高中物理模型-水平方向的圆盘模型

合集下载

高中物理重要方法典型模型突破10-模型专题(2)-水平面内圆周运动

高中物理重要方法典型模型突破10-模型专题(2)-水平面内圆周运动

专题十模型专题(2)水平面上的圆周运动【典型模型解读】1.模型特点:(1)运动轨迹是水平面内的圆。

(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零。

2.求解思路:(1)确定研究对象做圆周运动的轨道平面,确定圆心的位置;(2)受力分析,求出沿半径方向的合力,这就是向心力;(3)受力分析时绝对避免另外添加一个向心力。

3.水平面内的几种圆周运动模型:图示简要分析线模型由于细线对物体只有拉力且细线会弯曲,所以解答此类问题的突破口是要抓住“细线刚好伸直”的临界条件:细线的拉力为零。

在此基础上,再考虑细线伸直之前的情况(一般物体做圆周运动的半径和细线与转轴之间的夹角都会发生变化)和伸直之后的情况(物体做圆周运动的半径和细线与转轴之间的夹角一般不再发生变化,但细线的拉力通常会发生变化)弹力模型此类问题一般是由重力和弹力的合力提供物体在水平面内做圆周运动的向心力,因此正确找出做圆周运动的物体在水平方向上受到的合力,是解决此类问题的关键摩擦力模型临界条件是关键:找出物体在圆周运动过程中的临界条件,是解答此类问题的关键。

如轻绳开始有拉力(或伸直)、物体开始滑动等,抓住这些临界条件进行分析,即可找出极值,然后可根据极值判断其他物理量与极值之间的关系,从而进行求解【典例讲练突破】【例1】如图所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块A靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块A恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)【练1动。

当圆筒的角速度增大以后,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大了B.物体所受弹力增大,摩擦力减小了C.物体所受弹力和摩擦力都减小了D.物体所受弹力增大,摩擦力不变【例2】如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁上A点高度为筒高的一半,内壁上A点有一质量为m的小物块(视为质点).求:(1)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度.(2)若μ<R/H且最大静摩擦力等于滑动摩擦力,求物块在A点随筒做匀速转动时,求筒转动的角速度范围.【练2】长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?【例3】如图所示,在光滑的圆锥顶端,用长为L =2m 的细绳悬一质量为m=1kg 的小球,圆锥顶角为2θ=74°。

专题08 水平面内的圆周运动模型---2024届新课标高中物理模型与方法(解析版)

专题08 水平面内的圆周运动模型---2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法专题08水平面内的圆周运动模型目录【模型一】圆锥摆、圆锥斗、圆碗模型 (1)【模型二】火车转弯模型 (13)【模型三】水平路面转弯模型 (19)【模型四】圆盘模型 (27)越大,则摆线的拉力越大,向心力越大,向心加速度也越大,转结论是:在同一地点,摆球的质量相等、摆长不等但高度相同的圆锥摆,转动的快慢相等,但锥摆,摆线的拉力大,向心力大,向心加速度大,运动得快。

4.多绳圆锥摆问题二.圆锥斗1.结构特点:内壁为圆锥的锥面,光滑,轴线垂直于水平面且固定不动,可视为质点的小球紧贴着内壁在图中所示的水平面内做匀速圆周运动。

2.受力特点:小球质量为m,受两个力即竖直向下的重力mg和垂直内壁沿斜向上方向的支持力N F。

两个力的合力,就是摆球做圆周运动的向心力结论是:在同一地点,同一锥形斗内在不同高度的水平面内做匀速圆周运动的同一小球,支持力大小相等,向心力大小相等,向心加速度大小相等,若高度越高,则转动的越慢,而运动的越快。

三.圆碗受力分析运动分析正交分解x 轴指向心列方程求解规律mgθRF N x :F N sinθ=mω2r y :F N cosθ=mg r =RsinθAB Ca n =gtanθ;①同角同向心加速度(B 和C )②同高同角速度(A 和C )【模型演练1】.(2023·福建厦门·厦门外国语学校校考模拟预测)智能呼啦圈轻便美观,深受大众喜爱。

