2021年高二上学期9月月考数学(文)试卷含解析

合集下载

2021-2022学年浙江省台州市高联成人中学高二数学文月考试卷含解析

2021-2022学年浙江省台州市高联成人中学高二数学文月考试卷含解析

2021-2022学年浙江省台州市高联成人中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的大致图像为()A. B.C. D.参考答案:B【分析】本题采用特值法判断即可,选择有效特值代入即可判断正确答案【详解】从选项中可知,采用特值法进行代入求解,对于函数取得,,排除A,D;取得,,排除C;得到答案选B【点睛】本题考查函数图像问题,适用特值法求解,属于基础题2. 以下给出的是计算的值的一个程序框图,如右图所示,其中判断框内应填入的条件是()A. B. C. D.参考答案:A3. 若实数x,y满足不等式则的取值范围是A. B. C. D.参考答案:A略4. 已知函数则等于()A. B. C. D.参考答案:A5. 设,则方程不能表示的曲线为()A.椭圆B.双曲线C.抛物线D.圆参考答案:C略6. 有一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于( )A. B. C. D.参考答案:B7. 下列函数中,在(0,+∞)内为增函数的是A.B.C.D.参考答案:B略8. 已知集合M={0,1,2,3},N={-1,0,2}那么集合()A、0,2B、{0,2}C、(0,2)D、{(0,2)}参考答案:B9. 已知则的最小值为()A. B. C. D.参考答案:C略10. 已知定义在实数R上的函数不恒为零,同时满足且当x>0时,f(x)>1,那么当x<0时,一定有()A.B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 函数y=xe x在其极值点处的切线方程为.参考答案:y=﹣【考点】函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.【分析】求出极值点,再结合导数的几何意义即可求出切线的方程.【解答】解:依题解:依题意得y′=e x+xe x,令y′=0,可得x=﹣1,∴y=﹣.因此函数y=xe x在其极值点处的切线方程为y=﹣.故答案为:y=﹣.12. 圆x2+y2﹣4x+6y=0的圆心坐标.参考答案:(2,﹣3)【考点】圆的一般方程.【专题】计算题;直线与圆.【分析】将已知圆化成标准方程并对照圆标准方程的基本概念,即可得到所求圆心坐标.【解答】解:将圆x2+y2﹣4x+6y=0化成标准方程,得(x﹣2)2+(y+3)2=13∴圆表示以C(2,﹣3)为圆心,半径r=的圆故答案为:(2,﹣3)【点评】本题给出圆的一般方程,求圆心的坐标.着重考查了圆的标准方程与一般方程的知识,属于基础题.13. 完成下列进位制之间的转化:=________(10)=_______(7)参考答案: 45,6314. 若椭圆的离心率为,则m 的值等于 ▲ 。

湖北省沙市2024-2025学年高三上学期9月月考试题 数学含解析

湖北省沙市2024-2025学年高三上学期9月月考试题 数学含解析

2024—2025学年度上学期2022级9月月考数学试卷(答案在最后)命题人:考试时间:2024年9月25日一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.集合{}215=∈<N M x x ,若{}05⋃=≤<M N x x ,则集合N 可以为()A.{}4 B.{}45≤<x x C.{}05<<x x D.{}5<x x 2.若复数232022202320241i i i i +i i z =-+-++- ,则z =()A.B.C.1D.23.已知2b a = ,若a 与b 的夹角为60︒,则2a b - 在b 上的投影向量为()A .12br B .12b- C .32b- D .32b4.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.155.已知,(0,π)αβ∈,且cos 5α=,sin()10αβ+=,则αβ-=()A .4πB .34πC .4π-D .34π-6.已知函数2()()ln 0f x x ax b x =++≥恒成立,则实数a 的最小值为()A .2-B .1-C .1D .27.函数()ln 1f x x =-与函数()πsin 2g x x =的图象交点个数为()A .6B .7C .8D .98.斐波拉契数列因数学家斐波拉契以兔子繁殖为例而引入,又称“兔子数列”.这一数列如下定义:设{}n a 为斐波拉契数列,()*12121,1,3,N n n n a a a a a n n --===+≥∈,其通项公式为1122n nna⎡⎤⎛⎫⎛⎫⎥=-⎪ ⎪⎪ ⎪⎥⎝⎭⎝⎭⎦,设n是2log1(14(xx x⎡⎤⎣-⎦-<+的正整数解,则n的最大值为()A.5B.6C.7D.8二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分. 9.给出下列命题,其中正确命题为()A.已知数据12310x x x x、、、、,满足:()12210i ix x i--=≤≤,若去掉110x x、后组成一组新数据,则新数据的方差为168B.随机变量X服从正态分布()21,,( 1.5)0.34N P xσ>=,若()0.34P x a<=,则0.5a=C.一组数据()(),1,2,3,4,5,6i ix y i=的线性回归方程为 23y x=+,若6130iix==∑,则6163iiy==∑D.对于独立性检验,随机变量2χ的值越大,则推断“两变量有关系”犯错误的概率越小10.如图,棱长为2的正方体1111ABCD A B C D-中,E为棱1DD的中点,F为正方形11C CDD内一个动点(包括边界),且1//B F平面1A BE,则下列说法正确的有()A.动点FB.1B F与1A B不可能垂直C.三棱锥11B D EF-体积的最小值为13D.当三棱锥11B D DF-的体积最大时,其外接球的表面积为25π211.已知抛物线2:2(0)C y px p=>的焦点为F,准线交x轴于点D,直线l经过F且与C交于,A B 两点,其中点A在第一象限,线段AF的中点M在y轴上的射影为点N.若MN NF=,则()A.lB.ABD△是锐角三角形C.四边形MNDF2D.2||BF FA FD⋅>三、填空题:本题共3小题,每小题5分,共15分.12.若“[]1,4x∃∈使20040x ax-+>”为假命题,则实数a的取值范围为___________.13.在ABC∆中,BC=,∠3Aπ=,D为线段AB靠近点A的三等分点,E为线段CD的中点,若14BF BC=,则AE AF⋅的最大值为________.14.将1,2,3,4,5,6,7这七个数随机地排成一个数列,记第i项为()1,2,,7ia i= ,若47a=,123567a a a a a a++<++,则这样的数列共有个.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若()4sin sin sin -=-A b B c A B .(1)求a 的值;(2)若ABC △的面积为()22234+-b c a ,求ABC △周长的取值范围.16.已知正项数列{}n a 的前n 项和为n S ,且222n n n a a n S +-=.(1)求数列{}n a 的通项公式;(2)设21na nb =-,若数列{}nc 满足11n n n n b c b b ++=⋅,且数列{}n c 的前n 项和为n T ,若()12n T n λ-+≤恒成立,求λ的取值范围.17.如图所示,半圆柱1OO 与四棱锥A BCDE -拼接而成的组合体中,F 是半圆弧BC 上(不含,B C )的动点,FG 为圆柱的一条母线,点A 在半圆柱下底面所在平面内,122,22OB OO AB AC ====.(1)求证:CG BF ⊥;(2)若//DF 平面ABE ,求平面FOD 与平面GOD 夹角的余弦值;(3)求点G 到直线OD 距离的最大值.18.已知双曲线E 的中心为坐标原点,渐近线方程为y =,点(2,1)-在双曲线E 上.互相垂直的两条直线12,l l 均过点()(,0n n P p p >,且)*n ∈N ,直线1l 交E 于,A B 两点,直线2l 交E于,C D 两点,,M N 分别为弦AB 和CD 的中点.(1)求E 的方程;(2)若直线MN 交x 轴于点()()*,0n Q t n ∈N ,设2nn p =.①求n t ;②记n a PQ =,()*21n b n n =-∈N ,求211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑.19.如果函数的导数为()()F x f x '=,可记为()()d f x x F x ⎰=,若()0f x ≥,则()()()baf x dx F b F a =-⎰表示曲线=op ,直线x a x b ==,以及x 轴围成的“曲边梯形”的面积.如:22d x x x C ⎰=+,其中C 为常数;()()2202204xdx C C =+-+=⎰,则表0,1,2x x y x ===及x 轴围成图形面积为4.(1)若()()()e 1d 02xf x x f =⎰+=,,求()f x 的表达式;(2)求曲线2y x =与直线6y x =-+所围成图形的面积;(3)若()[)e 120,xf x mx x ∞=--∈+,,其中Rm ∈,对[)0,a b ∞∀∈+,,若a b >,都满足()()0d d a bf x x f x x >⎰⎰,求m 的取值范围.1.C2.C 【详解】()()32024+1232022022022024241i 1i ()1+1i 1i 1i 11i i iiiii z i =-+----⨯-+====--+-+++C6.B 【详解】∵()0f x ≥恒成立,设2()g x x ax b =++,则当1x >时()0g x ≥,01x <<时()0g x <,∴(1)0g =⎧⎨≤,即101a b a b++=⇒=--⎧⎨≤,∴1a ≥-11.ABD 【详解】由题意可知:抛物线的焦点为,02p F ⎛⎫ ⎪⎝⎭,准线为x 则11,,0,242xy p M N ⎛⎫⎛+ ⎪ ⎝⎭⎝可知MNF 为等边三角形,即且MN ∥x 轴,可知直线则直线:32p l y x ⎛⎫=- ⎪12.【详解】因为“0使00”为假命题,所以“[]1,4x ∀∈,240x ax -+≤”为真命题,其等价于4≥+a x x在[]1,4上恒成立,又因为对勾函数()4f x x x=+在[]1,2上单调递减,在[]2,4上单调递增,而()()145f f ==,所以()max 5f x =,所以5a ≥,即实数a 的取值范围为[5,)+∞.13.11814.360【解析】∵12345621+++++=,∴310S ≤,列举可知:①(1,2,3)……(1,2,6)有4个;②(1,3,4),……,(1,3,6)有3个;③(1,4,5)有1个;④(2,3,4),(2,3,5)有2个;故共有10个组合,∴共计有333310360A A ⨯⨯=个这样的数列。

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题(解析版)

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题(解析版)

2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题一、单选题1.已知a ,b ∈R ,且a b >,则下列各式中一定成立的是( ) A .11a b <B .33a b >C .2ab b >D .22a b >【答案】B【分析】利用特殊值判断A 、C 、D ,根据幂函数的性质判断B ; 【详解】解:因为a ,b ∈R ,且a b >, 对于A :若1a =,1b,显然11a b>,故A 错误; 对于B :因为函数3y x =在定义域R 上单调递增,所以33a b >,故B 正确; 对于C :若0b =,则20ab b ==,故C 错误; 对于D :若1a =,1b ,则22a b =,故D 错误;故选:B2…,则 )项. A .6 B .7C .9D .11【答案】D【分析】根据前几项写出数列的通项公式,由此可判断.【详解】,…,由此可归纳数列的通项为:n a,所以11n =,所以11项, 故选:D.3.若数列{an }满足:a 1=19,an +1=an -3,则数列{an }的前n 项和数值最大时,n 的值为 A .6 B .7 C .8 D .9【答案】B【分析】先判断数列{an }为等差数列,写出通项公式,若前k 项和数值最大,利用10,0,k k a a +≥⎧⎨≤⎩,解出k .【详解】∵a 1=19,an +1-an =-3,∴数列{an }是以19为首项,-3为公差的等差数列, ∴an =19+(n -1)×(-3)=22-3n ,则an 是递减数列.设{an }的前k 项和数值最大,则有10,0,k k a a +≥⎧⎨≤⎩ 即()2230,22310,k k -≥⎧⎨-+≤⎩∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7. 故选:B【点睛】求等差数列前n 项的最大(小)的方法: (1)由2122n d d S n a n ⎛⎫=+- ⎪⎝⎭用二次函数的对称轴求得最值及取得最值时的n 的值; (2)利用an 的符号①当a 1>0,d <0时,数列前面有若干项为正,此时所有正项的和为Sn 的最大值,其n 的值由an ≥0且an+1≤0求得;②当a 1<0,d >0时,数列前面有若干项为负,此时所有负项的和为Sn 的最小值,其n 的值由an ≤0且an+1≥0求得.4.在等差数列{}n a 中,若38137a a a ++=,2111414a a a ++=,则8a 和9a 的等比中项为( ) A.BC.D【答案】A【解析】根据等差数列的性质计算出89,a a ,再根据等比中项的定义即可求出答案 【详解】由题意得:3813837a a a a ++==,所以873a =,211149314a a a a ++==,所以9143a =.89989a a ⋅=,所以8a 和9a的等比中项为故选A.【点睛】本题主要考查了等差数列的性质(若m n p q +=+则m n p q a a a a +=+),以及等比中项,属于基础题。

高二数学上学期月考试题含解析 (2)

高二数学上学期月考试题含解析 (2)

