findings on Wind Turbines Reported by Investigators at Hong Kong University of Science and Technology (A Numerical Study On the Performance of a Savonius-type Vertical-axis Wind Turbine In a Confined Long Channel)[J]. Energy Weekly News,2019.数控技术英文参考文献四:[91]. Fuel Research; New Findings from Indian Institute for Technology Describe Advances in Fuel Research (Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures)[J]. Energy Weekly News,2019.[92]. Fuel Research; Findings in the Area of Fuel Research Reported from DalianUniversity of Technology (Experimental and numerical study of the effect of injection strategy and intake valve lift on super-knock and engine performance in a boosted GDI engine)[J]. Energy Weekly News,2019.[93]. Energy - Wind Turbines; New Data from Babol Noshirvani University of Technology Illuminate Findings in Wind Turbines (Numerical Investigation of the Savonius Vertical Axis Wind Turbine and Evaluation of the Effect of the Overlap Parameter in Both Horizontal and ...)[J]. Energy Weekly News,2019.[94]. Biosensors; Investigators at East China University of Science and Technology Detail Findings in Biosensors (Numerical and Experimental Assessment of a Miniature Bioreactor Equipped With a Mechanical Agitator and Non-invasive Biosensors)[J]. Biotech Week,2019.[95]. Science - Geoscience; Studies from Warsaw University of Technology Have Provided New Data on Geoscience (Selected components of geological structures and numerical modelling of slope stability)[J]. Science Letter,2019.[96]. Fuel Research; Reports from Huazhong University of Science and Technology Provide New Insights into Fuel Research (Experimental and Numerical Study of the Fuel-nox Formation At High Co2 Concentrations In a Jet-stirred Reactor)[J]. Energy Weekly News,2019.[97]. Energy; Studies from Darmstadt University of Technology Add New Findings in the Area of Energy (Numerical Investigation of Flow through a Valve during Charge Intake in a DISI -Engine Using Large Eddy Simulation)[J]. Energy Weekly News,2019.[98]. Energy; Studies from Shandong University of Technology Provide New Data on Energy (Experimental and Numerical Studies On the Effect of Packed Bed Length On Co and Nox Emissions In a Plane-parallel Porous Combustor)[J]. Energy Weekly News,2019.[99]Weijian Yu,Ze Liu,Baifu An,Fangfang Liu,Yunbo Wang. Numerical Calculation and Stability of the Yield and Enhanced Support Technology for Shaft[J]. Geotechnical and Geological Engineering,2019,37(4).[100]Jorge Manuel Mercado-Colmenero,Miguel Angel Rubio-Paramio,M? Dolores Rubia-Garcia,David Lozano-Arjona,Cristina Martin-Do?ate. A numerical and experimental study of the compression uniaxial properties of PLA manufactured with FDM technology based on product specifications[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5-8).[101]Shuping Chen. Teaching Reform and Practice on Course of Numerical Computation Method in Applied Technology Undergraduate Institutes[P]. Proceedingsof the 2nd International Seminar on Education Research and Social Science (ISERSS 2019),2019.[102]Nouvet Elysée,Knoblauch Astrid M,Passe Ian,Andriamiadanarivo Andry,Ravelona Manualdo,Ainanomena Ramtariharisoa Faniry,Razafimdriana Kimmerling,Wright Patricia C,McKinney Jesse,Small Peter M,Rakotosamimanana Niaina,Grandjean Lapierre Simon. Perceptions of drones, digital adherence monitoring technologies and educational videos for tuberculosis control in remote Madagascar: a mixed-method study protocol.[J]. BMJ open,2019,9(5).[103]He Rui,Chen Guoming,Dong Che,Sun Shufeng,Shen Xiaoyu. Data-driven digital twin technology for optimized control in process systems.[J]. ISA transactions,2019.[104]Tatti Fabio,Petrangeli Papini Marco,Torretta Vincenzo,Mancini Giuseppe,Boni Maria Rosaria,Viotti Paolo. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones.[J]. Journal of contaminant hydrology,2019.[105]Revels Christy,Burris Christie. NC HealthConnex and Value-based Care: Statewide Health Information Exchange as a Technology Tool for All.[J]. North Carolina medical journal,2019,80(4).[106]Kubit Andrzej,Trzepiecinski Tomasz,?wi?ch ?ukasz,Faes Koen,Slota Jan. Experimental and Numerical Investigations of Thin-Walled Stringer-Stiffened Panels Welded with RFSSW Technology under Uniaxial Compression.[J]. Materials (Basel, Switzerland),2019,12(11).[107]董新峰,仇中柱,韩清鹏. 数控技术课程中超硬材料切削加工所涉及的关键问题的引入[J]. 教育进展,2019,09(03).[108]Hua Chen,Ke-Lun Xia,Zi-Jun Liu,Xun-Si Wang,Xiang-Hua Zhang,Yin-Sheng Xu,Shi-Xun Dai. Experimental and numerical investigation of mid-infrared laser in Pr<sup>3+</sup>-doped chalcogenide fiber Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605095), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19F050004), the Natural Science Foundation of Ningbo City (Grant No. 2015A610038), the Open Fund of the Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devi[J]. Chinese Physics B,2019,28(2).[109]Zhengwei Yang,Xingyu Xie,Yin Li,Gan Tian. Numerical Analysis of Influencing Factors and Capability for Line Laser Scanning Thermography Nondestructive Testing Technology in Chemicals Corrosion Defect Detection[J]. IOP Conference Series: Materials Science and Engineering,2019,484(1).。
机械类数控外文翻译外文文献英文文献数控.doc

Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC).Prior to the advent of NC, all machine tools were manual operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator . Numerical control represents the first major step away from human control of machine tools.Numerical control means the control of machine tools and other manufacturing systems though the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool, For a machine tool to be numerically controlled , it must be interfaced with a device for accepting and decoding the p2ogrammed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operator , and it has done so . Numerical control machines are more accurate than manually operated machines , they can produce parts more uniformly , they are faster, and the long-run tooling costs are lower . The development of NC led to the development of several other innovations in manufacturing technology:1.Electrical discharge machining.ser cutting.3.Electron beam welding.Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide variety of par4s , each involving an assortment of undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tools and processes.Like so many advanced technologies , NC was born in the laboratories of the Massachusetts Institute of Technology . The concept of NC was developed in the early 1950s with funding provided by the U.S Air Force .In its earliest stages , NC machines were able to make straight cuts efficiently and effectively.However ,curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter is the straight lines making up the step ,the smoother is 4he curve . Each line segment in the steps had to be calculated.This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the further development of NC technology. The original NC system were vastly different from those used punched paper , which was later to replaced by magnetic plastic tape .A tape reader was used to interpret the instructions written on the tape for the machine .Together, all /f this represented giant step forward in the control of machine tools . However ,there were a number of problems with NC at this point in its development.A major problem was the fragility of the punched paper tape medium . It was common for the paper containing the programmed instructions to break or tear during a machining process, This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to rerun thought the reader . If it was necessary to produce 100 copies of a given part , it was also necessary to run the paper tape thought the reader 100 separate times . Fragile paper tapes simply could not withstand the rigors of shop floor environment and this kind of repeated