如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示。

可视为质点的配重质量为0.5kg ,绳长为0.5m ,悬挂点P 到腰带中心点O 的距离为0.2m 。

水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看作不动,重力加速度g 取210m /s ,sin370.6= ,下列说法正确的是()A .匀速转动时,配重受到的合力恒定不变B .若增大转速,腰带受到的合力不变C .当θ稳定在37︒时,配重的角速度为15rad /s ω=D .当θ由37︒缓慢增加到53︒的过程中,绳子对配重做正功【答案】CD【详解】A .匀速转动时,配重做匀速圆周运动,合力大小不变,但方向在变化,故A 错误;B .运动过程中腰带可看作不动,所以腰带合力始终为零,故B 错误;C .对配重,由牛顿第二定律2tan sin mg m l r θωθ=+()即A.甲容器中A球的线速度比B球大B.乙容器中C.丙容器中两球角速度大小相等D.丙容器中【答案】ABC【详解】A.设容器对小球弹力方向与竖直方向夹角为A.球A和球B的向心加速度大小分别为B.两球所受漏斗支持力大小之比与其所受向心力大小之比相等C.球A和球B的线速度大小之比为D.从图示时刻开始,球B旋转两周与球【答案】BD的半球形陶罐,固定在可以绕竖A.向心力大小为mRω2B.θ越小则ω越小C.在保持物块位置不变的情况下增大D.在保持物块位置不变的情况下增大【答案】BC由受力图可得解得由此可知θ越小则ω越小,故B正确;水平方向竖直方向可知增大角速度,陶罐对小物块的弹力增大,故故选BC。

水平面的圆盘模型史上最全版

水平面的圆盘模型史上最全版

水平面的圆盘模型史上最全版模型概述:水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。

静摩擦力通常属于被动力,应根据物体所受主动力的情况以及其运动状态判断物体的静摩擦力的大小,如果物体受到的静摩擦力已经达到最大静摩擦力,则应考虑物体是否还受到其他力的作用。

模型讲解:1.单个物体置于水平圆盘上如图所示,水平圆盘上放有质量为m 的物块A (可视为质点),物块A 到转轴的距离为r 。

物块A 和圆盘间最大静摩擦力f m 等于滑动摩擦力,动摩擦因数为μ。

当圆盘以角速度ω转动时:(1) 若物体与圆盘无相对滑动,则物体随圆盘一起做匀速圆周运动的向心力全部由静摩擦力提供,所以有mg f r m f m μω=≤=2,解得rgμω≤。

(2) 当rgμω>时,mg f r m F m n μω=>=2,物体所受静摩擦力不足以提供其做圆周运动的向心力,物体将从圆周与切线的夹角范围内飞出。

(3) 若在物体A 与转轴间有一不可伸长的细线相连,一开始绳子只是拉直,没有张力。

设线对物体的拉力为T ,当rgμω≤时,静摩擦力提供向心力,0=T ;当rgμω>时,必有r m T mg 2ωμ=+,所以必有0>T ,物体必受到指向圆心O 点的细线的拉力,而且当ω增大时,T 也随之增大。

若此时剪断细线,物体将从圆周与切线的夹角范围内飞出。

2.两个物体叠放在水平圆盘上如图所示,质量为m 1的物体A 叠放在质量为m 2的物体B 上,A 与B 、B 与圆盘的动摩擦因数分别为μ1和μ2。

最大静摩擦力等于滑动摩擦力。

当圆盘以角速度ω转动时,分别对B 和A 受力分析可知:(1)若21μμ<,当rg1μω≤时,A 与B 、B 与圆盘无相对滑动;当rg1μω>时,物体A 将从圆周与切线的夹角范围内飞出,此时B 受到圆盘的静摩擦力由()rm m f B 221ω+=突变为r m f B 22ω=;当rg2μω>时,B 也将从圆周与切线的夹角范围内飞出;若将B 与转轴用细线连接,当rg2μω>时,细线将对B 产生拉力T ,且当ω增大时,T 也增大;若将A与转轴用细线连接,当rg1μω=时,细线将对A 产生拉力T ,然后,对A 有:r m g m T 2111ωμ=+,对B 有:r m g m f B 2211ωμ=-,所以当ω增大时,T 和B f 也增大,当B f 达到最大时,A 受到B 的摩擦力A f 将逐渐减小到0,然后反向增大,当A f 再次达到最大时,B 将飞出。