三林中学2021-2021学年高二数学上学期10月月考试题〔含解析〕一、填空题〔本大题一一共12题,满分是36分,每一小题对得3分,否那么一律不得分〕 1.数1与9的等差中项是_____. 【答案】5 【解析】 【分析】假设a 、b 、c 成等差数列,那么2b a c =+,称b 为a 、c 的等差中项,由题,故192b +=,解出b 即可【详解】设等差中项为b ,那么192b +=,5b ∴= 故答案为:5【点睛】此题考察等差中项的概念,属于根底题{}n a 满足1111n n a n a a n +=⎧⎪⎨=⎪+⎩,那么6a =__________ 【答案】16【解析】 【分析】递推公式为11n n na a n +=+,故用累乘法求得数列{}n a 的通项公式,令6n =,即可求解 【详解】由题,当2n ≥时,11n n n a a n --=,∴2112a a =,3223a a =,…, 11n n n a a n --= ∴用累乘法可得2312112123n n n a a a a a a n--⋅⋅⋅=⋅⋅⋅,即()2312112123n n n a a a a a a n --⎛⎫⋅⋅⋅=⋅⋅⋅⋅⋅⋅ ⎪⎝⎭,∴111n a a n n== ∴当6n =时,616a =故答案为:16【点睛】此题考察数列的递推公式,考察累乘法求通项公式,考察求数列的某一项{}n a 的前四项为072663,,,14916--,那么该数列的一个通项公式为_______ 【答案】()31211n n n a n+-=- 【解析】 【分析】观察数列,奇数项为非负数,偶数项为负数;分母为2n ,分子为31n -,将这些特征整理即可【详解】由题,31201111a -==,32272142a -=-=-,332263193a -==,3426341164a -=-=-,会发现奇数项为非负,偶数项为负,故用()11n +-来处理,即该数列的通项公式为()31211n n n a n+-=- 故答案为:()31211n n n a n+-=- 【点睛】此题考察归纳、猜测的应用问题,解题时应观察数列各项的特征,通过归纳猜测,即可得出该数列的一个通项公式{}n a 中,11a =-,33a =,9n a =,那么n =_____【答案】6 【解析】 【分析】将33a =代入等差数列通项公式()11n a a n d +-=中,求得d ,即得到通项公式,再将9n a =代入通项,求得n 即可【详解】设()11n a a n d +-=,()3131123a a d d ∴=+-=-+=,2d ∴=,∴通项公式为()12123n a n n =-+-=-,当9n a =时,即239n -=,6n ∴=故答案为:6【点睛】此题考察定义法求等差数列通项公式,考察等差数列的某一项,属于根底题{}n a 满足1113n n a a a +=⎧⎨=⎩,那么其通项公式n a =________【答案】13n - 【解析】 【分析】由递推公式可得数列{}n a 是以1为首项,3为公比的等比数列,根据等比数列定义求出通项公式即可【详解】由题知,数列{}n a 是以1为首项,3为公比的等比数列,1113n n n a a q --∴=⋅=故答案为:13n -【点睛】此题考察定义法求等比数列通项公式,属于根底题{}n a 中,n S 表示其前n 项和,假设121,4S S ==,那么3S=___________【答案】9 【解析】 【分析】根据等差数列前n 项和的性质,n S 、2n n S S -、32n n S S -仍成等差数列,将值代入即可求解【详解】{}n a 是等差数列,∴1S 、21S S -、32S S -仍成等差数列,∴根据等差中项可得,()()211322S S S S S -=+-,即()324114S -=+-,39S ∴=故答案为:9【点睛】此题考察等差数列前n 项和的性质的应用,考察等差中项,属于根底题{}n a 的前n 项为22nSn n =+,那么此数列的通项公式为_____【答案】21n a n =+ 【解析】 【分析】用公式法求数列的通项公式,分别讨论当1n =和当2n ≥的情况,最后要检验【详解】当1n =时,2111213a S ==+⨯=;当2n ≥时,()()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦,检验,当1n =时,12113a =⨯+=,符合21n a n ∴=+故答案为:21n a n =+【点睛】此题考察公式法求数列的通项公式,方法如下: 〔1〕当1n =时,11a S =; 〔2〕当2n ≥时,1n n n a S S -=-;〔3〕检验,当1n =时,代入〔2〕中的n a 后判断是否与〔1〕中值一致,假设符合,那么1n n n a S S -=-;假设不符合,那么11,1,2n nn a n a S S n -=⎧=⎨-≥⎩{}n a 中,2a ,3a ,6a 成等比数列,那么其公比q 为____________【答案】3 【解析】 【分析】由等比中项可得2263a a a ⋅=,且等差数列{}n a ,故为()()()211152a d a d a d ++=+,可得到12d a =-,那么2a ,3a 均用1a 来表示,进一步求得公比q【详解】由题,可得2263a a a ⋅=等差数列{}n a ,∴()()()211152a d a d a d ++=+,即()120d a d -+=,0d ≠,120a d ∴+=,即12d a =-211112a a d a a a ∴=+=-=-,31111243a a d a a a =+=-=-312133a a q a a -∴===- 故答案为:3【点睛】此题考察求等比数列的公比,等比中项,考察等差数列通项公式的应用{}n a 中,其公差0d <,且满足24248,12a a a a +=⋅=,那么该数列的通项公式为____________. 【答案】210n a n =-+ 【解析】 【分析】根据2424812a a a a +=⎧⎨⋅=⎩且0d <得到2462a a =⎧⎨=⎩,代入()11n a a n d +-=中求1a 与d 后整理即可【详解】248a a +=且2412a a ⋅=∴2462a a =⎧⎨=⎩或者2626a a =⎧⎨=⎩又0d <,∴{}n a 是递减数列,24a a ∴>,∴2462a a =⎧⎨=⎩()11n a a n d +-=2141632a a d a a d =+=⎧∴⎨=+=⎩ ,182a d =⎧∴⎨=-⎩()821210n a n n ∴=--=-+故答案为:210n a n =-+【点睛】此题考察定义法求等差数列通项公式,考察由公差判断等差数列的单调性,考察解二元一次方程组{}n a 中,n S 表示其前n 项和,72450S S -=那么9S =____________【答案】810 【解析】 【分析】由等差数列的前n 项和公式为()112n n n dS na -=+,将7S 、2S 分别用其表示代入等式中,整理可得590a =,根据等差数列的性质959S a =,即得结果 【详解】等差数列{}n a ,n S 表示其前n 项和∴()112n n n dS na -=+, 7211176217252045022S S a d a d a d ⨯⨯⎛⎫⎛⎫∴-=---=+= ⎪ ⎪⎝⎭⎝⎭,1490a d ∴+=,即590a =19595299981022a a aS a +∴=⨯=⨯== 故答案为:810【点睛】此题考察等差数列前n 项和公式的两种形式,考察等差数列的性质,考察运算才能{}n a 满足12213,5n n n a a a a a ++==⎧⎨=-⎩,那么2019a =_____【答案】2 【解析】【分析】根据递推公式,得到32a =,43a =-,55a =-,62a =-,713a a ==,故周期为6,由周期性可得20193a a =,即可得到结果 【详解】由题, 321532a a a =-=-=,432253a a a =-=-=-,543325a a a =-=--=-,654532a a a =-=-+=-,7651253a a a a =-=-+==,6T ∴=,20196=336∴÷余3,即201932a a ==故答案为:2【点睛】此题考察数列周期性,考察数列的递推公式,考察运算才能 12.设数列{a n }的前n 项和为S n 〔n ∈N *〕,关于数列{a n }有以下三个命题: ①假设数列{a n }既是等差数列又是等比数列,那么a n =a n +1; ②假设S n =an 2+bn +c 〔a 、b 、c ∈R〕,那么数列{a n }是等差数列; ③假设S n =1﹣〔﹣2〕n ,那么数列{a n }是等比数列. 其中,真命题的序号是_____ 【答案】①③ 【解析】 【分析】①易得既是等差数列又是等比数列的是非0常数列;②③利用公式法证明其结论的正确性 【详解】①既是等差数列又是等比数列的是一个非0常数列,那么有1n n a a +=,故是真命题;②当2n ≥时,()()()()221112n n n a S S an bn c a n b n c an b a -⎡⎤=-=++--+-+=+-⎣⎦那么()()()1212n a a n b a an b a +=++-=++,()()()22223n a a n b a an b a +=++-=++()()212322n n a a an b a an b a a ++∴-=++-++=⎡⎤⎡⎤⎣⎦⎣⎦,()()1222n n a a an b a an b a a +-=++-+-=⎡⎤⎡⎤⎣⎦⎣⎦,211n n n n a a a a +++∴-=-当1n =时,11a S a b c ==++,()()221423a S S a b c a b c a b =-=++-++=+,()()33293425a S S a b c a b c a b =-=++-++=+,()()32532a a a b a b a ∴-=+-+=,()()2132a a a b a b c a c -=+-++=-∴假设3221a a a a -=-,那么当且仅当0c 时,数列{}n a 为等差数列,题中R c ∈,故为假命题; ③当2n ≥时,()()()111121232n n n n n n a S S ---⎡⎤⎡⎤=-=-----=⋅-⎣⎦⎣⎦,()132n n a +=⋅-,()1232n n a ++=⋅-,那么()()()()11211323223232n n n n n n n n a a a a +++-+⋅-⋅-==-==⋅-⋅-; 当1n =时,()111123a S ==--=,()()2122112126a S S ⎡⎤⎡⎤=-=-----=-⎣⎦⎣⎦,()()32332121212a S S ⎡⎤⎡⎤=-=-----=⎣⎦⎣⎦,3221126263a a a a -∴==-==-, ∴数列{}n a 是以3为首项,2-为公比的等比数列,故为真命题故答案为:①③【点睛】此题考察对常数列的认知,考察等差数列,等比数列的证明二、选择题〔本大题一一共4题,满分是12分,每一小题有且只有一个正确答案,选对得3分,否那么一律不得分〕{}n a 中,n S 表示其前n 项和,假设1020100,110S S ==,那么30S =〔 〕A. 210B. 120C. 121D. 111【答案】D【分析】根据等比数列前n 项和的性质,n S 、2n n S S -、32n n S S -仍成等比数列,将值代入即可求解 【详解】由题, 等比数列{}n a ,那么有10S 、1200S S -、3020S S -仍成等比数列,∴由等比中项可得()()21030202010S S S S S ⋅-=-,即()()230100110110100S ⨯-=-30111S ∴=应选:D【点睛】此题考察等比数列前n 项和的性质的应用,属于根底题135...(21)2019246...(2)2020n n ++++-=++++的正整数n =〔 〕A. 2021B. 2021C. 2021D. 2021【答案】B 【解析】 【分析】通过观察可得,等式左侧分式的分母为连续偶数求和,分子为连续奇数求和,利用等差数列前n 项和公式整理分式,求解n 即可【详解】由题,等式左侧分式的分子为()21212n n S n n +-==;分母为2222n n T n n n +==+,∴原式22201912020n n n n n ===++,2019n ∴= 应选:B【点睛】此题考察等差数列前n 项和的公式的应用,属于根底题a ,假设该厂产量月平均增长率为P ,那么今年12月份的月产量比去年同期增加的比率为〔 〕A. 12(1)p +B. 12(1)1p +-C. 11(1)p +D. 12P【解析】 【分析】今年12月份的月产量为()121a p +,增加比率应为:〔今年产量-去年产量〕÷去年产量,将式子代入整理即可【详解】由题,今年12月份的月产量为()121a p +,那么增加的比率为()()1212111a p a p a+-=+-应选:B【点睛】此题考察等比数列在实际生活中的应用,属于根底题16.某个命题与正整数有关,假设当()n k k N *=∈时该命题成立,那么可推得当1n k =+时该命题也成立,现当4n =时该命题不成立,那么可推得〔 〕 A. 当5n =时,该命题不成立 B. 当5n =时,该命题成立 C. 当3n =时,该命题成立 D. 当3n =时,该命题不成立【答案】D 【解析】试题分析:“当()n k k N *=∈时该命题成立,那么可推得当1n k =+时该命题也成立〞它的逆否命题为“当1n k =+时该命题不成立,那么当()n k k N *=∈时该命题也不成立〞,因为它们同真,所以当4n =时该命题不成立,那么可推得当3n =时,该命题也不成立,应选择D.考点:四种命题和数学归纳法.三、解答题:〔本大题一一共有6题,满分是52分,每一小题必须写出必要的解题步骤〕 17.在1,x ,9,y 四个数中,前三个数成等比数列,后三个数成等差数列,求x ,y 的值【答案】3x =,15y =或者3x =-,21y = 【解析】 【分析】根据等比中项可得219x ⨯=;根据等差数列可得29x y +=⨯,求解即可【详解】由题, 21929x x y ⎧⨯=⎨+=⨯⎩,315x y =⎧∴⎨=⎩或者321x y =-⎧⎨=⎩即当3x =时,15y =;当3x =-时,21y =【点睛】此题考察等差中项、等比中项的应用,考察运算才能18.用数学归纳法证明:()()()2232*1211236n n n n n N ++++++=∈… 【答案】证明见解析. 【解析】 【分析】利用数学归纳法证明分两步进展:①当1n =时证明不等式左右两边相等;②假设当n k =时等式成立,应用此结论证明当1n k =+时等式也成立即可. 【详解】①当1n =时左边1=,右边()()1112116⨯++==所以左边=右边,等式成立.②假设当n k =时等式成立,即()()22321211236k k k k ++++++=…那么当1n k =+时,()222321231k k ++++++…()()()212116k k k k ++=++()()()()()()12211122366k k k k k k ++++⎡⎤+++⎣⎦==即当1n k =+时等式也成立 由①②可知, ()()22321211236n n n n ++++++=…对任意正整数都成立【点睛】此题考察了数学归纳法在证明等式中的应用,注意证明的格式和步骤,对假设成立等式的应用是关键,属于中档题.19.在正数数列{a n }中,前n 项和S n 满足:S n =2a n ﹣1, 〔1〕求a 1的值; 〔2〕求{a n }的通项公式. 【答案】〔1〕1〔2〕12n n a【解析】 【分析】〔1〕当1n =时,11a S =;〔2〕当2n ≥时,1n n n a S S -=-,即用公式法求解通项公式 【详解】〔1〕当1n =时,11121a S a ==-,11a ∴=〔2〕当2n ≥时,()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -={}∴n a 是首项为1,公比为2的等比数列,12n na【点睛】此题考察求数列首项,考察公式法求通项公式,考察等比数列通项公式{}n a 为等差数列,设12na nb ⎛⎫= ⎪⎝⎭〔1〕证明数列{}n b 为等比数列;〔2〕假设123123121,88b b b b b b ⋅⋅=++=,求数列{}n a 的通项公式; 〔3〕在〔2〕的条件下,当数列{}n a 的公差0d <时,求数列{}n a 的前n 项和n S 的最大值 【答案】〔1〕证明见解析;〔2〕23n a n =-或者25n a n =-+;〔3〕4 【解析】 【分析】〔1〕借助等差数列{}n a 的定义来证明121n n n n b b b b +++=即可; 〔2〕利用等比中项先求得2b ,代入123218b b b ++=得到关于q 的方程,解出q ,由q 得到d ,再将q 代回2b 中求得1a ,整理后即得到数列{}n a 的通项公式〔3〕由题, 25n a n =-+,找到符合0n a ≥时的n 值,即找到n S 最大时的n 值,再代入等差数列的前n 项和公式即可求解 【详解】〔1〕证明:数列{}n a 为等差数列,设()11n a a n d +-=又12na nb ⎛⎫= ⎪⎝⎭1112n a n b ++⎛⎫∴= ⎪⎝⎭,2212n a n b ++⎛⎫= ⎪⎝⎭11111122212n n n n aa a d n a nb b ++-+⎛⎫ ⎪⎛⎫⎛⎫⎝⎭∴=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭,22112111122212n n n n aa a d n a nb b ++++-++⎛⎫⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭∴121n n n n b b b b +++=, 当1n =时,1112ab ⎛⎫= ⎪⎝⎭,即数列{}n b 是以112a⎛⎫ ⎪⎝⎭为首项,12d⎛⎫ ⎪⎝⎭为公比的等比数列〔2〕解:由〔1〕可知3123218b b b b ⋅⋅==,212b ∴=123218b b b ++=,即222111212228b b b q q q q ++=++=,14q ∴=或者4q = 当14q =时,即1124d⎛⎫= ⎪⎝⎭,2d ∴=,此时1211122124a b b q ⎛⎫==== ⎪⎝⎭,11a ∴=-, ()()1112123n a a n d n n ∴=+-=-+-=-当4q =时,即142d⎛⎫= ⎪⎝⎭,2d ∴=-,此时1211112482a b b q ⎛⎫==== ⎪⎝⎭,13a ∴=, ()()1132125n a a n d n n ∴=+-=--=-+综上,23n a n =-或者25n a n =-+ 〔3〕0d <,∴25n a n =-+令0n a ≥,即250n -+≥,52n ∴≤, n N +∈,20a ∴>,30a <()()212max 32254n S S a a ∴==+=+-⨯+=【点睛】此题考察等比数列的证明,等差数列的通项公式以及等差数列前n 项和的最值问题{}n a 的前n 项和为n S ,其满足:12()n n nS a a =+〔1〕试求1S 的值;〔2〕利用:当2n ≥时,1n n n a S S -=-证明:数列{}2n S 为等差数列;〔3〕求数列{}n a 的通项公式。

2021北京八一中学高二(上)9月月考数学(教师版)

2021北京八一中学高二(上)9月月考数学(教师版)