use.This led to the development of a special magnetic tape . Whereas the paper tape carried the programmed instructions as a series of holes punched in the tape , theThis most important of these was that it was difficult or impossible to change the instructions entered on the tape . To make even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape thought the reader as many times as there were parts to be produced . Fortunately, computer technology become a reality and soon solved the problems of NC, associated with punched paper and plastic tape.The development of a concept known as numerical control (DNC) solve the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions . In direct numerical control, machine tools are tied, via a data transmission link, to a host computer and fed to the machine tool as needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However ,it is subject to the same limitation as all technologies that depend on a host computer. When the host computer goes down , the machine tools also experience down time . This problem led to the development of computer numerical control.The development of the microprocessor allowed for the development of programmable logic controllers (PLC) and microcomputers . These two technologies allowed for the development of computer numerical control (CNC).With CNC , each machine tool has a PLC or a microcomputer that serves the same purpose. This allows programs to be input and stored at each individual machine tool. CNC solved the problems associated downtime of the host computer , but it introduced another problem known as data management . The same program might be loaded on ten different microcomputers with no communication among them. This problem is in the process of being solved by local area networks that connectDigital Signal ProcessorsThere are numerous situations where analog signals to be processed in many ways, like filtering and spectral analysis , Designing analog hardware to perform these functions is possible but has become less and practical, due to increased performance requirements, flexibility needs , and the need to cut down on development/testing time .It is in other words difficult pm design analog hardware analysis of signals.The act of sampling an signal into thehat are specialised for embedded signal processing operations , and such a processor is called a DSP, which stands for Digital Signal Processor . Today there are hundreds of DSP families from as many manufacturers, each one designed for a particular price/performance/usage group. Many of the largest manufacturers, like Texas Instruments and Motorola, offer both specialised DSP’s for certain fields like motor-control or modems ,and general high-performance DSP’s that can perform broad ranges of processingtasks. Development kits an` software are also available , and there are companies making software development tools for DSP’s that allows the programmer to implement complex processing algorithms using simple “drag ‘n’ drop” methodologies.DSP’s more or less fall into t wo categories depending on the underlying architecture-fixed-point and floating-point. The fixed-point devices generally operate on 16-bit words, while the floating-point devices operate on 32-40 bits floating-point words. Needless to say , the fixed-point devices are generally cheaper . Another important architectural difference is that fixed-point processors tend to have an accumulator architecture, with only one “general purpose” register , making them quite tricky to program and more importantly ,making C-compilers inherently inefficient. Floating-point DSP’s behave more like common general-purpose CPU’s ,with register-files.There are thousands of different DSP’s on the market, and it is difficult task finding the most suitable DSP for a project. The best way is probably to set up a constraint and wishlist, and try to compare the processors from the biggest manufacturers against it.The “big four” manufacturers of DSPs: Texas Instruments, Motorola, AT&T and Analog Devices.Digital-to-analog conversionIn the case of MPEG-Audio decoding , digital compressed data is fed into the DSP which performs the decoding , then the decoded samples have to be converted back into the analog domain , and the resulting signal fed an amplifier or similar audio equipment . This digital to analog conversion (DCA) is performed by a circuit with the same name & Different DCA’s provide different performance and quality , as measured by THD (Total harmonic distortion ), number of bits, linearity , speed, filter characteristics and other things.The TMS320 family DQP of Texas InstrumentsThe TLS320family consists of fixed-point, floating-point, multiprocessor digital signal processors (D[Ps) , and foxed-point DSP controllers. TMS320 DSP have an architecture designed specifically for real-time signal processing . The’ F/C240 is a number of the’C2000DSP platform , and is optimized for control applications. The’C24x series of DSP controllers combines this real-time processing capability with controller peripherals to create an ideal solution for control system applications. The following characteristics make the TMS320 family the right choice for a wide range of processing applications:--- Very flexible instruction set--- Inherent operational flexibility---High-speed performance---Innovative parallel architecture---Cost effectivenessDevices within a generation of the TMS320 family have the same CPU structure but different on-chip memory and peripheral configurations. Spin-off devices use new combinations of On-chip memory and peripherals to satisfy a wide range of needs in the worldwide electronics market. By integrating memory and peripherals onto a single chip , TMS320 devices reduce system costs and save circuit board space.The 16-bit ,fixed-point DSP core of the ‘C24x devices provides analog designers a digital solution that does not sacrifice the precision and performance of their system performance can be enhanced through the use of advanced control algorithms for techniquessuch as adaptive control , Kalman filtering , and state control. The ‘C24x DSP controller offer reliability and programmability . Analog control systems, on the other hand ,are hardwired solutions and can experience performance degradation due to aging , component tolerance, and drift.The high-speed central processing unit (CPU) allows the digital designer to process algorithms in real time rather than approximate results with look-up tables. The instruction set of these DSP controllers, which incorporates both signal processing instructions and general-purpose control functions, coupled with the extensive development time and provides the same ease of use as traditional 8-and 16-bit microcontrollers. The instruction set also allows you to retain your software investment when moving from other general-purp ose‘C2xx generation ,source code compatible with the’C2x generation , and upwardly source code compatible with the ‘C5x generation of DSPs from Texas Instruments.The ‘C24x architecture is also well-suited for processing control signals. It uses a 16-bit word length along with 32-bit registers for storing intermediate results, and has two hardware shifters available to scale numbers independently of the CPU . This combination minimizes quantization and truncation errors, and increases p2ocessing power for additional functions. Such functions might include a notch filter that could cancel mechanical resonances in a system or an estimation technique that could eliminate state sensors in a system.The ‘C24xDSP controllers take advantage of an set of peripheral functions that allow Texas Instruments to quickly configure various series members for different price/ performance points or for application optimization.This library of both digital and mixed-signal peripherals includes:---Timers---Serial