最新高中物理模型组合详解-水平方向的圆盘模型

最新高中物理模型组合详解-水平方向的圆盘模型

模型组合讲解——水平方向的圆盘模型[模型概述]水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。

[模型讲解]例1. 如图1所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:图1(1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。

解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。

(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。

例2. 如图2所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求图2(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

高中物理基本模型之:水平面内的圆周运动模型

高中物理基本模型之:水平面内的圆周运动模型

高中物理《水平面内的圆周运动模型》专题训练与解析〖模型一圆盘模型〗例1.如图所示,一水平转盘可绕中心轴匀速转动,A 、B 、C 三个物块的质量关系是m A =2m B =3m C ,放置于水平转台上,它们到转轴的距离之间的大小关系是B C A r r r 21==,它们与转盘间的最大静摩擦力均为各自重力的μ倍.则当转盘的转速逐渐增大时()A .最先发生离心运动的是A 物块B .最先发生离心运动的是B 物块C .最先发生离心运动的是C 物块D .B 、C 物块同时发生离心运动【答案】B【解析】由题意,不妨设m m m m m m C B A ===,2,3和R r r r B C A ===21,则由以上分析知:物块B 发生滑动所需的角速度最小,因此物块B 先发生离心运动例2.(多选)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg例4.(多选)如图所示,叠放在水平转台上的物体A、B、C能随转台一起以角速度ω匀速转动,例5.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32 (设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10m/s2.则ω的最大值是() A.5rad/sB.3rad/s所以开始时物块受到的摩擦力必定有沿轨迹切当角速度为ω2时,mω22r =1×42×0.25N =4N>μ1mg ,即绳子产生了拉力因此,当4rad/s<ω≤6rad/s 时,F =mω2r -μ1mg =0.25ω2-1综上所述,作出的F -ω2图象如图所示:〖模型二圆锥摆模型〗例8.(多选)如图所示,长为L 的细绳一端固定,另一端系一质量为m 的小球,给小球一个初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是()A .小球受重力、绳的拉力和向心力作用C .θ越大,小球运动的速度越大B .小球做圆周运动的半径为L sin θD .θ越大,小球运动的周期越大【答案】BC【解析】向心力是效果力,不能说物体受到向心力的作用①对小球受力分析如图所示:θθtan tan 2n gr v rv m mg F =⇒==由几何关系,得r=L sin θ解得θθtan sin gL v =,因此θ↑,θsin ↑,θtan ↑,v ↑②又θππθsin 22tan 22L T m r T m mg ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛= 解得gL T θπcos 2=,因此θ↑,θcos ↓,T ↓③θmgFnF例9.如图所示,有一陀螺其下部是截面为等腰直角三角形的圆锥体、上部是高为h 的圆柱体,其上表面半径为r ,转动角速度为ω.现让旋转的陀螺以某水平速度从距水平地面高为H 的光滑桌面上水平飞出后恰不与桌子边缘发生碰撞,陀螺从桌面水平飞出时,陀螺上各点中相对桌面的最大速度为(已知运动中其转动轴一直保持竖直,空气阻力不计)()A .gr2B .gr2+ω2r 2C .gr2+ωr D .r r h g⋅+)(2+ωr 【答案】C【解析】设陀螺下部分高为h ′=r ,下落h ′所用时间为t ,则h ′=12gt 2陀螺水平飞出的速度为v ,则r =vt ,解得v =gr 2陀螺自转的线速度为v ′=ωr ,陀螺上的点当转动的线速度与陀螺的水平分速度的方向相同时,对应的速度最大,所以最大速度v =ωr +gr 2例10.(多选)如图所示,两根细线分别系有两个完全相同的小球,细线的上端都系于O 点.设法让两个小球均在同一水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是()A .细线L 1和细线L 2所受的拉力大小之比为3∶1B .小球m 1和m 2的角速度大小之比为3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶1【答案】AC【解析】对球受力分析,得mg =F T1cos 60°,mg =F T2cos 30°,解得F T1=2mg ,F T2=233mg 所以细线L 1和细线L 2所受的拉力大小之比为3∶1①根据mg tan θ=mω2h tan θ,可得小球m 1和m 2的角速度大小之比为1∶1②小球m 1和m 2的向心力大小之比为mg tan 60°∶mg tan 30°=3∶1③根据mg tan θ=mv 2h tan θ,可得小球m 1和m 2的线速度大小之比为tan 60°∶tan 30°=3∶1④例11.有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.【答案】θθωsin tan L r g +=【解析】对座椅受力分析知:R m mg 2tan ωθ=由几何关系,得θsin L r R +=,解得θθωsin tan L r g +=例12.如图所示,一根细线下端拴一个金属小球P ,细线的上端固定在金属块Q 上,Q 放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P ′位置),两次金属块Q 都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断中正确的是()A .细线所受的拉力变小B .小球P 运动的角速度变小C .Q 受到桌面的静摩擦力变大D .Q 受到桌面的支持力变大【答案】C【解析】设细线与竖直方向的夹角为θ,细线的拉力大小为F T ,细线的长度为L ,则P 球做匀速圆周运动时,受力分析如图所示:F T =mgcos θ,mg tan θ=mω2L sin θ解得ω=g L cos θ,T =2πω=2πL cos θg使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,则细线拉力F T 增大,角速度增大,周期T 减小①对Q ,由平衡条件知,Q 受到桌面的静摩擦力变大②金属块Q 保持在桌面上静止,根据平衡条件知,Q 受到桌面的支持力等于重力,所以桌面的支持力保持不变③例13.质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B点,如图所示,绳a与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是()A.a绳张力不可能为零B.a绳的张力随角速度的增大而增大。