2021北京八一中学高二(上)9月月考数学考生须知:1.本试卷满分100分。

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

3.试题答案一律填写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。

5.考试结束时,将本试卷、答题卡一并交回。

一、选择题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)已知点A(2,﹣1,3)、B(1,2,3),则=()A.(2,﹣1,3)B.(1,2,3)C.(﹣1,3,0)D.(1,﹣3,0)2.(3分)若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则直线l与平面α的位置关系为()A.平行B.垂直C.在平面内D.斜交3.(3分)如图,在直三棱柱ABC﹣A1B1C1中,若,则=()A.B.C.D.4.(3分)已知平面α内有一点A(2,﹣1,2),平面α的一个法向量为,则下列四个点中在平面α内的是()A.P1(1,0,3)B.P2(1,﹣1,1)C.P3(2,﹣3,1)D.P4(﹣2,0,1)5.(3分)如图,已知矩形ABFE与矩形EFCD所成二面角D﹣EF﹣B的平面角为锐角,记二面角D﹣EF﹣B的平面角为α,直线EC与平面ABFE所成角为β,直线EC与直线FB所成角为γ,则()A.β>α,β>γB.α>β,β>γC.α>β,γ>βD.α>γ,γ>β6.(3分)已知=(2,1,﹣3),=(﹣1,2,3),=(7,6,λ),若,,共面,则λ等于()A.﹣3B.3C.﹣9D.97.(3分)四棱锥S﹣ABCD中,=(4,﹣1,0),=(0,3,0),=(﹣3,1,﹣4),则这个四棱锥的高h为()A.1B.2C.3D.48.(3分)在正方体ABCD﹣A1B1C1D1中,点E,F分别是AB,CC1的中点,则下列说法正确的是()A.A1E∥平面BFD1B.A1E⊥平面ADFC.A1,E,B,F四点共面D.二面角D1﹣BF﹣B1的平面角为钝角9.(3分)对于任意非零空间向量,给出下列三个命题:①若a1=a2=a3=1,则为单位向量;②;③=0.其中真命题的个数为()A.0B.1C.2D.310.(3分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P为线段AC1上的动点(包含端点),则下列说法正确的是()A.存在点P使得D1P与B1C不垂直B.不存在点P使得|D1P|+|A1P|=2成立C.不存在点P使得D1P与BC所成角为D.存在点P使得平面BCP与平面DCP所成角为二、填空题共5小题,每小题4分,共20分.11.(4分)如图,已知矩形ABCD中,AD=4,CD=3,P A⊥平面ABCD,并且P A=,则PC的长为.12.(4分)已知=(1,3,m),=(2n,6,﹣4),若∥,则•=.13.(4分)已知空间三点O(0,0,0),A(﹣1,1,0),B(0,2,1),在直线OA上有一点满足BH⊥OA,则点H的坐标为.14.(4分)中国古代数学名著《九章算术•商攻》中,阐述:“斜解立方,得两堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”若称为“鳖臑”的某三棱锥如图所示,P A⊥平面ABC,AB⊥BC,P A=AB =BC=4,则PB与AC所成的角等于;PC与AB之间的距离等于.15.(4分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,AB=3,AA1=4,P是侧面BCC1B1内的动点,且AP⊥BD1,记AP与平面BCC1B1所成的角为θ,则tanθ的最大值为.三、解答题共5小题,共50分.解答应写出文字说明,演算步骤或证明过程.16.(10分)已知空间向量=(2,4,﹣2),=(﹣1,0,2),=(x,2,﹣1).(Ⅰ)若∥,求;(Ⅰ)若⊥,求cos<,>的值.17.(10分)如图,已知平行六面体ABCD﹣A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,设.(Ⅰ)求的值;(Ⅰ)求的值.18.(10分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=4,CB=4,,∠ACB=90°,点M在线段A1B1上.(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值;(2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.19.(12分)如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(Ⅰ)求证:AF∥平面CDE;(Ⅰ)求平面CDE与平面AEF所成锐二面角的余弦值;(Ⅰ)求点C到平面AEF的距离.20.(8分)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2),对于A=(a1,a2,…,a n)∈S n,B=(b1,b2,…,b n)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|);A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…+|a n﹣b n|.(Ⅰ)写出A=(1,0,1,0)与B=(0,0,1,1)的差A﹣B和距离d(A,B);(Ⅰ)证明:∀A,B,C∈S n,有A﹣B∈S n;证明:d(A﹣C,B﹣C)=d(A,B);(Ⅰ)证明:∀A,B,C∈S n,d(A,B),d(B,C),d(A,C)三个数中至少有一个是偶数.2021北京八一中学高二(上)9月月考数学参考答案一、选择题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【分析】利用空间向量坐标运算法则直接求解.【解答】解:∵点A(2,﹣1,3)、B(1,2,3),∴=(﹣1,3,0).故选:C.【点评】本题考查向量的求法,考查空间向量坐标运算法则等基础知识,考查运算求解能力,是基础题.2.【分析】推导出直线l的方向向量和平面α的法向量平行,由此能求出直线l与平面α的位置关系为垂直.【解答】解:直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),∵=﹣2,∴∥,∴直线l与平面α的位置关系为垂直.故选:B.【点评】本题考查直线与平面的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.【分析】根据空间向量的线性运算法则,计算即可.【解答】解:直三棱柱ABC﹣A1B1C1中,,所以=+=+=﹣﹣=﹣﹣=﹣+﹣.故选:D.【点评】本题考查了空间向量的线性运算应用问题,是基础题.4.【分析】设所求点的坐标为P(x,y,z),由•=0,逐一验证选项,即可.【解答】解:设所求点的坐标为P(x,y,z),则=(x﹣2,y+1,z﹣2),∵平面α的一个法向量为,∴•=3(x﹣2)+(y+1)+2(z﹣2)=3x+y+2z﹣9=0,对于选项A,3x+y+2z﹣9=3×1+0+2×3﹣9=0,符合,对于选项B,3x+y+2z﹣9=3×1﹣1+2×1﹣9≠0,不符合,对于选项C,3x+y+2z﹣9=3×2﹣3+2×1﹣9≠0,不符合,对于选项D,3x+y+2z﹣9=3×(﹣2)+0+2×1﹣9≠0,不符合,故选:A.【点评】本题考查平面的法向量,空间向量数量积的运算,考查运算求解能力,属于基础题.5.【分析】过C作CO⊥平面ABFE,垂足为O,连结EO,则α=∠AED,β=∠CEO,γ=∠CEF,由此能求出结果.【解答】解:过C作CO⊥平面ABFE,垂足为O,连结EO,∵矩形ABFE与矩形EFCD所成二面角D﹣EF﹣B的平面角为锐角,记二面角D﹣EF﹣B的平面角为α,直线EC与平面ABFE所成角为β,直线EC与直线FB所成角为γ,∴α=∠AED,β=∠CEO,γ=∠CEF,∵CF>CO,∴α>β,γ>β.故选:C.【点评】本题考查命题真假的判断,考查线面角、二面角、线线角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.6.【分析】由,,共面,设=m,列方程组能求出λ的值.【解答】解:=(2,1,﹣3),=(﹣1,2,3),=(7,6,λ),∵,,共面,∴设=m,则(2,1,﹣3)=(﹣m+7n,2m+6n,3m+λn),∴,解得m=﹣,n=,解得λ=﹣9.故选:C.【点评】本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题.7.【分析】先求出平面ABCD的一个法向量,则在法向量上的投影的绝对值即为这个四棱锥的高.【解答】解:设平面ABCD的法向量为=(x,y,z),则,即,∴,取z=1,则=(0,0,1),∴这个四棱锥的高h==4,故选:D.【点评】本题主要考查了平面的法向量,考查了向量数量积的几何意义,是基础题.8.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果判断A,B.利用异面直线的判断方法判断C,利用D1在面BCC1B1上的射影为C1判断D.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A1(2,0,2),E(2,1,0),B(2,2,0),F(0,2,1),D1(0,0,2),D(0,0,0)对于A,=(﹣2,﹣2,2),=(﹣2,0,1),设平面BFD1的一个法向量=(x,y,z),所以得,令x=1,则z=2,y=1,平面BFD1的一个法向量=(1,1,2),又=(0,1,﹣2),所以=﹣3,所以A1E不平行于面BFD1,所以A错误;对于B,=(2,0,0),=(0,2,1),=(0,1,﹣2),∴,∴A1E⊥DA,A1E⊥DF,∴A1E⊥平面ADF,故B正确;对于C,∵A1E⊂面ABB1A1,BF⊄面ABB1A1,且B∉A1E,所以直线A1E与BF为异面直线,故C错误;对于D,∵D1C1⊥面BCC1B1,所以二面角D1﹣BF﹣B1的平面角为锐角,故D错误.故选:B.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9.【分析】直接利用单位向量,向量的模,向量的共线和向量的垂直的应用判断①②③的结论.【解答】解:对于任意非零空间向量,对于①:若a1=a2=a3=1,则||=,故该向量不为单位向量,故①错误;对于②:,反之不一定成立,故②错误;对于③:=0,故③正确.故选:B.【点评】本题考查的知识要点:单位向量,向量的共线,向量的垂直,主要考查学生的运算能力和数学思维能力,属于基础题.10.【分析】利用线面垂直的定义易判断A选项,取特殊位置可验证B,C.【解答】解:A:因为P在面D1C1BA内,而B1C⊥面D1C1BA,所以B1C⊥D1P,所以无论P怎么移动,都有B1C⊥D1P,不存在P点使D1P与BC1不垂直,故A错.B:当P在正方体中心时,|O1P|+|A1P|=,当P在A或C1时,|D1P|+|A1P|=1+即:,故存在点P,使|D1P|+|A1P|=2成立,故B错.C:因为BC∥A1D1,即D1P与BC所成的角即D1P与A1D1所成的角,P在C1时,D1P与A1D1的夹角为,P在A时,D1P与A1D1夹角为,而<<,所以存在符合条件的点P,故C错.故选:D.【点评】本题考查了立体几何动态点问题,属于难题.二、填空题共5小题,每小题4分,共20分.11.【分析】连接AC,利用勾股定理求出AC,由线面垂直的性质得到P A⊥AC,由勾股定理求解PC即可.【解答】解:连接AC,在矩形ABCD中,AD=4,CD=3,则AC=,因为P A⊥平面ABCD,AC⊂平面ABCD,则P A⊥AC,在Rt△P AC中,AC=5,P A=,则.故答案为:6.【点评】本题考查了空间中线段长度的求解,线面垂直的性质定理的应用,勾股定理的应用,考查了逻辑推理能力、空间想象能力与运算能力,属于基础题.12.【分析】∥,可得,解得m,n.再利用数量积运算性质即可得出.【解答】解:∵∥,∴,解得m=﹣2,n=1.∴=2+18+(﹣2)×(﹣4)=28.故答案为:28.【点评】本题考查了向量共线定理、数量积运算性质,考查了推理能力与计算能力,属于基础题.13.【分析】根据空间向量的坐标表示与线性运算和数量积运算,求解即可.【解答】解:由O(0,0,0),A(﹣1,1,0),B(0,2,1),∴=(﹣1,1,0),且点H在直线OA上,可设H(﹣λ,λ,0),则=(﹣λ,λ﹣2,﹣1),又BH⊥OA,∴=0,即(﹣λ,λ﹣2,﹣1)•(﹣1,1,0)=0,即λ+λ﹣2=0,解得λ=1,∴点H(﹣1,1,0).故答案为:(﹣1,1,0).【点评】本题考查了空间向量的坐标表示与运算问题,是基础题.14.【分析】由异面直线所成角的定义结合三角形中位线定理找出PB与AC所成的角,求解三角形可得PB与AC 所成的角;再找出PC与AB的公垂线,进一步求解三角形可得PC与AB之间的距离.【解答】解:如图,分别取BC,P A,AB的中点为E,F,H,连接EF,EH,FH,由三角形中位线定理可得,EH∥AC,FH∥PB,则∠EHF(或其补角)即为PB与AC所成的角,∵P A=AB=BC=4,∴PB=AC=,则EH=FH=,AF=2,AE=,EF=,∴cos∠EHF==,∴∠EHF=120°,则PB与AC所成的角等于60°;取PC中点为O,连接CH,PH,AO,BO,由已知求解三角形可得AO=BO=PC=,PH=CH,则OH为异面直线PC与AB的公垂线,∴OH=,即PC与AB之间的距离等于2.故答案为:60°;.【点评】本题考查空间中异面直线所成角及距离的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.15.【分析】以D为原点,以DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,求出AP与平面BCC1B1所成的角的正弦值的最大值,进一步可得tanθ的最大值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设P(a,3,c),(0≤a≤3,0≤c≤4),则A(3,0,0),B(3,3,0),D1(0,0,4),=(a﹣3,3,c),=(﹣3,﹣3,4),平面BCC1B1的法向量=(0,1,0),∵AP⊥BD1,∴•=﹣3(a﹣3)﹣9+4c=0,解得c=,∴=(a﹣3,3,),∵AP与平面BCC1B1所成的角为θ,∴sinθ===,∴当a=时,sinθ取最大值为,此时cosθ=,∴tanθ的最大值为:=.故答案为:.【点评】本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,训练了利用空间向量求解空间角,考查运算求解能力,是中档题.三、解答题共5小题,共50分.解答应写出文字说明,演算步骤或证明过程.16.【分析】(Ⅰ)利用空间向量共线定理,列式求解x的值,由向量模的坐标运算求解即可;(Ⅰ)利用向量垂直的坐标表示,求出x的值,从而得到,由空间向量的夹角公式求解即可.【解答】解:(Ⅰ)空间向量=(2,4,﹣2),=(﹣1,0,2),=(x,2,﹣1),因为∥,所以存在实数k,使得,所以,解得x=1,则=;(Ⅰ)因为⊥,则,解得x=﹣2,所以,故cos<,>==.【点评】本题考查了空间向量的坐标运算,空间向量共线定理的应用,向量数量积的坐标运算以及空间向量夹角公式的运用,考查了逻辑推理能力与化简运算能力,属于基础题.17.【分析】(Ⅰ)由图得到=++,再由向量模的运算即可求得答案;(Ⅰ)表示出•=•(﹣),代入数据运算即可.【解答】解:(Ⅰ)由图可得=+=++,所以||²=|++|²=²+²+²+2•+2•+2•=2²+1²+1²+2×2×1×cos120°+2×1×1×cos90°+2×2×1×cos120°=4+1+1﹣2﹣2=2,则||=;(Ⅰ)因为=﹣,所以•=•(﹣)=•﹣•=2×1×cos120°﹣2×1×cos120°=0.【点评】本题考查平面向量数量积的运算性质,考查向量模的求解,数形结合思想,属于中档题.18.【分析】(1)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,由向量法求出直线AM和A1C所成角的余弦值;(2)点M在线段A1B1上,设,求出平面ABC1所法向量,利用夹角公式求出x,代入求出M 的坐标.【解答】解:(1)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(4,0,0),,,因为A1M=3MB1,所以,所以,,所以.所以异面直线AM和A1C所成角的余弦值为;(2)由A(4,0,0),B(0,4,0),,得,,设平面ABC1的法向量为,由得,令a=1,则b=1,,所以平面ABC1的一个法向量为,因为点M在线段A1B1上,设,所以,因为直线AM与平面ABC1所成角为30°,所以,由,得,解得x=2或x=6,为点M在线段A1B1上,所以x=2,即点是线段A1B1的中点.【点评】考查向量法求直线与平面,异面直线所成的角,考查空间想象能力和数学运算能力,中档题.19.【分析】以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立空间直角坐标系.(Ⅰ)为平面CDE的一个法向量,证明AF∥平面CDE,只需证明=0×2+2×0+(﹣4)×0=0;(Ⅰ)求出平面CDE的一个法向量、平面AEF一个法向量,利用向量的夹角公式,即可求平面CDE与平面AEF 所成锐二面角的余弦值;(Ⅰ)由点到面的距离公式可得.【解答】(Ⅰ)证明:∵四边形BCEF为直角梯形,四边形ABCD为矩形,∴BC⊥CE,BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,∴DC⊥平面BCEF.以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:A(2,0,4),B(2,0,0),C(0,0,0),D(0,0,4),E(0,4,0),F(2,2,0),则=(0,2,﹣4),=(2,0,0).∵BC⊥CD,BC⊥CE,∴为平面CDE的一个法向量.又=0.AF⊄平面CDE.∴AF∥平面CDE.(Ⅰ)由(I)知=(2,0,0)为平面CDE的一个法向量,由(I)知=(﹣2,4,﹣4),=(0,2,﹣4)设平面AEF的一个法向量=(x,y,z),则,∴,令z=1,则y=2,x=2,∴平面AEF的一个法向量=(2,2,1),cos<>==,平面CDE与平面AEF所成锐二面角的余弦值为;(III)由(I)知=(2,0,4),又平面AEF的一个法向量=(2,2,1),所以点C到平面AEF的距离d==,【点评】本题主要考查空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.20.【分析】(Ⅰ)由题中的定义计算距离d(A,B)即可;(Ⅰ)由题中的定义首先证明:∀A,B,C∈S n,有A﹣B∈S n,然后证明d(A﹣C,B﹣C)=d(A,B)即可.(Ⅰ)结合(Ⅰ)中的结论和奇数偶数的性质即可证得题中的结论.【解答】(Ⅰ)解:由题意得,A﹣B=(|0﹣1|,|1﹣1|,|0﹣1|,|0﹣0|,|1﹣0|)=(1,0,1,0,1),d(A,B)=|0﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|1﹣0|=3.(Ⅰ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,因为a i,b i∈{0,1},所以|a i﹣b i|∈{0,1}(i=1,2,n),从而A﹣B=(|a1﹣b1|,|a2﹣b2|,⋯,|a n﹣b n|)∈S n,由题意知a i,b i,c i∈{0,1}(i=1,2,⋯,n),当c i=0时,|a i﹣c i|﹣|b i﹣c i|=|a i﹣b i|,当c i=1时,|a i﹣c i|﹣|b i﹣c i|=|(1﹣a i)﹣(1﹣b i)|=|a i﹣b i|.所以.(Ⅰ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,d(A,B)=k,d(A,C)=l,d(B,C)=h,记0=(0,0,…,0)∈S n,由(Ⅰ)可知:,因为|a i﹣b i|∈{0,1},,所以|b i﹣a i|(i=1,2,⋯,n)中1的个数为k,|c i﹣a i|(i=1,2,⋯,n)中1的个数为l,设t是使|b i﹣a i|=|c i﹣a i|=1成立的i的个数.则h=l+k﹣2t,由此可知,k,l,h三个数不可能都是奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【点评】本题主要考查数列中的新定义及其应用,反证法及其应用等知识,属于中等题.。