communications ports (SCI,SPI)---Analog-to-digital converters(ADC)---Event manager---System protection, such as low-voltage and watchdog timerThe DSP controller peripheral library is continually growing and changing to suit the of tomorrow’s embedded control marke tplace.The TMS320F/C240 is the first standard device introduced in the ‘24x series of DSP controllers. It sets the standard for a single-chip digital motor controller. The ‘240 can execute 20 MIPS. Almost all instructions are executed in a simple cycle of 50 ns . This high performance allows real-time execution of very comple8 control algorithms, such as adaptive control and Kalman filters. Very high sampling rates can also be used to minimize loop delays.The ‘ 240 has the architectural features necessary for high-speed signal processing and digital control functions, and it has the peripherals needed to provide a single-chip solution for motor control applications. The ‘240 is manufactured using submicron CMOS technology, achieving a log power dissipation rating . Also included are several power-down modes for further power savings. Some applications that benefit from the advanced processing power of the ‘240 include:---Industrial motor drives---Power inverters and controllers---Automotive systems, such as electronic power steering , antilock brakes, and climatecontrol---Appliance and HV AC blower/ compressor motor controls---Printers, copiers, and other office products---Tape drives, magnetic optical drives, and other mass storage products---Robotic and CNC milling machinesTo function as a system manager, a DSP must have robust on-chip I/O and other peripherals. The event manager of the ‘240 is unlike any other available on a DSP . This application-optimized peripheral unit , coupled with the high performance DSP core, enables the use of advanced control techniques for high-precision and high-efficiency full variable-speed control of all motor types. Include in the event manager are special pulse-width modulation (PWM) generation functions, such as a programmable dead-band function and a space vector PWM state machine for 3-phase motors that provides state-of-the-art maximum efficiency in the switching of power transistors.There independent up down timers, each with it’s own compare register, suppo rt the generation of asymmetric (noncentered) as well as symmetric (centered) PWM waveforms.Open-Loop and Closed-Loop ControlOpen-loop Control SystemsThe word automatic implies that there is a certain amount of sophistication in the control system. By automatic, it generally means That the system is usually capable of adapting to a variety of operating conditions and is able to respond to a class of inputs satisfactorily . However , not any type of control system has the automatic feature. Usually , the automatic feature is achieved by feed.g the feedback structure, it is called an open-loop system , which is the simplest and most economical type of control system.inaccuracy lies in the fact that one may not know the exact characteristics of the further ,which has a definite bearing on the indoor temperature. This alco points to an important disadvantage of the performance of an open -loop control system, in that the system is not capable of adapting to variations in environmental conitions or to external disturbances. In the case of the furnace control, perhaps an experienced person can provide control for a certain desired temperature in the house; but id the doors or windows are opened or closed intermittently during the operating period, the final temperature inside the house will not be accurately regulated by the open-loop control.An electric washing machine is another typical example of an open-loop system , because the amount of wash time is entirely determined by the judgment and estimation of the human operator . A true automatic electric washing machine should have the means of checking the cleanliness of the clothes continuously and turn itsedt off when the desired degised of cleanliness is reached.Closed-Loop Control SystemsWhat is missing in the open-loop control system for more accurate and more adaptable control is a link or feedback from the output to the input of the system . In order to obtain more accurate bontrol, the controlled signal c(t) must be fed back and compared with the reference input , and an actuating signal proportional to the difference of the output and the input must be sent through the system to correct the error. A system with one or more feedback pat(s like that just described is called a closed-loop system. human being are probably the most complex and sophisticated feedback control system in existence. A humanbeing may be considered to be a control system with many inputs and outputs, capable of carrying out highly complex operations.To illustrate the human being as a feedback control system , let us consider that the objective is to reach for an object on aperform the task. The eyes serve as a sensing device which feeds back continuously the position of the hand . The distance between the hand and the object is the error , which is eventually brought to zero as the hand reacher the object. This is a typical example of closed-loop control. However , if one is told to reach for the object and then is blindolded, one can only reach toward the object by estimating its exact position. It isAs anther illustrative example of a closed-loop control system, shows the block diagram of the rudder control system ofThe basic alements and the bloca diagram of a closed-loop control system are shown in fig. In general , the configuration of a feedback control system may not be constrained to that of fig & . In complex systems there may be multitude of feedback loops and element blocks.数控在先进制造技术领域最根本的观念之一是数控(NC)。
中国数控车床的现状和发展趋势分析 中英文文献资料

Not only the Chinese numerical control lathe present situation and thetrend of development(中国数控车床的现状和发展趋势分析)analysis numerical control technology application has brought the revolutionary change for the traditional manufacturing industry, causes the manufacturing industry to become the industrialization the symbol, moreover along with numerical control technology unceasing development and application domain expansion, it to national economy and the people's livelihood some important professions (IT, automobile, light industry, medical service and so on) development more and more vital role, because these professions must equip the digitization already was the modern development major tendency. The current numerical control lathe presents following trend of development.1. high speed, high precisionHigh speed, precise is the engine bed development eternal goal.Development progresses by leaps and bounds which along with the science and technology, the mechanical and electrical products renewal speed speeds up, increasingly is also high to the components processing precision and the surface quality request.In order to satisfy this complex changeable market the demand, the current engine bed to the high-speed cutting, is doing the cutting and does the direction of cut to develop, the processing precision also in unceasingly enhances. On the other hand, the electricity main axle and the straight line electrical machinery success application, the ceramics ball bearing, the high accuracy lead greatly hollow in cold and the ball bearing nut strong cold low temperature high speed ball bearing guide screw vice-and the belt ball bearing retainer straight line guide rail vice-and so on engine bed function part appearing on the market, also for the engine bed to high speed, the precise development has created the condition. The numerical control lathe picks uses electricity the main axle, has cancelled links and so on leather belt, band pulley and gear, reduced the master drive rotation inertia greatly, enhanced the main axle