高中物理全部模型归纳(包括运动学动力学电磁学) 带答案解析

高中物理全部模型归纳(包括运动学动力学电磁学) 带答案解析

高考物理解题模型目 录第一章 运动和力一、追及、相遇模型; 二、先加速后减速模型; 三、斜面模型; 四、挂件模型;五、弹簧模型(动力学); 第二章 圆周运动一、水平方向的圆盘模型; 二、行星模型; 第三章 功和能;一、水平方向的弹性碰撞; 二、水平方向的非弹性碰撞; 三、人船模型;四、爆炸反冲模型; 第四章 力学综合 一、解题模型; 二、滑轮模型; 三、渡河模型; 第五章 电路一、电路的动态变化; 二、交变电流; 第六章 电磁场一、电磁场中的单杆模型; 二、电磁流量计模型;三、回旋加速模型;四、磁偏转模型; ****第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。

为了使两车不相撞,加速度a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。

因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。

即:dv v a ad v v 2)(2)(0221221-=-=--,,故不相撞的条件为dv v a 2)(221-≥2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为v 1,加速度大小为a 1。

乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少? 解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122av a v s s -+=∆ 若是2221a va v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a vv t --=在t 时间内 甲的位移t v v s 211+=共乙的位移t v v s 222+=共 代入表达式21s s s s -+=∆求得)(2)(1212a a v v s s ---=∆3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。

高中物理-水平面内的圆周运动模型(原卷版)

专题08水平面内的圆周运动模型目录【模型一】圆锥摆模型 (1)【模型二】圆锥斗、圆碗模型 (6)【模型三】火车转弯模型 (8)【模型四】水平路面转弯模型 (9)【模型五】圆盘模型 (11)【模型一】圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