北京市海淀区2024-2025学年高二上学期9月月考 数学试题(含解析)

北京市海淀区2024-2025学年高二上学期9月月考 数学试题(含解析)

一、选择题(共10小题,每小题4分,共40分,每题只有一个正确选项)1.已知,则( )i 1i z=-z =A.0B.1D.22.如图,在平行六面体中,( )1111ABCD A B C D -1AB AD AA --=A.B. C. D.1AC 1AC 1D B 1DB 3.已知,则的坐标为( )()()2,3,1,6,5,3A B ---ABA.B.C.D.()8,8,4--()8,8,4-()8,8,4-()8,8,4--4.如图,已知正方体的棱长为( )ABCD A B C D '-'''1,AA DB ⋅=''A.1D.1-5.设分别是平面的法向量,其中,若,则(12,n n,αβ()()121,,2,,2,1n y n x =-=- α∥βx y +=)A. B. C.3 D.92-72-726.已知直线的方向向量为,直线的方向向量为,则直线与所成角的度数1l()0,0,1u =2l()1v =-1l 2l 为( )A.B.C.D.30601201507.已知为平面的一个法向量,为直线的一个方向向量,则“”是“”的( )n αa l a n ⊥l ∥αA.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知点为空间不共面的四点,且向量,向量,则与,,,O A B C a OA OB OC =++ b OA OB OC =+- 不能构成空间基底的向量是( ),a bA. B. C. D.或OA OB OC OA OB9.在空间直角坐标系中,点在坐标平面内的射影为点,且关于轴的对称点为点,Oxyz ()2,1,1A Oxz B y C 则两点间的距离为( ),B CB.C.10.在棱长为1的正四面体(四个面都是正三角形)中,分别为的中点,则和ABCD ,M N ,BC ADAM 夹角的余弦值为( )CN A. C. D.231323-二、填空题(共5小题,每小题4分,共20分)11.已知向量,则与共线的单位向量为__________.()2,3,1a =- a 12.已知向量且,则__________,__________.()()2,0,1,,2,1a b m =-=-a b ⊥ m =a b += 13.已知直线经过两点,则点到直线的距离为__________.l ()()1,0,1,2,0,0A B ()2,1,4P l 14.在空间直角坐标系中,已知.则与的夹角的Oxyz ()()()2,0,0,0,2,0,0,0,2AB AC AD ===CD CB余弦值为__________;在的投影向量__________.CD CB a = 15.以下关于空间向量的说法:①若非零向量满足,则,,a b c a ∥,b b ∥c a ∥c ②任意向量满足,,a b c ()()a b c a b c⋅⋅=⋅⋅ ③若为空间向量的一组基底,且,则四点共面{},,OA OB OC221333OD OA OB OC=+- ,,,A B C D ④已知向量,若,则为钝角()()1,1,,3,,9a x b x ==-310x <,a b <>其中正确命题的序号是__________.三、解答题(共4道大题,共60分)16.如图,在正方体中,为线段的中点.1111ABCD A B C D -2,AB E =11B C(1)求证:;11AA D E ⊥(2)求平面的法向量;1D BE (3)求点到平面的距离.1A 1D BE 17.如图,正三棱柱的底面边长为2,高为为的中点,为的中点.111ABC A B C -4,D 1CC E 11A B(1)求证:平面;1C E ∥1A BD (2)求直线与平面所成角的正弦值.BC 1A BD18.如图,在平行六面体中,,1111ABCD A B C D -14,2,60AB AD AA BAD ∠====与相交于点,设.1145,BAA DAA AC ∠∠==BD O 1,,AB a AD b AA c ===(1)试用基底表示向量;{},,a b c1OA (2)求的长;1OA (3)求直线与直线所成角.1OA BC19.如图,四棱锥倍,为侧棱上的点.S ABCD -P SD(1)求证:;AC SD ⊥(2)若平面,求平面与平面的夹角大小;SD ⊥PAC PAC ACD (3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;SC E BE ∥PAC :SE EC 若不存在,试说明理由.参考答案一、选择题(共10小题,每小题4分,共40分,每题只有一个正确选项)1.【答案】C【分析】利用复数的乘法求出,再求出复数的模.z【详解】依题意,,则()i 1i 1iz =-=--z ==故选:C 2.【答案】C【分析】利用向量的加减法法则计算即可.【详解】1111AB AD AA DB AA DB DD D B --=-=-= 故选:C 3.【答案】B【分析】利用空间向量坐标运算即可.【详解】因为,()()2,3,1,6,5,3A B ---所以()8,8,4AB =-故选:B.4.【答案】A【分析】结合图形利用空间向量的线性运算求解即可.【详解】因为,DB DB BB AB AD BB AB AD AA '=+=-+'''=-+且,0,0AA AB AA AD ''⋅=⋅= 所以.()21AA DB AA AB AD AA AA AB AA AD AA '''''''⋅=⋅-+=⋅-⋅+= 故选:A.5.【答案】D【分析】本题根据图形关系得到,得到,解出即可.1n ∥1n 1221y x -==-,x y 【详解】,且分别是平面的法向量,则,α ∥β12,n n ,αβ1n ∥1n 则有,故,则.1221y x -==-1,42x y =-=72x y +=故选:D.6.【答案】B【分析】根据空间向量夹角公式,代入即可得到向量夹角,同时注意直线夹角的范围.cos ,u v u v u v⋅<>=⋅【详解】直线方向向量,1l ()0,0,1u= 直线方向向量,2l()1v =-,1cos ,2u v u v u v ⋅<>===-⋅所以两向量夹角为,120直线和所成角为,∴1l 2l 60故选:B.7.【答案】B【分析】根据线面平行的性质及其法向量和方向向量的关系判断即可.【详解】为平面的一个法向量,为直线的一个方向向量,n αal 若,则或,充分性不成立,a n ⊥ l α⊂l ∥α若,则,必要性成立,l ∥αa n ⊥所以“”是“”的必要不充分条件.a n ⊥ l ∥α故选:B.8.【答案】C【分析】利用空间向量的基底的意义即可得出.【详解】,()()()111222OC a b OA OB OC OA OB OC=-=++-+- 与不能构成空间基底;OC ∴ a b、故选:C.9.【答案】D【分析】先求得的坐标,再用两点的距离公式求解,B C 【详解】因为点在坐标平面内的射影为点,()2,1,1A Oxz B 所以,()2,0,1B 因为点关于轴的对称点为点,()2,1,1A y C 所以,()2,1,1C --所以BC ==故选:D 10.【答案】A【分析】根据正四面体性质取的中点为,即可知即为异面直线和的夹角的平面角,BN P AMP ∠AM CN 计算出各边长利用余弦定理即可求得结果.【详解】连接,取的中点为,连接,如下图所示:BN BN P ,AP MP由正四面体的棱长为1可得AM CN BN ===又分别是的中点,所以,且,M P ,BC BN MP ∥CN 12MP CN ==所以即为异面直线和的夹角的平面角,AMP∠AM CN 又易知,且,所以BN AN ⊥12PN BN ==AP ===因此,2cos 3AMP ∠==即和夹角的余弦值为.AM CN 23故选:A二、填空题(共5小题,每小题4分,共20分)11.【答案】或⎛⎝【分析】求出,再根据求解即可.aa a± 【详解】因为向量,所以()2,3,1a =-a==所以,aa ±==±所以与共线的单位向量为或.a⎛ ⎝故答案为:或.⎛ ⎝12.【答案】(1)(21##0.52【分析】利用空间向量的垂直关系即可求解;根据向量的加法及模的运算即可求解.【详解】因为,()()2,0,1,,2,1a b m =-=-当时,所以,a b ⊥210m -=所以;12m =因为,()12,0,1,,2,12a b ⎛⎫=-=- ⎪⎝⎭ ,5,2,02a b ⎛⎫+=- ⎪⎝⎭ 所以.a b +==故答案为:.1213.【答案】3【分析】根据坐标求出,然后得到,最后用勾股定理求即可得到点到cos ,,AP AB AP<>AP 'PP 'P 直线的距离.l 【详解】如图,过点作于点P PP AB'⊥P '由题意得,,()()1,1,3,1,0,1,cos ,AP AB AP AB==-<>==,所以.AP ==cos ,3AP AP AP AB PP =⋅<='='>= 故答案为:3.14.【答案】①②12()1,1,0-【分析】先根据空间向量的坐标运算求出与的坐标,然后由向量夹角的运算公式和投影向量的计CD CB算公式即可求出结果.【详解】因为,()()()2,0,0,0,2,0,0,0,2AB AC AD ===所以,()()0,2,2,2,2,0CD AD AC CB AB AC =-=-=-=-所以,1cos ,2CD CB CD CB CD CB ⋅<>===在的投影向量为.CD CB()cos ,1,1,0CB CD CD CB CB<>=-故答案为:.()1;1,1,02-15.【答案】①③【分析】根据向量共线定理可判断①;由向量数量积的运算律可判断②;根据可判断1133AD AB CB=+③;当时可判断④.3x =-【详解】对于①,因为是非零向量,且满足,故存在实数使得,,,a b c a ∥,b b ∥c ,λμa b λ= ,故,所以,故①正确;b c μ= a c λμ= a ∥c 对于②,因为不一定共线且向量的数量积为实数,所以不一定成立,故②不正确;,a c ()()a b c a b c ⋅⋅=⋅⋅ 对于③,若为空间向量的一组基底,所以三点不共线,{},,OA OB OC,,A B C ,且,221333OD OA OB OC =+- ()()1211133333OD OA OA OB OC OB OA OB OC-=-+-=-+- 所以,则四点共面,所以③正确;1133AD AB CB=+ ,,,A B C D 对于④,当时,反向共线,有为,所以④不正确.3x =-,a b 3,,b a a b =- 180故答案为:①③.三、解答题(共4道大题,共60分)16.【答案】(1)证明见解析;(2),答案不唯一;()2,1,1-(3.【分析】(1)根据线面垂直的性质,即可证明线线垂直;(2)建立空间直角坐标系,求得对应点的坐标,利用向量法即可求得结果;(3)根据(2)中所求平面的法向量,求得在平面法向量上的投影向量的长度即可.11A D 【小问1详解】因为是正方体,故可得面,1111ABCD A B C D -1AA ⊥1111A B C D又面,故可得.1D E ⊂1111A B C D 11AA D E ⊥【小问2详解】以为坐标原点,建立如图所示空间直角坐标系,如下所示:D 则可得:,()()()()110,0,2,2,2,0,1,2,2,2,0,2D B E A ()()()1111,2,0,1,0,2,2,0,0D E BE A D ==-=-设平面的法向量为,1D BE (),,m x y z =则,即,取,可得,100m D E m BE ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y x z +=⎧⎨-+=⎩2x =1,1y z =-=故平面的一个法向量为.1D BE ()2,1,1-【小问3详解】设点到平面的距离为,1A 1D BE d 则.11A D m d m ⋅===故点到平面.1A 1D BE17.【答案】(1)证明见解析(2【分析】(1)由已知建立空间直角坐标系,求出直线的方向向量和平面的法向量,利用线面1C E 1A BD 平行的向量判定方法求解即可;(2)根据线面角的向量求解公式求解即可.【小问1详解】如图以A 为坐标原点,以所在直线为轴,轴,在平面内做与垂直的直线为轴1,AC AA y z ABC AC x 建立空间直角坐标系,())()()()1110,2,4,,0,2,2,,4,0,0,4,0,2,02C B D E A C ⎫⎪⎪⎭所以113 ,0,4),(2)2C E A B BD ⎫=-=-=⎪⎪⎭ 设平面的法向量为,1A BD (),,n x y z = 所以,即,100n A B n BD ⎧⋅=⎪⎨⋅=⎪⎩4020y z y z ⎧+-=⎪⎨++=⎪⎩令,x =1,1z y ==即为平面的一个法向量,)n = 1A BD 所以,1310102C E n ⎛⎫⋅=-⨯+⨯= ⎪⎝⎭ 又因为平面,1C E ⊄1A BD 所以平面;1C E ∥1A BD 【小问2详解】由(1)知,()),BC n == 设直线与平面所成角为,BC 1A BD θ所以,sin cos ,BC θ= 所以直线与平面.BC 1A BD 18.【答案】(1)11122OA a b c =--+(2(3)π2【分析】(1)利用空间向量的线性运算求解即可;(2)由(1)可知,然后利用数量积求模长即可;11122OA a b c =--+ (3)利用空间向量线线角的向量法求解即可.【小问1详解】()111111111;22222OA OA AA AB AD AA AB AD AA a b c =+=-++=--+=--+ 【小问2详解】,1114,2,60,45AB AD AA BAD BAA DAA ∠∠∠====== 所以,1cos604242a b a b ⋅==⨯⨯=,cos4524b c b c ⋅==⨯=,cos4548a c a c ⋅==⨯= 由(1)知,11122OA a b c =--+ 所以,22222111111322442OA a b c a b c a b a c b c ⎛⎫=--+=+++⋅-⋅-⋅= ⎪⎝⎭ 所以1OA = 【小问3详解】,BC AD b == ,21111102222OA BC a b c b a b b b c ⎛⎫⋅=--+⋅=-⋅-+⋅= ⎪⎝⎭ ,111cos ,0OA BC OA BC OA BC ⋅==所以与所成角为,1OA BC π2所以直线与直线所成角为.1OA BC π219.【答案】(1)证明见解析;(2);(3)存在,.30 :2:1SE EC =【分析】(1)由题设知,连,设交于于,由题意知平面.以为坐标原点,BD AC BD O SO ⊥ABCD O 分别为轴、轴、轴正方向,建立空间直角坐标系,求得向量与,结合数量积即可,,OB OC OS x y z OC SD 证明;AC SD ⊥(2)分别求出平面与平面的一个法向量,求法向量的夹角余弦值,即可求出结果;PAC ACD (3)要使平面,只需与平面的法向量垂直即可,结合(2)中求出的平面的一个法BE ∥PAC BE PAC 向量,即可求解.【详解】(1)证明:连接,设交于,由题意知平面.以为坐标原点,BD AC BD O SO ⊥ABCD O ,分别为轴、轴、轴正方向,建立空间直角坐标系如图.OB ,OC OSx y z O xyz -设底面边长为,则高.aSO =于是,,0,0,,0S D C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,0,,0,OC SD ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,故,从而.0OC SD ⋅= OC SD ⊥AC SD ⊥(2)由题设知,平面的一个法向量,平面的一个法向量PAC DS ⎫=⎪⎪⎭ DAC ,设所求角为,则平面与平面的夹角为.OS a ⎛⎫= ⎪ ⎪⎝⎭θcos OS DS OS DS θ⋅==∴⋅ PAC DAC 30(3)在棱上存在一点使平面.由(2)知是平面的一个法向量,SC E BE ∥PAC DS PAC 且.,0,DS a CS a ⎫⎛⎫==⎪ ⎪⎪ ⎪⎭⎝⎭ 设,则CE tCS = BE BC CE BC tCS=+=+ 而,()1t ⎛⎫=- ⎪ ⎪⎝⎭103BE DS t ⋅=⇔= 即当时:2:1SE EC =,而不在平面内,故平面.BE DS ⊥ BE PAC BE ∥PAC。