dynamic speed of response and the work precision, when thorough settlement main axle high-speed operation transmission and so on leather belt and band pulley vibrations and noise question.Picks uses electricity the main axle structure to be possible to enable the main axle rotational speed to achieve above 10000r/min.The straight line motor-driven speed is high, adds the moderating properties to be good, has the superior response characteristic and the followed precision. Made the servo with the straight line electrical machinery to actuate, to omit the ball bearing guide screw this intermediate drive link, eliminated the transmission gap (including reverse gap), the movement inertia was small, the system rigidity was good, could locate precisely under high speed, thus increased the servo precision enormously.Straight line trundle guide rail, because it has respectively to the gap for the zero and the extremely small rolling friction, wears slightly, gives off heat may ignore, has the extremely good thermostability, increased the entire journey pointing accuracy and the repetition pointing accuracy. Through the straight line electrical machinery and the straight line trundle guide rail vice-application,may make the engine bed the rapid traverse speed to enhance 60~80m/min from present10~20m/mim, even reaches as high as 120m/min.2. redundant reliablenumerical control engine bed reliability is a numerical control engine bed product quality crucial target.Whether does the numerical control engine bed display its high performance, the high accuracy and the high efficiency, and obtains the good benefit, the key is decided by its reliable height.3. function recombinefunction recombine goal is further enhances the engine bed the production efficiency, uses reduces to few in the non-processing non-cutting time.Through the function recombine, may expand the engine bed the use scope, enhances the efficiency, realizes multipurpose one machine, one machine many energy, namely a numerical control lathe already may realize the turning function, also may realize the milling processing; Or in also may realize the abrasive machining by the mill primarily engine bed on.4. intellectualizations, the network, the flexibility and the integrated21st century numerical control equipments has certain intellectualized system. In order to pursue the processing efficiency and the processing quality aspect intellectualization, like processing process adaptive control, craft parameter automatic production; In order to enhance the actuation performance and the use connection aspect intellectualization, like feed-forward control, electrical machinery parameter auto-adapted operation, automatic diagnosis load automatic designation model, self regulating grade; Simplification programming, simplification operation aspect intellectualization, like intellectualized automatic programming, intellectualized man-machine contact surface and so on; Also has the intelligence to diagnose, aspect and so on intelligent monitoring contents, by facilitates the system the diagnosis and the service and so on. The numerical control engine bed the tendency which develops to the flexibility automated system is: From (numerical control single plane, processing center and numerical control compound processing engine bed), line (FMC, FMS, FTL, FML) to surface (construction section workshop independent manufacture island, FA), body (CIMS, distribution network integration manufacture system) the direction develops, on the other hand develops to the attention utility and the efficient direction. The flexible automation technology is the manufacturing industry adapts the dynamic market demand and the product rapid renewal main method, is the various countries' manufacturing industry development mainstream tendency, is the advanced manufacture domain foundation technology.Its key point is by enhances the system the reliability, changes into the premise practical, take the easy networking and the integration as the goal, the attention enhancement unit technology development and the consummation.The CNC single plane to the high accuracy, the high velocity and the high flexible direction develops. The numerical control engine bed and the constitution flexibility manufacture system can conveniently and joints and so on CAD, CAM, CAPP and MTS, develops to the information integration direction.The network system to the opening, the integration and the intellectualized direction develops.中国数控车床的现状和发展趋势分析数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
中英文文献翻译—数控技术和装备发展趋势及对策

附录附录ANumerical control technology and equipment trend ofdevelopment and countermeasureThe equipment industry technical level and the modernized degree were deciding the entire national economy level and the modernized degree, the numerical control technology and the equipment are the development emerging high technology and new technology industry and the state-of-art industry (for example defense industry industries and so on information technology and industry, biological technology and industry, aviation, astronautics) enables the technology and the most basic equipment. Marx had said “each kind of economical time difference, does not lie in produces any, but how lies in produces, with any means of labor production”. The technique of manufacture and the equipment is the humanity produces active the most basic producer goods, but the numerical control technology also is advanced now the technique of manufacture and the equipment most core technology. Now the various countries manufacturing industry widely uses the numerical control technology, sharpens the manufacturing capacity and the level, enhances to the dynamic changeable market adaptiveness and competitive ability. In addition in the world various industries developed country also lists as the national strategic resources the numerical control technology and the numerical control equipment, not only takes the significant measure to develop own numerical control technology and the industry, moreover implements the blockade and the limit policy in “precise and advanced” the numerical control key technologies and the equipment aspect to our country. In brief, develops vigorously take the numerical control technology has become the world each developed country acceleration economy development as the core advanced technique of manufacture, enhances the comprehensive national strength and the national status important way.The numerical control technology is carries on the control with the numerical information to the mechanical movement and the work process the technology, thenumerical control equipment is take the numerical control technology as representative's new technology the integration of machinery product which forms to the traditional manufacture industry and the emerging manufacturing industry seepage, namely so-called digitized equipment, its technical scope cover very many domains: (1) machine manufacture technology; (2) information processing, processing, transmission technology; (3) automatic control technology; (4) servo actuates the technology; (5) sensor technology; (6) software technology and so on.1 numerical control technology trend of developmentNot only the numerical control technology application has brought the revolutionary change for the traditional manufacturing industry, causes the manufacturing industry to become the industrialization the symbol, moreover along with numerical control technology unceasing development and application domain expansion, he to national economy and the people's livelihood some important professions (IT, automobile, light industry, medical service and so on) development more and more vital role, because these professions must equip the digitization already was the modern development major tendency. The numerical