2.受力特点:摆球质量为m ,只受两个力即竖直向下的重力mg 和沿摆线方向的拉力T F 。

两个力的合力,就是摆球做圆周运动的向心力F n ,如图所示(也可以理解为拉力F T 的竖直分力与摆球的重力平衡,F T 的水平分力提供向心力)。

4.运动特点:摆长为l ,摆线与竖直方向的夹角为θ的圆锥摆,摆球做圆周运动的圆心是O ,圆周运动的轨道半径是θsin l r =向心力)sin /(sin tan 22θθωθl mv l m ma mg F n ====合摆线的拉力θcos /mg F T =【讨论】:(1)当摆长一定,摆球在同一地点、不同高度的水平面内分别做匀速圆周运动时,据)/(cos 2l g ωθ=可知,若角速度ω越大,则θ越大,摆线拉力θcos /mg F T =也越大,向心加速度θtan g a n =也越大,线速度r v ω==θθtan sin gl 也越大。

结论是:同一圆锥摆,在同一地点,若θ越大,则摆线的拉力越大,向心力越大,向心加速度也越大,转动的越快,运动的也越快,。

(2)当cos l θ为定值时(h l =θcos 为摆球的轨道面到悬点的距离h ,即圆锥摆的高度),摆球的质量相等、摆长不等的圆锥摆若在同一水平面内做匀速圆周运动,则摆线拉力θcos /mg F T =,向心力θtan mg F =合,向心加速度θtan g a n =,角速度h g /=ω,线速度θωtan gh r v ==。

结论是:在同一地点,摆球的质量相等、摆长不等但高度相同的圆锥摆,转动的快慢相等,但θ角大的圆锥摆,摆线的拉力大,向心力大,向心加速度大,运动得快。

高考物理 考点解题思路大揭秘一 水平方向的圆盘模型

第二章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=g r时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。

(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mgT 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

高考物理模型之圆周运动模型之欧阳家百创编

第二章 圆周运动欧阳家百(2021.03.07)解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=gr 时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=gr 时,细绳的拉力F T 2。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。

(1)因为ωμω102=<gr ,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>g r,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mg T 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

由F m r fm =1022ω,得:ω011111055===F m r m g m r rad s fm./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

高考物理模型之圆周运动模型之欧阳化创编

第二章 圆周运动时间:2021.02.06创作:欧阳化解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。

(1)因为ωμω102=<gr ,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>g r,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mg T 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

由F m r fm =1022ω,得:ω011111055===F m r m g m r rad s fm./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型组合讲解——水平方向的圆盘模型
李金宝
[模型概述]
水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。

[模型讲解]
例1. 如图1所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:
图1
(1)当转盘的角速度ωμ12=
g r 时,细绳的拉力F T 1。

(2)当转盘的角速度ωμ232=g r
时,细绳的拉力F T 2。

解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=
g r 。

(1)因为ωμω102=<g
r ,所以物体所需向心力小于物体与盘间的最大摩擦力,则物
与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。

(2)因为ωμω2032=>g r
,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得
F mg T 22=
μ。

例2. 如图2所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,
A 、
B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求
图2
(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?
(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102
/)
解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。

ω再增大,AB 间绳子开始受到拉力。

由F m r fm =1022ω,得: ω011111
055===F m r m g m r rad s fm
./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。

如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。

设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析:
对A 有F F m r fm T 1112
1+=ω
对B 有F F m r T fm -=22122ω
联立解得: ω112112252707=
+-==F F m r m r rad s rad s fm fm /./
[模型要点]
水平方向上的圆盘转动时,物体与圆盘间分为有绳与无绳两种,对无绳情况向心力是由“圆盘”对物体的静摩擦力提供,对有绳情况考虑向心力时要注意临界问题。

若F F m 需摩≤,物体做圆周运动,有绳与无绳一样;若F F m 需摩>,无绳物体将向远离圆心的方向运动;有绳拉力将起作用。

[模型演练]
如图3所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。

若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离
为()
图3
A. R
B
4
B.
R
B
3
C.
R
B
2
D. R B
答案:C。

相关文档
最新文档