上海市金山中学2020-2021学年高二上学期9月月考数学试题

上海市金山中学2020-2021学年高二上学期9月月考数学试题

上海市金山中学2020-2021学年高二上学期9月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.与()3,4a =-同向的单位向量为b =______.2.已知向量(1,)a k =,(9,6)b k =-,若//a b ,则k =_________.3.已知{}|A x y x R ==∈,{}2|1,B y y x x R ==-+∈,则A B =______. 4.若向量a 、b 的夹角为150,3a =,4b =,则2a b +=______.5.已知点(1,5)A -和向量(2,3)a =,若3AB a =,则点B 的坐标为_________. 6.向量(24)(11)a b ==,,,.若向量()b a b λ⊥+,则实数λ的值是________. 7.在Rt ABC ∆中,90C =∠,3AC =,则AB AC ⋅=______.8.平面上不共线的四点O 、A 、B 、C 满足1344OC OA OB =+,则AB BC =______. 9.平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则AD BD ⋅=______.10.若正方形ABCD 边长为1,点P 在线段AC 上运动,则()AP PB PD ⋅+的取值范围是________.11.已知函数()()2lg 1x f x x x =+>,且()y g x =与()11y f x -=+互为反函数,则()g x =______.12.已知函数()22224x ax a f x x x a+-=+-在定义域内恒正,则实数a 的取值范围是______.二、单选题13.平面向量a 、b 平行的充要条件是( )A .a 、b 方向相同B . a 、b 两向量中至少有一个是零向量C .存在实数k ,使得b ka =D .存在不全为零的实数1k 、2k ,使得120k a k b +=14.设(),1A a ,()2,B b ,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则实数a ,b 满足的关系式为( )A .453a b -=B .543a b -=C .4514a b +=D .5412a b += 15.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦16.已知数列{}n a ,对于任意的正整数n ,()()20161,1201612,20173n n n a n -⎧≤≤⎪=⎨⎛⎫-⋅≥⎪ ⎪⎝⎭⎩,设n S 表示数列{}n a 的前n 项和.下列关于lim n n S →+∞的结论,正确的是( ) A .lim 1n n S →+∞=- B .lim 2015n n S →+∞= C .()()()*2016,12016lim 1.2017n n n S n N n →+∞⎧≤≤⎪=∈⎨-≥⎪⎩ D .以上结论都不对三、解答题17.如果由矩阵1112m x m y m -⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭表示的关于x ,y 的二元一次方程组无解,求实数m 的值. 18.在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a B C a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积. 19.已知()2111111af x x x =-,()x R ∈. (1)当1a =时,求方程()0f x =的解集;(2)若方程()0f x =有且只有一个实数解,求实数a 的值并解该方程.20.某商店采用分期付款的方式促销一款价格每台为6000元的电脑.商店规定,购买时先支付货款的13,剩余部分在三年内按每月底等额还款的方式支付欠款,且结算欠款的利息.已知欠款的月利率为0.5%.(1)到第一个月底,货主在第一次还款之前,他欠商店多少元?(2)假设货主每月还商店a 元,写出在第()1,2,,36i i =⋅⋅⋅个月末还款后,货主对商店欠款数表达式.(3)每月的还款额a 为多少元(精确到0.01元)?21.在直角坐标平面中,已知点()11,2P ,()222,2P ,()333,2P ,…,(),2nnP n ,其中n 是正整数,对平面上任一点0A ,记1A 为0A 关于点1P 的对称点,2A 为1A 关于点2P 的对称点,…,n A 为1n A -关于点n P 的对称点.(1)求向量02A A 的坐标;(2)当点0A 在曲线C 上移动时,点2A 的轨迹是函数()y f x =的图像,其中()f x 是以3为周期的周期函数,且当(]0,3x ∈时,()lg f x x =.求以曲线C 为图像的函数在(]1,4上的解析式;(3)对任意偶数n ,用n 表示向量0n A A 的坐标.参考答案1.34,55⎛⎫-⎪⎝⎭ 【分析】先由题意设()3,4b a a =-,0a >,根据模为1,即可求出结果.【详解】因为b 与()3,4a =-同向,所以设()3,4b a a =-,0a >,又b 为单位向量,所以291b a =+=,解得15a =, 因此34,55b ⎛⎫- ⎪⎝=⎭. 故答案为:34,55⎛⎫-⎪⎝⎭ 【点睛】 本题主要考查求向量的坐标,熟记向量模的计算公式,以及向量共线的坐标表示即可,属于基础题型.2.【解析】试题分析:由于//a b ,所以()122169860x y x y k k k -=--=--=,解得34k =-. 考点:向量共线坐标表示的应用.3.[]2,1-【分析】先分别化简集合A 与集合B ,再求交集,即可得出结果.【详解】因为{}{}||2A x y x R x x ==∈=≥-,{}{}2|1,|1B y y x x R y y ==-+∈=≤, 因此[]2,1A B =-.故答案为:[]2,1-【点睛】本题主要考查集合的交集运算,熟记交集的概念即可,属于基础题型.4.2【分析】根据向量的模的计算公式,结合题中条件,即可求出结果.【详解】因为向量a 、b 的夹角为150,3a =,4b =,所以cos1503462a b a b ⎛⎫⋅==⋅-=- ⎪ ⎪⎝⎭, 因此,2224412162a b a b a b +=++⋅=+=. 故答案为:2【点睛】本题主要考查求向量的模,熟记向量的模的计算公式即可,属于基础题型. 5.【解析】试题分析:设点,,因此,得,得点.考点:平面向量的坐标表示. 6.-3【详解】试题分析:∵(2,4),(1,1)a b ==,∴()26,2a b b ⋅==,又∵()b a b λ⊥+,∴()2()0b a b a b b λλ⋅+=⋅+=,∴620λ+=,∴3λ=-考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题7.9【分析】先由题意,得到0CA CB ⋅=,再由()AB AC CB CA AC ⋅=-⋅,结合题中数据,即可求出结果.【详解】因为在Rt ABC ∆中,90C =∠,3AC =,所以0CA CB ⋅=,因此()29AB AC CB CA AC CB CA CA ⋅=-⋅=-⋅+=.故答案为:9【点睛】本题主要考查向量数量积的运算,熟记数量积的运算法则即可,属于常考题型.8.4【分析】 先由题中条件,得到1144OC OB OA OB -=-,推出14BC BA =,从而可得出结果. 【详解】 因为1344OC OA OB =+,所以1144OC OB OA OB -=-, 即14BC BA =, 因此4ABBC =【点睛】本题主要考查向量的线性运算,熟记向量线性运算法则即可,属于基础题型.9.8【分析】先由题意,得到AD AC AB =-,BD AD AB =-,求出两向量的坐标,即可得出结果.【详解】因为平行四边形ABCD 中,AC 为一条对角线,所以AB AD AC +=,又()2,4AB =,()1,3AC =,因此()1,1AD AC AB =-=--,所以(3,5)BD AD AB =-=--,所以(1)(3)(1)(5)8AD BD ⋅=-⋅-+-⋅-=.故答案为:8【点睛】本题主要考查向量数量积的坐标运算,熟记平面向量的数量积运算,以及平面向量基本定理即可,属于常考题型.10.12,4⎡⎤-⎢⎥⎣⎦【分析】以A 为坐标原点建立平面直角坐标系,设出P 点坐标,代入所求表达式,化简后求得表达式的取值范围.【详解】以A 为坐标原点建立平面直角坐标系如下图所示,依题意设()[](),0,1P x x x ∈,而()()0,1,1,0B D ,所以()()()(),,11,AP PB PD x x x x x x ⎡⎤⋅+=⋅--+--⎣⎦()()()2,12,1221242x x x x x x x x =⋅--=-=-+,函数[]()2420,1y x x x =-+∈对称轴14x =,开口向下,故1x =时有最小值2-;14x =时,有最大值14.故取值范围为12,4⎡⎤-⎢⎥⎣⎦.【点睛】本小题主要考查平面向量的坐标运算,考查数形结合的数学思想方法,属于基础题. 11.()2lg 11xx x +-> 【分析】先由()y g x =与()11y fx -=+互为反函数,得到()1()g x f x +=,进而可求出结果. 【详解】因为()y g x =与()11y f x -=+互为反函数,所以()1()g x f x +=;又()()2lg 1x f x x x =+>,所以()()()12lg 11xg x f x x x =-=+->. 故答案为()2lg 11xx x +-> 【点睛】本题主要考查由两函数互为反函数求解析式的问题,熟记反函数的概念即可,属于常考题型. 12.118,322⎛⎤⎧⎫--⎨⎬ ⎥⎝⎦⎩⎭【分析】根据题意,分别讨论分子分母对应的方程是同解方程,分子分母对应的方程不是同解方程两种情况,根据二次函数性质,列出不等式的,求解,即可得出结果.【详解】因为所给的函数分子与分母都是二次三项式,对应的函数图像都是开口向上的抛物线; 若分子分母对应的方程是同解方程, 则有12422a aa ⎧=⎪⎪⎨⎪-=-⎪⎩,即12a =; 若分子分母对应的方程不是同解方程,要保证函数()22224x ax a f x x x a+-=+-在定义域内恒正,则需要分子分母的判别式都小于0;即24(2)0142(4)0a a a ⎧-⋅-<⎨-⋅⋅-<⎩,解得13280a a ⎧<-⎪⎨⎪-<<⎩,即1832a -<<-; 当132a =-,由21208x x ++≠得,函数()f x 定义域为14x x ⎧⎫≠-⎨⎬⎩⎭, 则222024x ax a x x a +->+-可化为221132160128x x x x -+>++,即22115162560124x x ⎛⎫-+ ⎪⎝⎭>⎛⎫+ ⎪⎝⎭,显然在定义域内恒成立;所以132a =-满足题意; 综上,实数a 的取值范围是118,322⎛⎤⎧⎫--⎨⎬ ⎥⎝⎦⎩⎭. 故答案为:118,322⎛⎤⎧⎫--⎨⎬ ⎥⎝⎦⎩⎭【点睛】 本题主要考查由不等式恒成立求参数的问题,熟记三个二次之间的关系即可,属于常考题型. 13.D【分析】根据向量的共线向量定理,即非零向量a 与向量b 共线的充要条件是必存在唯一实数k ,使得b ka =成立,即可得到答案. 【详解】解:因为平面向量a 、b 平行,根据向量的共线向量定理可知:若a 、b 均为0,则显然符合向量a 与向量b 共线,且存在不全为0的实数1k 、2k ,使得120k k a b +=,若a ≠0,则由两向量共线的充要条件,存在唯一实数k ,使得b ka =,符合存在不全为0的实数1k 、2k ,使得120k k a b +=,即平面向量a 、b 平行的充要条件是存在不全为零的实数1k 、2k ,使得120k k a b +=, 故选D. 【点睛】本题考查了共线向量定理,属基础题. 14.A 【分析】先由题意得到(),1OA a =,()2,OB b =,()4,5OC =,根据向量数量积,分别求出OA 与OB 在OC 方向上的投影,进而可求出结果.【详解】因为(),1A a ,()2,B b ,()4,5C 为坐标平面上三点,O 为坐标原点, 所以(),1OA a =,()2,OB b =,()4,5OC =, 因此OA 在OC 方向上的投影为cos ,16OA OC OA OA OC OA OA OC⋅⋅<>=⋅==OB 在OC 方向上的投影为cos ,16OB OC OB OB OC OB OB OC⋅⋅<>=⋅==,又OA 与OB 在OC 方向上的投影相同,=,即453a b -=. 故选:A 【点睛】本题主要考查求向量的投影,熟记向量数量积的定义与几何意义即可,属于常考题型. 15.B 【分析】根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果. 【详解】关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥设a 与b 的夹角为θ,则24cos 0a a b θ-≥ 又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦本题正确选项:B 【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果. 16.B 【分析】根据题意,结合等比数列的求和公式,先得到当2017n ≥时,2016120153n n S -⎛⎫=+ ⎪⎝⎭,再由极限的运算法则,即可得出结果. 【详解】因为数列{}n a ,对于任意的正整数n ,()()20161,1201612,20173n n n a n -⎧≤≤⎪=⎨⎛⎫-⋅≥⎪ ⎪⎝⎭⎩,n S 表示数列{}n a 的前n 项和,所以122016...1a a a ====,201723a =-,201829a =-,...… , 所以当2017n ≥时,2016201620162113311201620161201513313n n n n S ---⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=-+=+ ⎪ ⎪⎝⎭⎝⎭-, 因此20161lim lim 201520153n n n n S -→+∞→+∞⎡⎤⎛⎫=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:B 【点睛】本题主要考查数列的极限,熟记等比数列的求和公式,以及极限的运算法则即可,属于常考题型. 17.1m = 【分析】先由题意,得到()()11D m m =+-,()21x D m =-+,()21y D m =+,对满足0D =的m进行讨论,即可得出结果. 【详解】由题意可得:方程组为12mx y x my m +=-⎧⎨+=+⎩,()()1111m D m m m ⎛⎫==+- ⎪⎝⎭,()11212x D m m m -⎛⎫==-+ ⎪+⎝⎭,()21112y m D m m -⎛⎫==+ ⎪+⎝⎭, 当1m =-时,0x y D D D ===,方程组有无数个解; 当1m =时,0D =,0x D ≠,0y D ≠,方程组无解. 所以1m =. 【点睛】本题主要考查矩阵与二元一次方程组,熟记二元一次方程组的矩阵表示即可,属于常考题型.18.(1)3C π=【解析】试题分析:(1)先根据行列式定义得()()2sin 2sin 2sin c C a b A b a B =-+-,再根据正弦定理化角为边得222c a b ab =+-,最后根据余弦定理求角C 的大小;(2)先根据正弦定理求a ,再根据两角和正弦公式求sin B ,最后根据三角形面积公式求面积. 试题解析:(1)由题意,()()2sin 2sin 2sin c C a b A b a B =-+-; 由正弦定理得()()2222c a b a b a b =-+-,∴222c a b ab =+-,∴2221cos 22a b c C ab +-==,∴3C π=;(2)由4sin 5A =,c =,且sin sin a c A C =,∴85a =;由23a c A C π<⇒<=,∴3cos 5A =,∴()4sin sin sin cos cos sin 10B AC A C A C =+=+=;∴1sin 2ABC S ca B ∆==. 19.(1){}1,1-(2)当1a =-,或3a =-时,解都为-1 【分析】先由题意计算行列式,得到2()(1)(1)2f x a x a x =++--,(1)由1a =,将方程()0f x =化为2220x -=,求解,即可得出结果;(2)根据题意,得方程2()(1)(1)20f x a x a x =++--=有且只有一个实数解,分别讨论10a +=与10a +≠两种情况,即可得出结果.【详解】因为()22211111111111111a x xf x xa x x x --=-=-+ ()()2222()()112x x a x x a x a x =---++=++--,(1)当1a =时,方程()0f x =可化为2220x -=,解得1x =±, 所以方程的解集为{}1,1-;(2)由题意可得,方程2()(1)(1)20f x a x a x =++--=有且只有一个实数解,当10a +=,即1a =-时,方程可化为220x --=,解得1x =-;当10a +≠,即1a ≠-时,只需2(1)8(1)0a a ∆=-++=,即2690a a ++=,解得3a =-,此时方程为:22420x x ---=,即2210x x ++=,解得1x =-; 综上,当1a =-或3a =-时,方程的解都是1-. 【点睛】本题主要考查求方程的解,以及由方程根的个数求参数,熟记一元二次方程的解法,以及行列式的计算方法即可,属于常考题型.20.(1)4020元;(2)表达式为3(10.5%)14000(10.5%)(1,2,...,36)0.5%+-+-=i a n 元;(3)121.69元【分析】(1)因为购买电脑时,货主欠商店23的货款,即4000元,又按月利率0.5%,即可求出结果;(2)设第i 个月底还款后的欠款数为i y ,根据题意,14000(10.5%)=+-y a ,221(10.5%)4000(10.5%)(10.5%)=+-=+-+-y y a a a ,进而得出1(10.5%)-=+-i i y y a ,整理,即可得出结果;(3)由题意得到360=y ,由(2)的结果,即可求出结果. 【详解】(1)因为购买电脑时,货主欠商店23的货款,即6000400032⨯=,又按月利率0.5%,到第一个月底的欠款数应为()400010.5%4020+=元, 即到第一个月底,欠款余额为4020元;(2)设第i 个月底还款后的欠款数为i y ,则有14000(10.5%)=+-y a ,221(10.5%)4000(10.5%)(10.5%)=+-=+-+-y y a a a ,3232(10.5%)4000(10.5%)(10.5%)(10.5%)=+-=+-+-+-y y a a a a ,……11(10.5%)4000(10.5%)(10.5%)...(10.5%)--=+-=+-+--+-n n i i y y a a a a整理得:3(10.5%)14000(10.5%)(1,2,...,36)0.5%+-=+-=i i y a n ;(3)由题意可得:360=y ,所以363(10.5%)14000(10.5%)00.5%+-+-=a ,因此36364000(10.5%)0.5%121.69(10.5%)1+⋅=≈+-a 【点睛】本题主要考查数列的应用,熟记等比数列的求和公式,即可求解,属于常考题型.21.(1)()2,4(2)()()lg 14g x x =--(3)()4213n n ⎛⎫- ⎪⋅⎪⎝⎭【分析】(1)先设点0(,)A x y ,由题意求出1(2,4)--x y A ,进而得到()22,4++x A y ,从而可求出向量02(2,4)=A A ;(2)先由题意,得到()y f x =是由曲线C 按向量02A A 平移得到的;根据图像变换,以及函数周期,即可得出结果;(3)先由1n A -为2-n A 关于点1n P -的对称点,n A 为1n A -关于点n P 的对称点,得到212--=n n n n P P A A ,再由向量的运算法则,结合向量的坐标表示,以及等比数列的求和公式,即可求出结果. 【详解】(1)设点0(,)A x y ,因为1A 为0A 关于点()11,2P 的对称点,所以1(2,4)--x y A , 又2A 为1A 关于点()222,2P 的对称点,所以()()()242,84----x A y ,即()22,4++x A y , 因此02(2,4)=A A ; (2)由(1)02(2,4)=A A ,因为点0A 在曲线C 上移动时,点2A 的轨迹是函数()y f x =的图像, 所以()f x 的图像由曲线C 向右平移2个单位,再向上平移4个单位得到, 因此,设曲线C 是函数()y g x =的图像,因为()f x 是以3为周期的周期函数, 所以()g x 也是以3为周期的周期函数, 当(]0,3x ∈时,()lg f x x =,所以当(]2,1∈-x 时,()()lg 24=+-g x x ; 于是,当(]1,4x ∈时,()()lg 14g x x =--;(3)由题意,1n A -为2-n A 关于点1n P -的对称点,n A 为1n A -关于点n P 的对称点. 所以在21--∆n n n A A A 中,1n P -为21n n A A --的中点,n P 为1-n n A A 的中点, 所以212--=n n n n P P A A ,因此()00224212341...2...--=+++=+++n n n n n A A A A A A A A PP P P P P ,()()()2431221,2243,22...(1),22-⎡⎤=--+--++---⎣⎦n n n n()()()22314(14)2421,21,2...1,2,,143+-⎛⎫⎛⎫-- ⎪⎡⎤=+++== ⎪⎣⎦ ⎪-⎝⎭ ⎪⎝⎭nn n n n .【点睛】本题主要考查平面向量的综合,熟记平面向量基本定理、向量的线性运算、向量的坐标表示,以及等比数列的求和公式即可,属于常考题型.。