control technology and the equipment development tendency looked from the present world that, its main research hot spot has following several aspect [1~4].1.1 high speed, high precision work technology and equipment new tendencyThe efficiency, the quality are the advanced technique of manufacture main bodies. High speed, the high precision work technology may enhance the efficiency enormously, enhances the product the quality and the scale, reduces the production cycle and sharpens the market competition ability. Lists as one of 5 great modern techniques of manufacture for this Japan Tip Technology Research board it, the international production project learns (CIRP) its determination is one of 21st century central research directions.In the passenger vehicle industry domain, yearly produces 300,000 production metres was 40/s,moreover the multi-variety processing is one of key questions which the passenger vehicle equipment must solve; In the aviation and the astronavigation industry domain, its processing spare part many for the thin wall and the thin muscle, the rigidity is very bad, material for aluminum or aluminum alloy, only then in the high cutting speed and the cutting force very small situation, can to these muscles, the wall carry on the processing. Recently uses the large-scale overall aluminum alloy semifinished mat erials “pull out spatially” the method to make the wing, the fuselage and so on the large-scale componentssubstitutes many components through the multitudinous rivets, the bolt and other joint way assembling, causes the component the intensity, the rigidity and the reliability obtains the enhancement. These all to processed the equipment to propose high speed, Gao Jing and the high flexible request.Unfolds from EMO2001 meets the situation to look that, processes the center feed rate to be possible high speed to reach 80m/min, even higher, the aerial transport stroke speed may reach 100m/About min. At present in the world many automotive factories, including our country's Shanghai General Motors, already used by the high speed processing center composition production line part substitution aggregate machine-tool. American CINCINNATI Corporation's HyperMach engine bed feed rate reaches 60m/most greatlymin, fast is 100m/min, the acceleration reaches 2g, the main axle rotational speed has reached 60 000r/min. Processes a thin wall airplane part, only uses 30min, but the same components need 3h in the common high speed milling machine processing, needs 8h in the plain milling machine processing; The German DMG Corporation's double main axle lathe main axle speed and the acceleration respectively reach 12*! 000r/mm和1g。
机械类数控车床外文翻译外文文献英文文献数控

数控加工中心技术发展趋势及对策原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
机械类数控车床外文翻译外文文献英文文献数控

机械类数控车床外文翻译外文文献英文文献数控原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备进展趋势及计策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是进展新兴高新技术产业和尖端工业〔如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业〕的使能技术和最差不多的装备。
数控技术发展趋势外文翻译参考文献

数控技术发展趋势外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)数控技术的发展趋势摘要:简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。
装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。
制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备的核心技术。
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态市场的适应能力和竞争能力。
此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。
总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
数控技术外文文献翻译

数控技术外文文献翻译(含:英文原文及中文译文)英文原文The development trend of numerical control technology AbstractThe current trends in the development of numerical control technology and equipment in the world and the status quo of the development and industrialization of CNC equipment technology in China are briefly introduced. On this basis, we discuss the development of CNC technology and equipment in China under the new environment of China's accession to the WTO and further opening to the outside world. The importance of improving the level of China's manufacturing informatization and international competitiveness, and put forward some views on the development of China's CNC technology and equipment from both strategic and strategic aspects.The technological level and degree of modernization of the equipment industry determine the level of the entire national economy and the degree of modernization. Numerical control technology and equipment are the development of emerging high-tech industries and cutting-edge industries (such as information technology and its industries, biotechnology and its industries, aviation, aerospace, etc.) (Defense Industry Industry) enabling technology and basic equipment. Marx oncesaid that “the difference between various economic times is no t what is produced but how it is produced and what labor data it is used to produce”. Manufacturing technology and equipment are the most basic production materials for human production activities, and numerical control technology is the core technology of today's advanced manufacturing technologies and equipment. In the manufacturing industry of the world today, CNC technology is widely used to improve manufacturing capabilities and levels, and to improve the adaptability and competitiveness of dynamic markets. In addition, various industrialized countries in the world have also listed numerical control technology and numerical control equipment as strategic materials of the country. They not only take significant measures to develop their own numerical control technologies and their industries, but also have the key technology and equipment of “high-precision” numerical control. Our country adopts a policy of blockade and restriction. In short, the vigorous development of advanced manufacturing technologies centered on numerical control technology has become an important way for all developed countries in the world to accelerate economic development and improve their overall national strength and national status.Numerical control technology is a technology that uses digital information to control mechanical movement and work process. Numerical control equipment is a mechatronic product formed by thepenetration of new technologies represented by numerical control technology into traditional manufacturing industries and emerging manufacturing industries, namely, so-called digital equipment. Its technical scope covers many fields: (1) machinery manufacturing technology; (2) information processing, processing, and transmission technology; (3) automatic control technology; (4) servo drive technology;(5) sensor technology; (6) software Technology and so on. Keywords: CNC technology, machinery manufacturing, information processing, sensors1 Development Trends of Numerical Control TechnologyThe application of numerical control technology has not only brought about revolutionary changes in the traditional manufacturing industry, but also made manufacturing a symbol of industrialization. With the continuous development of numerical control technology and the expansion of application fields, he has made important contributions to the national economy and people's livelihood (IT, automotive The development of light industry, light industry, medical care, etc. is playing an increasingly important role, because the digitalization of the equipment required by these industries is a major trend of modern development. From the current trend of numerical control technology and its equipment development in the world, its main research hotspots are the following aspects [1~4].1.1 New trends in high-speed, high-precision processing technology and equipmentEfficiency and quality are the mainstays of advanced manufacturing technology. High-speed, high-precision machining technology can greatly improve efficiency, improve product quality and grade, shorten production cycle and increase market competitiveness. To this end, the Japanese Advanced Technology Research Institute will list it as one of the five major modern manufacturing technologies. The International Association of Production Engineers (CIRP) has identified it as one of the central research directions for the 21st century.In the passenger car industry, the production cycle of 300,000 vehicles per year is 40 seconds per vehicle, and multi-species processing is one of the key issues that must be addressed for car equipment. In the aviation and aerospace industries, the parts processed by them are mostly thin-walled. With thin ribs, the rigidity is poor, and the material is aluminum or aluminum alloy. These ribs and walls can be processed only when the high cutting speed and cutting force are small. Recently, the method of “hollowing out” large-size aluminum alloy billets has been used to manufacture large parts such as wings and fuselage to replace multiple parts and assembled by numerous rivets, screws, and other coupling methods to obtain strength, stiffness, and reliability of components. improve. All of these require high-speed, high-precision andhigh-flexibility for processing equipment.From the standpoint of EMO2001, the feed rate of high-speed machining centers can reach 80m/min, or even higher, and the airspeed can reach around 100m/min. At present, many automobile plants in the world, including China's Shanghai General Motors Corporation, have adopted a part of the production line consisting of a high-speed machining center to replace the combined machine tools. The HyperMach machine tool feed rate of CINCINNATI, USA is up to 60m/min, the speed is 100m/min, the acceleration is 2g, and the spindle speed has reached 60,000r/min. It takes only 30 minutes to machine a thin-walled aircraft part, and the same part takes 3h for general high-speed milling and 8h for normal milling; the spindle speed and acceleration of the twin-spindle lathe of DMG, Germany, reach 12*!000r/mm respectively. And 1g.In terms of machining accuracy, in the past 10 years, the machining accuracy of ordinary CNC machine tools has increased from 10μm to 5μm, precision machining centers have increased from 3~5μm to 1~1.5μm, and ultra-precision machining precision has begun to enter the nanometer level. (0.01μm).In terms of reliability, the MTBF value of foreign numerical control devices has reached more than 6000 hours, and the MTBF value of the servo system has reached more than 30,000 hours, showing very highreliability.In order to achieve high-speed, high-precision machining, the supporting functional components such as electric spindles and linear motors have been rapidly developed and the application fields have been further expanded.1.2 Rapid development of 5-axis simultaneous machining and compound machiningThe use of 5-axis simultaneous machining of 3D surface parts allows cutting with the best geometry of the tool, resulting in not only a high degree of finish, but also a significant increase in efficiency. It is generally considered that the efficiency of a 5-axis machine tool can be equal to 2 3-axis linkage machines. Especially when using ultra-hard material milling tools such as cubic boron nitride for high-speed milling of hardened steel parts, 5-axis simultaneous machining can be compared with 3-axis linkage. Processing to play a higher efficiency. In the past, due to the complexity of the 5-axis linkage CNC system and the host machine structure, the price was several times higher than that of the 3-axis linkage CNC machine tool, and the programming technology was more difficult, which restricted the development of 5-axis linkage machine tools.At present, due to the emergence of electric spindles, the structure of the composite spindle head that realizes 5-axis simultaneous machining isgreatly simplified, its manufacturing difficulty and cost are greatly reduced, and the price gap of the numerical control system is reduced. As a result, the development of composite spindle head type 5-axis linkage machine tools and compound machine tools (including 5-sided machine tools) has been promoted.At the EMO2001 exhibition, the new 5-axis machine tool of Nippon Machine Tool Co., Ltd. adopts a compound spindle head, which can realize the processing of four vertical planes and processing at any angle, so that 5-sided machining and 5-axis machining can be realized on the same machine tool. It can realize the processing of inclined surface and inverted cone. Germany DMG company exhibited DMUV oution series machining center, which can be processed in five-face machining and five-axis linkage in a single clamping. It can be directly or indirectly controlled by CNC system control or CAD/CAM.1.3 Intelligentization, openness, and networking have become major trends in the development of modern digital control systemsThe 21st century CNC equipment will be a certain intelligent system. The intelligent content is included in all aspects of the CNC system: in order to pursue the processing efficiency and processing quality in the intelligent, such as the process of adaptive control, process parameters automatically Generated; To improve the driving performance and the use of convenient connection intelligent, such as feed-forward control,adaptive calculation of motor parameters, automatic identification load automatic selection model, self-tuning, etc.; simplify the programming, simplify the operation of intelligent, such as smart The automatic programming, intelligent man-machine interface, etc.; as well as the contents of intelligent diagnosis, intelligent monitoring, convenient system diagnosis and maintenance.In order to solve the problems of traditional CNC system closure and industrial application of CNC application software. At present, many countries have conducted research on open numerical control systems such as NGC of the United States, OSACA of the European Community, OSEC of Japan, and ONC of China. The openness of numerical control systems has become the future of CNC systems. The so-called open CNC system is the development of CNC system can be in a unified operating platform, for machine tool manufacturers and end users, by changing, adding or cutting structure objects (CNC function), to form a series, and can be convenient to the user's special The application and technology are integrated into the control system to quickly realize open numerical control systems of different varieties and different grades to form brand-name products with distinctive personality. At present, the architecture specification, communication specification, configuration specification, operation platform, numerical control system function library and numerical control system function software development toolof open CNC system are the core of current research.Networked CNC equipment is a new bright spot in the international well-known machine tool exposition in the past two years. The networking of CNC equipment will greatly satisfy the requirements of information integration for production lines, manufacturing systems, and manufacturing companies. It is also the basic unit for realizing new manufacturing models such as agile manufacturing, virtual enterprise, and global manufacturing. Some famous domestic and foreign CNC machine tools and numerical control system manufacturing companies have introduced relevant new concepts and prototypes in the past two years. For example, at the EMO 2001 exhibition, the “Cyber Production Center” exhibited by Japan's Mazak company Mazak Production Control Center (CPC); Okuma Machine Too l Company, Japan exhibited “ITplaza” (Information Technology Plaza, IT Plaza); Open Manufacturing Environment (Open Manufacturing Environment, OME), exhibited by Siemens, Germany Etc., reflecting the trend of the development of CNC machine tools to the direction of the network.1.4 Emphasizing