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题(含答案解析)

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题(含答案解析)

天津市第四十七中学2021-2022学年高二上学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 的斜率是()ABC .D .2.已知()2,1,3=- a ,()4,2,b x =- ,且a b ∥,则x 的值为()A .103B .103-C .6D .-63.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于()A .8-B .6-C .10D .04.已知ABC 的两个顶点A ,B 的坐标分别是(2,0)-、(2,0),且AC ,BC 所在直线的斜率之积等于2,则顶点C 的轨迹方程是()A .22148x y -=(2x ≠±)B .2212y x -=C .22148x y -=D .2212x y -=(2x ≠±)5.在三棱锥-P ABC 中,点D ,E ,F 分别是BC ,PC ,AD 的中点,设PA a = ,PB b =,PC c = ,则EF =()A .111244a b c --B .111+244a b c- C .111+244a b c -D .111++244a b c- 6.已知过抛物线y 2=4x 焦点F 的直线l 交抛物线于A 、B 两点(点A 在第一象限),若AF = 3FB ,则直线l 的斜率为()A .2B .12C D7.直线:20l kx y --=与曲线1C x =-只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬⎩⎭D .(-8.设1F 是双曲线2222:1(0,0)y x C a b a b-=>>的一个焦点,1A ,2A 是C 的两个顶点,C 上存在一点P ,使得1PF 与以12A A 为直径的圆相切于Q ,且Q 是线段1PF 的中点,则C 的渐近线方程为A .y =B .y =C .12y x =±D .2y x=±9.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是()A .55,32⎛⎫ ⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭二、填空题10.抛物线28y x =的焦点到双曲线2213y x -=的渐近线的距离是__________.11.已知C :224630x y x y +---=,点()20M -,是C 外一点,则过点M 的圆的切线的方程是__________.12.空间直角坐标系中,四面体ABCD 的各顶点(0,0,2)A ,(2,2,0)B ,(1,2,1)C ,(2,2,2)D ,则点B 到平面ACD 的距离是_______________.13.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于A ,B 两点且线段AB 的中点为()3,2M ,则直线l 的斜率为________.14.设点P 是曲线221(0)3x y x -=>上一动点,点Q 是圆()2221x y +-=上一动点,点()20A -,,则PA PQ +的最小值是_____________15.已知抛物线C :24y x =的焦点为F ,准线与x 轴的交点为H ,点P 在C 上,且PH =,则PFH ∆的面积为______.三、解答题16.(1)已知直线1l :60x ay ++=和直线2l :(2)320a x y a -++=,若12l l ⊥,求a 值.(2)求与直线220x y --=平行且纵截距是2-的直线3l 的一般式方程.(3)若直线l 经过(2,1)A 、()21,B m (R m ∈)两点,求直线l 的倾斜角α的取值范围.17.如图,在四棱锥P ABCD -中,PA ⊥平面,//ABCD AB CD ,且2,1CD AB ==,1,,BC PA AB BC N ==⊥为PD 的中点.(1)求证://AN 平面PBC ;(2)求平面PAD 与平面PBC 所成锐二面角的余弦值;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC ,若存在,求出DMDP的值;若不存在,说明理由.18.已知正项等比数列{}n a 满足12a =,2432a a a =-,数列{}n b 满足212log n n b a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅求数列{}n c 的前n 项和n S .(3)设{}n b 的前n 项和为n T ,求n a T 19.(1)若圆M 的圆心在直线1y x =-上,且圆M 过点(0,1)A ,B ,求圆M 标准方程(2)已知直线0mx ny c ++=和圆O :221x y +=交于A ,B 两点,且O 到此直线的距离为12,求OA OB ⋅的值.(3)两圆1C :222240x y ax a +++-=和2C :2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,求2211a b +的最小值.20.如图,椭圆22221x y a b +=(0a b >>为A ,B ,C ,D ,且||2AB =.(1)求椭圆的方程;(2)P是椭圆上位于x轴上方的动点,直线CP,DP与直线l:4x=分别交于G、H两点.若||4GH=,求点P的坐标;(3)直线AM,BM分别与椭圆交于E,F两点,其中点1,2M t⎛⎫⎪⎝⎭满足0t≠且t贡若BME面积是AMF面积的5倍,求t的值.参考答案:1.B【分析】由图中求出直线l 的倾斜角,再根据斜率公式求出直线l 的斜率.【详解】如图,直线l 的倾斜角为30°,tan30°=l .故选:B.2.D【分析】由向量a b ∥可得21342x-==-,从而得出答案.【详解】由a b ∥,则21342x-==-,则6x =-故选:D 3.D【分析】由a1,a3,a4成等比数列,可得23a =a1a4,再利用等差数列的通项公式及其前n 项和公式即可得出.【详解】∵a1,a3,a4成等比数列,∴23a =a1a4,∴21(22)a +⨯=a1•(a1+3×2),化为2a1=-16,解得a1=-8.∴则S9=-8×9+982⨯×2=0,故选D .【点睛】本题考查了等比数列与等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.A【分析】首先设点(),,2C x y x ≠±,根据条件列式,再化简求解.【详解】设(),,2C x y x ≠±,2AC BC k k ⋅=,所以222y y x x ⋅=+-,整理为:22148x y -=,2x ≠±,故选:A 5.B【分析】连接DE 由中位线性质可知12DE b =-;利用空间向量的加减法和数乘运算可表示出结果.【详解】连接DE ,D ,E 分别是BC ,PC 的中点111222DE BP PB b∴==-=-()1111122444EF DF DE DA DE AD DE AB AC DE AB AC DE∴=-=-=--=-+-=---()()1111111144442244EF AB AC DE PB PA PC PA PB PA PB PC∴=---=----+=+-PA a = ,PB b =,PC c = 111111244244EF PA PB PC a b c∴=+-=+- 故选:B 6.D【分析】作出抛物线的准线,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.由抛物线的定义结合题中的数据,可算出Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°,即直线AB 的倾斜角为60°,从而得到直线AB 的斜率k 值.【详解】作出抛物线的准线l :x =﹣1,设A 、B 在l 上的射影分别是C 、D ,连接AC 、BD ,过B 作BE ⊥AC 于E.∵AF = 3FB,∴设AF =3m ,BF =m ,由点A 、B 分别在抛物线上,结合抛物线的定义,得AC =3m ,BD =m .因此,Rt △ABE 中,cos ∠BAE 12=,得∠BAE =60°所以,直线AB 的倾斜角∠AFx =60°,得直线AB 的斜率k =tan 60°=故选:D.【点睛】本题给出抛物线的焦点弦被焦点分成3:1的比,求直线的斜率k ,着重考查了抛物线的定义和简单几何性质,直线的斜率等知识点,属于中档题目.7.C【分析】确定直线:20l kx y --=恒过定点(0,2)-,确定曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),由直线与圆位置关系解决即可.【详解】由题知,直线:20l kx y --=恒过定点(0,2)-,曲线1C x -表示圆心为(1,1),半径为1,且位于直线1x =右侧的半圆,包括点(1,2),(1,0),当直线l 经过点(1,0)时,l 与曲线C 有2个交点,此时2k =,不满足题意,直线记为1l ,当直线l 经过点(1,2)时,l 与曲线C 有1个交点,此时4k =,满足题意,直线记为3l ,如图,当直线l1=,解得43k =,直线记为2l ,由图知,当24k <≤或43k =,l 与曲线C 有1个交点,故选:C 8.C【分析】根据图形的几何特性转化成双曲线的,,a b c 之间的关系求解.【详解】设另一焦点为2F ,连接2PF ,由于1PF 是圆O 的切线,则OQ a =,且1OQ PF ⊥,又Q 是1PF 的中点,则OQ 是12F PF △的中位线,则22PF a =,且21PF PF ⊥,由双曲线定义可知14PF a =,由勾股定理知2221212F F PF PF =+,2224416c a a =+,225c a =,即224b a =,渐近线方程为a y x b=±,所以渐近线方程为12y x =±.故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.9.B【分析】设椭圆的焦距为2c ,双曲线的实轴长为2a ,根据双曲线的定义及双曲线的离心率的取值范围求出c 的范围,进而可得出答案.【详解】解:设椭圆的焦距为2c ,双曲线的实轴长为2a ,则1222F F PF c ==,双曲线的半实轴长为12502PF PF a c -==->,则05c <<,又双曲线的离心率的取值范围为(1,2),所以125c ca c <=<-,所以51023c <<,所以20523c <<,即该椭圆的焦距的取值范围是205,3⎛⎫⎪⎝⎭.故选:B.10【分析】先求出抛物线的焦点坐标,再求出双曲线的渐近线方程,利用点到直线的距离公式即可求解.【详解】抛物线28y x =的焦点为(2,0),双曲线2213yx -=的渐近线方程为y =,利用点到直线的距离公式可得:d =11.20x +=或724140x y ++=【分析】按切线斜率存在不存在分类讨论,利用点到直线的距离求解.【详解】由题意得圆C :22(2)(3)16x y -+-=,圆C 是以()23,为圆心,4为半径的圆.当直线的斜率不存在时,2x =-,与圆相切,满足题意,当直线斜率存在时,可设切线l 的方程为()2y k x =+.由圆C 到直线l的距离等于半径,可得4d ==.解得724k =-.所以切线方程为20x +=或724140x y ++=.故答案为:20x +=或724140x y ++=.12【分析】先求出平面ACD 的法向量n,则点B 到平面ACD 的距离是BA n n ⋅.【详解】由题可得()()121220,,,,,AC AD =-=,则设平面ACD 的法向量为(),,n x y z = ,则20220n AC x y z n AD x y ⎧⋅=+-=⎪⎨⋅=+=⎪⎩,取()1,1,1n =--.又()222,,BA =-- ,则点B 到平面ACD的距离BA nd n ⋅===13.1-【分析】由椭圆离心率和,,a b c 关系可得,a b 关系,再由点差法和中点坐标公式、两点的斜率公式可得所求值.【详解】解:由题意可得c e a ==a =,设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减可得()()()()12121212220x x x x y y y y a b-+-++=,AB 的中点为(3,2)M ,12126,4x x y y +=+=∴,则直线斜率212122121226134y y x x b k x x a y y -+==-⋅=-⨯=--+.故答案为:1-.14.1【分析】通过双曲线的定义得PA PQ PQ PF +=++【详解】解:设双曲线2213x y -=的右焦点为()20F ,,圆()2221x y +-=的圆心为()02M ,,如图所示:由双曲线的定义得PA PF -=,所以PA PF =,所以2221PA PQ PQ PF FQ FM MQ +=+++-+,当且仅当P ,Q 分别为线段FM 与双曲线的右支,圆的交点时取等号.故PA PQ +的最小值为1.故答案为:1.【点睛】方法点睛:本题考查双曲线的定义,双曲线的性质和几何意义,点与圆的位置关系,属于中档题.在解决线段的和或差的最值,常运用圆锥曲线的定义,化曲为直得以解决.15.4±【解析】设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±即可求解.【详解】解:由抛物线C :24y x =,得焦点()1,0F ,准线方程为 1.x =-过P 作PM 垂直准线于M ,设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±.则PFH ∆的面积为1242t ⨯⨯=±故答案为:4±【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.16.(1)12a =;(2)240x y --=;(3)ππ0,π42α⎡⎤⎛⎫∈ ⎪⎢⎥⎣⎦⎝⎭【分析】(1)根据两直线垂直的公式求解即可;(2)设3:l 20x y a -+=,再根据截距求解即可;(3)根据倾斜角与斜率的关系可得tan 1α≤,再根据倾斜角的范围求解即可.【详解】(1)因为12l l ⊥,故()1230a a ⨯-+=,解得12a =;(2)设3:l 20x y a -+=,因为纵截距是2-,故()0220a -⨯-+=,解得4a =-.故3:l 240x y --=;(3)直线l 的斜率为221112m m -=--,因为20m ≥,故211m -≤,则tan 1α≤.