the Establishment of New Technology Standards and Specifications1.4.1 About Design and Development of CNC SystemsAs mentioned above, the open CNC system has better versatility, flexibility, adaptability, and expandability. The United States, theEuropean Community, and Japan have implemented strategic development plans one after another, and have conducted the open architecture system specification (OMAC). , OSACA, OSEC) research and development, the world's three largest economies in the short term carried out almost the same set of scientific plans and norms, indicating that the arrival of a new revolution in digital technology. In 2000, China began to conduct research and development of the regulatory framework for China's ONC numerical control system.1.4.2 About CNC StandardsCNC standards are a trend in the development of manufacturing informatization. The information exchange in the 50 years since the birth of CNC technology was based on the ISO 6983 standard. That is how the G and M codes describe how to process. The essential feature is the processing-oriented process. Obviously, he has been unable to meet the high speed of modern CNC technology. The need for development. For this purpose, a new CNC system standard ISO14649 (STEP-NC) is being researched and developed internationally. Its purpose is to provide a uniform data model that can describe the entire life cycle of a product without relying on a neutral mechanism of a specific system. , in order to achieve the entire manufacturing process, and even the standardization of product information in various industrial fields. The emergence of STEP-NC may be a revolution in CNC technology. It will have aprofound impact on the development of CNC technology and even the entire manufacturing industry. First, STEP-NC proposes a brand-new manufacturing concept. In the traditional manufacturing concept, NC machining programs are concentrated on a single computer. Under the new standard, NC programs can be distributed on the Internet. This is the direction of open and networked CNC technology. Secondly, STEP-NC CNC system can also greatly reduce the processing drawings (about 75%), processing program preparation time (about 35%) and processing time (about 50%).At present, European and American countries attach great importance to the research of STEP-NC, and Europe has initiated STEP-NC's IMS plan ( Participation in this program comes from 20 CAD/CAM/CAPP/CNC users, vendors and academic institutions in Europe and Japan. STEPTools of the United States is the developer of global manufacturing data exchange software. He has developed a SuperModel for the information exchange of CNC machine tools. Its goal is to describe all machining processes with a unified specification. This new data exchange format has now been validated on prototype prototypes equipped with SIEMENS, FIDIA and European OSACA-NC numerical control systems.2 Basic Estimates of China's CNC Technology and Its Industrial DevelopmentCNC technology in China started in 1958. The development process in the past 50 years can be roughly divided into three stages: the first stage from 1958 to 1979, which is the closed development stage. At this stage, the development of numerical control technology is relatively slow due to the limitations of foreign technology and China's basic conditions. The second stage is the introduction of technology during the “sixth and fifth” periods of the country, the “seventh five-year plan” period, and the “eighth five-year plan period,”and it will be digested and absorbed to initially establish the stage of the national production system. At this stage, due to the reform and opening up and the country’s attention, as well as the improvement of the research and development environment an d the international environment, China’s CNC technology has made great progress in research, development, and localization of products. The third stage is the implementation of industrialization research in the later period of the "Eighth Five-Year Plan" and the "Ninth Five-Year Plan" period of the country, entering the stage of market competition. At this stage, the industrialization of domestically-manufactured CNC equipment has achieved its essenceSexual progress. At the end of the “Ninth Five-Year Plan” period, the domestic market share of domestic CNC machine tools reached 50%, and the number of domestically-manufactured numerical control systems (pervasive models) also reached 10%.Looking at the development process of CNC technology in China in the past 50 years, especially after four five-year plans, the overall results are as follows:a. It lays the foundation for the development of CNC technology and basically masters modern CNC technology. China has now basically mastered the basic technologies from numerical control systems, servo drives, numerical control mainframes, special planes and their accessories. Most of these technologies already have the basis for commercial development. Some technologies have been commercialized and industrialized.b. Initially formed a CNC industrial base. Based on the research results and the commercialization of some technologies, we have established numerical control system production plants such as Huazhong Numerical Control and Aerospace Numerical Control which have mass production capabilities. Lanzhou Electric Machinery Factory, Huazhong Numerical Control and a number of servo systems and servo motor manufacturers, as well as a number of CNC machine manufacturers such as Beijing No. 1 Machine Tool Plant and Jinan No. 1 Machine Tool Plant. These production plants have basically formed China's CNC industrial base.c. Established a basic team of CNC research, development and management talents.Although significant progress has been made in the research, development, and industrialization of numerical control technology, we must also soberly realize that the research and development of high-end numerical control technologies in China, especially the status quo of the technological level of industrialization and the actual needs of China There is a big gap. Although our country's development speed is very fast in the vertical direction, the horizontal ratio (compared with foreign countries) not only has a gap in the level of technology, but also has a gap in the development speed in certain aspects, that is, the gap in the technological level of some highly sophisticated numerical control equipment has expanded. From the international point of view, the estimated level of China's numerical control technology and industrialization is roughly as follows:a. On the technical level, it will be about 10 to 15 years behind the advanced level in foreign countries, and it will be even bigger in terms of sophisticated technology.b. At the industrialization level, the market share is low, the variety coverage is small, and scale production has not yet been established; the specialized production level of functional components and the complete set capacity are low; the appearance quality is relatively poor; the reliability is not high, and the degree of commercialization is insufficient; The domestic CNC system has not established its own brand effect, andthe user's confidence is insufficient.c. On the ability of sustainable development, the research and development and engineering capabilities of pre-competitive numerical control technology are weak; the application of numerical control technology is not strong; the research and formulation of related standard specifications is lagging behind.The main reasons for analyzing the above gaps are as follows:a. Awareness. Insufficient understanding of the arduous, complex and long-term characteristics of the domestic CNC industry process; Insufficient estimates of market irregularities, foreign blockades, killings, and systems; and insufficient