因为[)0,πα∈,故ππ0,,π42α⎡⎤⎛⎫∈ ⎪⎢⎣⎦⎝⎭17.(1)见解析(2)23(3)存在M ,且23DM DP =.【分析】(1)过A 作AE CD ⊥于E ,以A 为原点建立空间直角坐标系,求出平面PBC 的法向量和直线AN 的向量,从而可证明线面平行.(2)求出平面PAD 的法向量,利用向量求夹角公式解得.(3)令DM DP λ=,[0,1]λ∈,设(),,M x y z ,求出CM ,结合已知条件可列出关于λ的方程,从而可求出DMDP的值.【详解】(1)过A 作AE CD ⊥,垂足为E ,则1DE =,如图,以A 为坐标原点,分别以AE ,AB ,AP 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()0,1,0B,()E,()1,0D -,()C ,()0,0,1P ,N Q 为PD的中点,11,22N ⎫∴-⎪⎭,则11,22AN ⎫=-⎭ ,设平面PBC 的一个法向量为(),,m x y z = ,(0,1,1)BP =-,BC =,则00m BP y z M BC ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,,,令1y =,解得:()0,1,1m = .11022AN m =∴⋅=-+uuu r r ,即AN m ⊥uuu r u r ,又AN ⊄平面PBC ,所以//AN 平面PBC .(2)设平面PAD 的一个法向量为(,,)n a b c =,(0,0,1)AP =,1,0)AD =- ,所以00AP n c AD n b ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1a =,解得(1,n =r .所以2cos ,3m n m n m n⋅==⋅u r ru r ru r r .即平面PAD 与平面PBC 所成锐二面角的余弦值为23.(3)假设线段PD 上存在一点M ,设(,,)M x y z ,DM DP λ=,[0,1]λ∈.(1,)(x y z λ-+=-Q,,1,)M λλ∴-,则(,2,)CM λλ=--又直线CM 与平面PBC ,平面PBC 的一个法向量()0,1,1m =CM m CM m ⋅=uuu r uuu u r r u r ,化简得22150240λλ-+=,即()()327120λλ--=,[0,1]λ∈ ,23λ∴=,故存在M ,且23DM DP =.18.(1)2n n a =,21n b n =+;(2)1(21)22n n S n +=-⋅+;(3)21222n n n n a T T +==+.【分析】(1)由等差数列的基本量法求得公比q 后可得n a ,再计算得n b ;(2)由错位相减法求和;(3)由等差数列的前n 项和公式计算.【详解】(1)设{}n a 的公比为q ,则由已知得22222a a q a q =-,20a ≠,则220q q --=,2q =或1q =-(舍去),∴1222n n n a -=⨯=,212log 221nn b n =+=+;(2)(21)2nn n n c a b n ==+⋅,23252(21)2n n S n =⨯+⨯+++⋅ ,∴23123252(21)2(21)2n n n S n n +=⨯+⨯++-⋅++⋅ ,相减得231322(222)(21)2n n n S n +-=⨯++++-+⋅ 1114(12)62(21)22(12)212n n n n n -++-=+⨯+⋅=-+-⋅-,∴1(21)22n n S n +=-⋅+;(3)由(1)21n b n =+,2n n a =,2122(3221)35(221)222n n n n nn na T T ++⨯+==+++⨯+==+ .19.(1)()2214x y ++=(2)12-(3)1【分析】(1)设圆心(),1M a a -,由MA MB =求出a ,可得圆心和半径,从而得到答案;(2)根据O 到此直线的距离为12,得到2π3AOB ∠=,再由数量积公式计算可得答案;(3)由圆和圆的位置关系判断出两圆外切,得到2249a b +=,再由基本不等式求解可得答案.【详解】(1)设圆心(),1M a a -,由MA MB ==,解得0a =,所以()0,1M -2=,圆M 标准方程为()2214x y ++=;(2)因为O 到此直线的距离为12,所以112sin 12∠==OAB ,所以π6∠=∠=OAB OBA ,即2π3AOB ∠=,1== OA OB ,所以1cos 2⋅=⋅∠=- OA OB OA OB AOB ;(3)圆1C :()224x a y ++=,圆心()1,0C a -,半径为2,圆2C :()2221x y b +-=,圆心()20,2C b ,半径为1,因为两圆1C 和2C 恰有三条公切线,所以两圆外切,所以123C C =3=,整理得2249a b +=,因为a ∈R ,b ∈R ,且0ab ≠,所以()222222222211111145994⎛⎫⎛⎫+=++=++ ⎝⎭⎝⎭a b a b a b b a a b()11559419⎛≥+=+= ⎝,当且仅当22224=a b a b即223,32==b a 时等号成立.所以2211a b+的最小值为1.20.(1)2214x y +=(2)()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)1t =±【分析】(1)根据短轴,离心率的定义与椭圆的基本量的关系求解即可.(2)设直线CP 的方程为()()2,0y k x k =+>,联立直线与椭圆方程,结合韦达定理表示出点P 的坐标,从而得到点,G H 的坐标,根据4GH =列出方程即可得到结果.(3)分别设直线AM ,直线BM 的方程,联立椭圆的方程,再利用三角形的面积公式表达出BME 面积是AMF 面积的5倍,再代入韦达定理求解即可.【详解】(1)由题意可知22222c e a AB b a b c ⎧=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得222413a b c ⎧=⎪=⎨⎪=⎩所以椭圆的方程为2214x y +=(2)设直线CP 的方程为()()2,0y k x k =+>由()42x y k x =⎧⎨=+⎩得()4,6G k 联立直线CP 的方程与椭圆方程()22214y k x x y ⎧=+⎪⎨+=⎪⎩消去y 可得()222214161640k x k x k +++-=设()00,P x y ,则()202164214k x k --=+,所以20022284,1414k kx y k k -==++,即222284,1414k k P k k ⎛⎫- ⎪++⎝⎭又因为()2,0D ,所以2224142821414DPkk k k k k --+-+==,所以直线DP 的方程为()124y x k =--,由()1244y x k x ⎧=--⎪⎨⎪=⎩得14,2H k ⎛⎫- ⎪⎝⎭,所以1642GH k k =+=,因为0k >,所以12k =或16从而得()0,1P 或83,55P ⎛⎫⎪⎝⎭(3)∵()0,1A ,()0,1B -,1,2M t ⎛⎫⎪⎝⎭,且0t ≠,∴直线AM 的斜率为112k t =-,直线BM 斜率为232k t=,∴直线AM 的方程为112y x t =-+,直线BM 的方程为312y x t=-,由2214112x y y x t ⎧+=⎪⎪⎨⎪=-+⎪⎩得()22140t x tx +-=,∴0x =,241t x t =+,∴22241,11t E t t t ⎛⎫- ⎪++⎝⎭,由2214312x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩得()229120t x tx +-=,∴0x =,2129t t x =+,∴222129,99t t F t t ⎛⎫- ⎪++⎝⎭;∵1sin 2AMF S MA MF AMF =∠ ,1sin 2BME S MB ME BME =∠ ,AMF BME ∠=∠,5AMF BME S S =△△,∴5MA MF MB ME =,即5MA MB MEMF=,又t 贡∴22541219t tt t t t tt =--++,整理方程得:()22519t t +=+,解得:1t =±.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高二上学期9月月考数学(文)试卷含解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.直线x+y﹣1=0的倾斜角是.2.过(﹣5,0),(3,﹣3)两点的直线的方程一般式为.3.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:其中真命题的序号是.①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.4.直线l1x+2y﹣4=0与l2:mx+(2﹣m)y﹣1=0平行,则实数m= .5.圆心为C(2,﹣3),且经过坐标原点的圆的方程为.6.底面边长为2m,高为1m的正三棱锥的全面积为m2.7.已知直线过点(2,3),它在x轴上的截距是在y轴上的截距的2倍,则此直线的方程为.8.直线x﹣y﹣5=0被圆x2+y2﹣4x+4y+6=0所截得的弦的长为.9.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=4,AA1=2,则四棱锥A﹣BB1D1D的体积为.10.下列命题正确的序号是;(其中l,m表示直线,α,β,γ表示平面)(1)若l⊥m,l⊥α,m⊥β,则α⊥β;(2)若l⊥m,l⊂α,m⊂β,则α⊥β;(3)若α⊥γ,β∥γ,则α⊥β;(4)若l∥m,l⊥α,m⊂β则α⊥β11.已知圆x2+y2=m与圆x2+y2+6x﹣8y﹣11=0相交,则实数m的取值范围为.12.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为.13.若直线y=﹣x+b与曲线x=恰有一个公共点,则b的取值范围是.14.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线4x﹣3y+c=0的距离为1,则实数c的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知△ABC中,顶点A(2,2),边AB上的中线CD所在直线的方程是x+y=0,边AC上的高BE所在直线的方程是x+3y+4=0,求BC所在直线.16.如图,在正四棱柱ABCD﹣A1B1C1D1中,E为DD1的中点,求证:(1)求证:BD1∥平面EAC;(2)平面BDD1⊥平面AB1C.17.(1)已知△ABC顶点A(4,4),B(5,3),C(1,1),求△ABC外接圆的方程.(2)求圆心在x轴上,且与直线l1:4x﹣3y+5=0,直线l2:3x﹣4y﹣5=0都相切的圆的方程.18.如图,在正三棱柱ABC﹣A1B1C1中,D是边BC上异于C的一点,AD⊥C1D.(1)求证:AD⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:平面A1EB∥平面ADC1.19.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A (1,0).(1)若l1与圆C相切,求l1的方程;(2)若l1的倾斜角为,l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标;(3)若l1与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时l1的直线方程.20.在平面直角坐标系xOy中,已知圆C:x2+y2=r2和直线l:x=a(其中r和a均为常数,且0<r<a),M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为P、Q.(1)若r=2,M点的坐标为(4,2),求直线PQ方程;(2)求证:直线PQ过定点,并求定点的坐标.xx学年江苏省徐州市邳州市运河中学高二(上)9月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.直线x+y﹣1=0的倾斜角是.【考点】直线的倾斜角.【分析】设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,可得,即可得出.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴,∵θ∈[0,π),∴.故答案为:.2.过(﹣5,0),(3,﹣3)两点的直线的方程一般式为3x+8y﹣15=0.【考点】直线的一般式方程;直线的两点式方程.【分析】根据所给点坐标的特点,可以用直线的两点式求直线方程,再化一般式即可.【解答】解:因为直线过(﹣5,0),(3,﹣3),所以直线的方程为=,化为一般式为3x+8y﹣15=0,故答案为:3x+8y﹣15=0.3.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:其中真命题的序号是①④.①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.【考点】平面的基本性质及推论.【分析】由平行公理知①正确;由a⊥b,b⊥c,知a与c平行、相交或异面;由直线与平面平行的性质,知a与b平行、相交或异面;由直线与平面垂直的性质知a∥b.【解答】解:∵若a∥b,b∥c,∴由平行公理,知a∥c,故①正确;∵a⊥b,b⊥c,∴a与c平行、相交或异面,故②不正确;∵a∥γ,b∥γ,∴a与b平行、相交或异面,故③不正确;∵a⊥γ,b⊥γ,∴a∥b,故④正确.故答案为:①④.4.直线l1x+2y﹣4=0与l2:mx+(2﹣m)y﹣1=0平行,则实数m=.【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×(2﹣m)﹣2m=0,解之可得.【解答】解:因为直线l1x+2y﹣4=0与l2:mx+(2﹣m)y﹣1=0平行,所以1×(2﹣m)﹣2m=0,解得m=故答案为:5.圆心为C(2,﹣3),且经过坐标原点的圆的方程为(x﹣2)2+(y+3)2=13.【考点】圆的标准方程.【分析】求出圆的半径,即可写出圆的标准方程.【解答】解:圆心为C(2,﹣3),且经过坐标原点的圆的半径为:=.所以申请的圆的方程为:(x﹣2)2+(y+3)2=13.故答案为:(x﹣2)2+(y+3)2=13.6.底面边长为2m,高为1m的正三棱锥的全面积为m2.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.【解答】解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为7.已知直线过点(2,3),它在x轴上的截距是在y轴上的截距的2倍,则此直线的方程为3x﹣2y=0或x+2y﹣8=0.【考点】直线的截距式方程.【分析】当直线经过原点时,直线方程为:y=x.当直线不经过原点时,设直线方程为: +=1,把点P(2,3)代入解得a即可得出.【解答】解:当直线经过原点时,直线方程为:y=x.当直线不经过原点时,设直线方程为: +=1,把点P(2,3)代入+=1,解得a=4.∴直线方程为x+2y=8.综上可得直线方程为:3x﹣2y=0或x+2y﹣8=0,故答案是:3x﹣2y=0或x+2y﹣8=0.8.直线x﹣y﹣5=0被圆x2+y2﹣4x+4y+6=0所截得的弦的长为.【考点】直线与圆的位置关系.【分析】通过圆的方程求出圆心坐标与半径,求出圆心到直线的距离,利用圆心到直线的距离、圆的半径、半弦长的关系,求出直线x﹣y﹣5=0被圆x2+y2﹣4x+4y+6=0所截得的弦的长即可.【解答】解:圆x2+y2﹣4x+4y+6=0化为(x﹣2)2+(y+2)2=2,所以圆的圆心坐标(2,﹣2),半径为:,圆心到直线x﹣y﹣5=0的距离为:d==.圆心到直线的距离、圆的半径、半弦长满足勾股定理,即半弦长为:=.所以弦长为:.故答案为:.9.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=4,AA1=2,则四棱锥A﹣BB1D1D的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】推导出AC⊥平面BB1D1D,从而四棱锥A﹣BB1D1D的体积V=,由此能求出结果.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AB=AD=4,AA1=2,∴AC⊥BD,AC⊥BB1,又BD∩BB1=B,∴AC⊥平面BB1D1D,∴四棱锥A﹣BB1D1D的体积:V====.故答案为:.10.下列命题正确的序号是(1)(3)(4);(其中l,m表示直线,α,β,γ表示平面)(1)若l⊥m,l⊥α,m⊥β,则α⊥β;(2)若l⊥m,l⊂α,m⊂β,则α⊥β;(3)若α⊥γ,β∥γ,则α⊥β;(4)若l∥m,l⊥α,m⊂β则α⊥β【考点】平面与平面垂直的判定.【分析】根据线线垂直、线段垂直的几何特征,及面面垂直的判定方法,我们可判断(1)的正误,根据线面垂直,面面垂直及平行的几何特征,我们可以判断(2)、(3)、(4)的真假,进而得到结论.【解答】解:若l⊥m,l⊥α,则m∥α或m⊂α,又由m⊥β,则α⊥β,故(1)正确;若l⊥m,l⊂α,m⊂β,则α与β可能平行也可能相交,故(2)不正确;若α⊥γ,则存在直线a⊂α,使a⊥γ,又由β∥γ,则a⊥β,进而得到α⊥β,故(3)正确;若l∥m,l⊥α,则m⊥α,又由m⊂β,则α⊥β,故(4)正确;故答案为:(1)、(3)、(4)11.已知圆x2+y2=m与圆x2+y2+6x﹣8y﹣11=0相交,则实数m的取值范围为1<m<121.【考点】圆与圆的位置关系及其判定.【分析】求出两个圆的圆心坐标和半径,利用两个圆的圆心距大于半径差,小于半径和,即可求出m的范围.【解答】解:x2+y2=m是以(0,0)为圆心,为半径的圆,x2+y2+6x﹣8y﹣11=0,(x+3)2+(y﹣4)2=36,是以(﹣3,4)为圆心,6为半径的圆,两圆相交,则|半径差|<圆心距离<半径和,|6﹣|<<6+,|6﹣|<5<6+,5<6+且|6﹣|<5,>﹣1 且﹣5<6﹣<5,>﹣1 且1<<11,所以1<<11,那么1<m<121,另,定义域m>0,所以,1<m<121时,两圆相交.故答案为:1<m<12112.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为(x﹣2)2+(y+2)2=1.【考点】与直线关于点、直线对称的直线方程.【分析】在圆C2上任取一点(x,y),求出此点关于直线X﹣Y﹣1=0的对称点,则此对称点在圆C1上,再把对称点坐标代入圆C1的方程,化简可得圆C2的方程.【解答】解:在圆C2上任取一点(x,y),则此点关于直线X﹣Y﹣1=0的对称点(y+1,x﹣1)在圆C1:(X+1)2+(y﹣1)2=1上,∴有(y+1+1)2+(x﹣1﹣1)2=1,即(x﹣2)2+(y+2)2=1,∴答案为(x﹣2)2+(y+2)2=1.13.若直线y=﹣x+b与曲线x=恰有一个公共点,则b的取值范围是.【考点】曲线与方程.【分析】曲线x=即x2+y2=1(x≥0)表示一个半径为1的半圆,分类讨论求得当直线y=﹣x+b与曲线x=即恰有一个公共点时b的取值范围.【解答】解:曲线x=即x2+y2=1(x≥0)表示一个半径为1的半圆.当直线y=﹣x+b经过点A(0,﹣1)时,求得b=﹣1,当直线y=﹣x+b经过点B(0,1)时,求得b=1,当直线和半圆相切于点D时,由圆心O到直线y=﹣x+b的距离等于半径,可得=1=1,求得b=,或b=﹣(舍去).故当直线y=﹣x+b与曲线x=即有一个公共点时b的取值范围是,故答案为.14.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线4x﹣3y+c=0的距离为1,则实数c的取值范围是(﹣5,5).【考点】直线与圆相交的性质.【分析】由条件求出圆心,求出半径,由数形结合,只需圆心到直线的距离圆心到直线的距离小于半径和1的差即可.【解答】解:圆x2+y2=4的圆心为O,半径等于2,圆心到直线的距离d=,要使圆x2+y2=4上有且只有四个点到直线4x﹣3y+c=0的距离为1,应有<2﹣1,即﹣5<c<5,故答案为(﹣5,5).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知△ABC中,顶点A(2,2),边AB上的中线CD所在直线的方程是x+y=0,边AC上的高BE所在直线的方程是x+3y+4=0,求BC所在直线.【考点】直线的一般式方程.【分析】先由AB的中点公式求出B点的坐标,再由AC与BE的交点求出C点的坐标,从而求出直线BC的方程.【解答】解:由题意可设B(﹣3a﹣4,a),则AB的中点D(,)必在直线CD上,∴+=0,∴a=0,∴B(﹣4,0),又直线AC方程为:y﹣2=3(x﹣2),即y=3x﹣4,由得,C(1,﹣1).则BC所在直线为x+5y+4=0.16.如图,在正四棱柱ABCD﹣A1B1C1D1中,E为DD1的中点,求证:(1)求证:BD1∥平面EAC;(2)平面BDD1⊥平面AB1C.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)记AC与BD交于点O,连接EO.证明BD1∥OE,然后证明BD1∥平面EAC.(2)通过DD1⊥AC,AC⊥BD,推出AC⊥平面BDD1,然后证明平面EAC⊥平面BDD1.【解答】证明:(1)记AC与BD交于点O,连接EO.∵O,E分别是BD,DD1的中点,∴BD1∥OE…∵OE⊂平面EAC,BD1⊄平面EAC,∴BD1∥平面EAC…(2)∵DD1⊥平面ABCD,AC⊂平面ABCD,∵DD1⊥AC…又∵AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1…∵AC⊂平面EAC,∴平面EAC⊥平面BDD1…17.(1)已知△ABC顶点A(4,4),B(5,3),C(1,1),求△ABC外接圆的方程.(2)求圆心在x轴上,且与直线l1:4x﹣3y+5=0,直线l2:3x﹣4y﹣5=0都相切的圆的方程.【考点】圆的一般方程.【分析】(1)由题意设出圆的一般式方程,把三点的坐标代入,求出D、E、F的值得答案;(2)设所求圆的圆心为(a,0),半径为r(r>0),则圆的方程为(x﹣a)2+y2=r2,由圆心到直线的距离列式求得a,r的值得答案.【解答】解:(1)设所求圆的方程为x2+y2+Dx+Ey+F=0,∵点A,B,C在所求的圆上,∴,解之得.故所求圆的方程为x2+y2﹣6x﹣4y+8=0;(2)设所求圆的圆心为(a,0),半径为r(r>0),则圆的方程为(x﹣a)2+y2=r2,则由题设知:,解得或.∴所求圆的方程为x2+y2=1,或(x+10)2+y2=49.18.如图,在正三棱柱ABC﹣A1B1C1中,D是边BC上异于C的一点,AD⊥C1D.(1)求证:AD⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:平面A1EB∥平面ADC1.【考点】直线与平面垂直的判定;平面与平面平行的判定.【分析】(1)由于正三棱柱中,CC1⊥平面ABC,得到AD⊥CC1又已知AD⊥C1D,利用线面垂直的判断定理得到结论.(2)连结A1C,交AC1于O,连结OD,推导出OD∥A1B,由点E是B1C1的中点,可得BDEC1,即BE∥DC1,由BE∩A1B=B,DC1∩OD=D,即可证明平面A1EB∥平面ADC1.【解答】(满分为14分)解:(1)在正三棱柱中,CC1⊥平面ABC,AD⊆平面ABC,∴AD⊥CC1.…又AD⊥C1D,CC1交C1D于C1,且CC1和C1D都在面BCC1B1内,∴AD⊥平面BCC1B1.…(2)连结A1C,交AC1于O,连结OD,∵正三棱柱ABC﹣A1B1C1中,点D在棱BC上,AD⊥C1D.平面C1AD⊥平面B1BCC1,∴D是BC中点,O是A1C中点,∴OD∥A1B,…∵点E是B1C1的中点,D是BC中点,∴BDEC1,∴四边形BDEC1为平行四边形,BE∥DC1,…∵BE∩A1B=B,DC1∩OD=D,且A1B,BE⊂平面A1EB,DC1,OD⊂平面ADC1,∴平面A1EB∥平面ADC1.…19.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A (1,0).(1)若l1与圆C相切,求l1的方程;(2)若l1的倾斜角为,l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标;(3)若l1与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时l1的直线方程.【考点】点与圆的位置关系;中点坐标公式;点到直线的距离公式.【分析】(1)通过直线l1的斜率存在与不存在两种情况,利用直线的方程与圆C相切,圆心到直线的距离等于半径,判断直线是否存在,求出k,即可求l1的方程;(2)l1的倾斜角为,直接求出l1的方程,利用直线l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标,直接转化为过圆心与直线l1垂直的中垂线方程,解两条直线方程的交点即可;(3)l1与圆C相交于P,Q两点,直线与圆相交,斜率必定存在,且不为0,设直线方程为kx﹣y﹣k=0,求出圆心到直线的距离,弦长,得到三角形CPQ的面积的表达式,利用二次函数求出面积的最大值时的距离,然后求出直线的斜率,得到l1的直线方程.【解答】解:(1)解:①若直线l1的斜率不存在,则直线x=1,圆的圆心坐标(3,4),半径为2,符合题意.②若直线l1斜率存在,设直线l1为y=k(x﹣1),即kx﹣y﹣k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即:,解之得.所求直线方程是:x=1,或3x﹣4y﹣3=0.(2)直线l1方程为y=x﹣1.∵PQ⊥CM,∴CM方程为y﹣4=﹣(x﹣3),即x+y﹣7=0.∵∴∴M点坐标(4,3).(3)直线与圆相交,斜率必定存在,且不为0,设直线方程为kx﹣y﹣k=0,则圆.又∵三角形CPQ面积∴当d=时,S取得最大值2.∴.∴直线方程为y=x﹣1,或y=7x﹣7.20.在平面直角坐标系xOy中,已知圆C:x2+y2=r2和直线l:x=a(其中r和a均为常数,且0<r<a),M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为P、Q.(1)若r=2,M点的坐标为(4,2),求直线PQ方程;(2)求证:直线PQ过定点,并求定点的坐标.【考点】直线与圆的位置关系;恒过定点的直线.【分析】(1)通过r=2,M点的坐标为(4,2),求出A1(﹣2,0),A2(2,0).然后推出P、Q坐标,即可求直线PQ方程;(2)证明法一:设A1(﹣r,0),A2(r,0).设M(a,t),求出直线MA1的方程,直线MA1的方程,通过直线与圆的方程联立,求出直线PQ的方程,然后说明经过定点,求定点的坐标.法二:设得A1(﹣r,0),A2(r,0).设M(a,t),求出直线MA1的方程,与圆C的交点P设为P(x1,y1).求出直线MA2的方程,与圆C的交点Q设为Q(x2,y2).点P(x1,y1),Q(x2,y2)在曲线[(a+r)y﹣t(x+r)][(a﹣r)y﹣t(x﹣r)]=0上,有P(x1,y1),Q(x2,y2)在圆C上,求出公共弦方程,说明经过定点,求定点的坐标.【解答】解:(1)当r=2,M(4,2),则A1(﹣2,0),A2(2,0).直线MA1的方程:x﹣3y+2=0,解得.…直线MA2的方程:x﹣y﹣2=0,解得Q(0,﹣2).…由两点式,得直线PQ方程为:2x﹣y﹣2=0.…(2)证法一:由题设得A1(﹣r,0),A2(r,0).设M(a,t),直线MA1的方程是:y=(x+r),直线MA2的方程是:y=(x﹣r).…解得.…解得.…于是直线PQ的斜率k PQ=,直线PQ的方程为.…上式中令y=0,得x=,是一个与t无关的常数.故直线PQ过定点.…证法二:由题设得A1(﹣r,0),A2(r,0).设M(a,t),直线MA1的方程是:y=(x+r),与圆C的交点P设为P(x1,y1).直线MA2的方程是:y=(x﹣r);与圆C的交点Q设为Q(x2,y2).则点P(x1,y1),Q(x2,y2)在曲线[(a+r)y﹣t(x+r)][(a﹣r)y﹣t(x﹣r)]=0上,…化简得(a2﹣r2)y2﹣2ty(ax﹣r2)+t2(x2﹣r2)=0.①又有P(x1,y1),Q(x2,y2)在圆C上,圆C:x2+y2﹣r2=0.②①﹣t2×②得(a2﹣r2)y2﹣2ty(ax﹣r2)﹣t2(x2﹣r2)﹣t2(x2+y2﹣r2)=0,化简得:(a2﹣r2)y﹣2t(ax﹣r2)﹣t2 y=0.所以直线PQ的方程为(a2﹣r2)y﹣2t(ax﹣r2)﹣t2 y=0.③…在③中令y=0得x=,故直线PQ过定点.…xx年12月8日]25302 62D6 拖22539 580B 堋38166 9516 锖31191 79D7 秗35041 88E1 裡%27535 6B8F 殏,m (27619 6BE3 毣39144 98E8 飨。

相关文档
最新文档