analysis of the application level and capabilities of CNC technology in China.b. Systematic aspects. From the point of view of technology, attention has been paid to the issue of CNC industrialization. It has been a time to consider the issue of CNC industrialization from the perspectives of system and industry chain; there is no complete supporting system of high-quality supporting systems, perfect training, and service networks. .c. Mechanisms. Bad mechanisms have led to brain drain, which in turn has restricted technological and technological route innovations and product innovations, and has constrained the effective implementation of planning. It is often planned to be ideal and difficult to implement.d. Technical aspects. Enterprises have little ability to independentlyinnovate in technology, and the engineering ability of core technologies is not strong. The standard of machine tools is backward, the level is low, and the new standard of CNC system is not enough.3 Strategic Thinking on the Development of CNC Technology and Industrialization in China3.1 Strategic ConsiderationsChina is a manufacturing country, and we must try to accept the transfer of the front-end rather than the back-end in the industrial transfer of the world. That is to master the advanced manufacturing core technologies, otherwise, in the new round of international industrial restructuring, China's manufacturing industry will further “empty core”. At the expense of resources, the environment, and the market, we may obtain only the international "processing centers" and "assembly centers" in the world's new economic structure, rather than the status of manufacturing centers that master core technologies. This will seriously affect our country. The development of modern manufacturing.We should pay attention to numerical control technology and industrial issues from the perspective of national security strategy. First of all, we must look at social security because manufacturing industry is the industry with the largest number of employed people in China. Manufacturing industry development can not only improve the people’s living standards, but also ease the country’s The pressure of employmentguarantees social stability. Secondly, from the perspective of national defense security, Western developed countries classify high-precision numerical control products as national strategic materials and implement embargoes and restrictions on China. The “Toshiba Incident” and the “Cox Report” "This is the best illustration.3.2 Development StrategyFrom the perspective of China’s basic national conditions, taking the country’s strategic needs and the market demand of the national economy as the guide, and aiming at improving the comprehensive competitiveness and industrialization le vel of China’s manufacturing equipment industry, we can use systematic methods to choose to dominate the early 21st century in China. The key technologies for the development and upgrade of the manufacturing equipment industry and supporting technologies and supporting technologies for supporting industrialization development are the contents of research and development and the leap-forward development of the manufacturing equipment industry. Emphasizing the market demand as the orientation, that is, taking CNC terminal products as the mainstay, and driving the CNC industry with complete machines (such as large-scale CNC lathes, milling machines, high-speed, high-precision and high-performance CNC machine tools, typical digital machines, key equipment of key industries, etc.). development of. The focus is on the reliability and production scale of CNC systems andrelated functional components (digital servos and motors, high-speed spindle systems and accessories for new equipment, etc.). Without scale, there will be no high-reliability products; without scale, there will be no cheap and competitive products; of course, CNC equipment without scale in China will be difficult to come to the fore. In the research and development of high-precision equipment, we must emphasize the close integration of production, learning, research, and end-users, and aim at “doing, using, and selling off” as a goal, and implement national research on the will of the country to solve the urgent need of the country. . Before the competition, CNC technology emphasizes innovation, emphasizes research and development of technologies and products with independent intellectual property rights, and lays a foundation for the sustainable development of China's CNC industry, equipment manufacturing industry, and even the entire manufacturing industry.中文译文数控技术的发展趋势摘要本文简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状, 在此基础上讨论了在我国加入WTO 和对外开放进一步深化的新环境下, 发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性, 并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控技术发展趋势外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)数控技术的发展趋势摘要:简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。
装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。
制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备的核心技术。
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态市场的适应能力和竞争能力。
此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。
总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面[1~4]。
1.1 高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。
近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。
这些都对加工装备提出了高速、高精和高柔性的要求。
从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。
目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。
美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。
加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6000h以上,伺服系统的MTBF 值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
1.2 5轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。
一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。
但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。
因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。
德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。
1.3智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。
目前许多国家对开放式数控系统进行研究,如美国的NGC、欧共体的OSACA)、日本的OSEC,中国的ONC等。
数控系统开放化已经成为数控系统的未来之路。
所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。
目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。
数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。
国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProductionCenter”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“ITplaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的OpenManufacturingEnvironment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。
1.4重视新技术标准、规范的建立1.4.1关于数控系统设计开发规范如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。
我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。
1.4.2关于数控标准数控标准是制造业信息化发展的一种趋势。
数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。
为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。
STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。
首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。
而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。
其次,STEP-NC 数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。
目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.1~2001.12.31)。
参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构。
美国的STEPTools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(SuperModel),其目标是用统一的规范描述所有加工过程。
目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。
2对我国数控技术及其产业发展的基本估计我国数控技术起步于1958年,近50年的发展历程大致可分为3个阶段:第一阶段从1958年到1979年,即封闭式发展阶段。
在此阶段,由于国外的技术封锁和我国的基础条件的限制,数控技术的发展较为缓慢。
第二阶段是在国家的“六五”、“七五”期间以及“八五”的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。
在此阶段,由于改革开放和国家的重视,以及研究开发环境和国际环境的改善,我国数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。
第三阶段是在国家的“八五”的后期和“九五”期间,即实施产业化的研究,进入市场竞争阶段。
在此阶段,我国国产数控装备的产业化取得了实质性进步。
在“九五”末期,国产数控机床的国内市场占有率达50%,配国产数控系统(普及型)也达到了10%。
纵观我国数控技术近50年的发展历程,特别是经过4个5年计划的攻关,总体来看取得了以下成绩:a.奠定了数控技术发展的基础,基本掌握了现代数控技术。