第2章动力学基本定律
动力学的基本定律

动力学的基本定律动力学是研究物体运动的科学领域,它描述了物体运动的规律和原因。
在动力学中,有三个基本定律被公认为是最重要的。
本文将介绍这三个基本定律并探讨它们在我们日常生活中的应用。
第一定律:牛顿惯性定律牛顿第一定律,也被称为惯性定律,表明一个物体会保持匀速直线运动或保持静止,除非有其他力作用于它。
这意味着物体具有惯性,需要外力才能改变其运动状态。
例如,当你开车突然刹车,乘坐车内的物体会因为惯性而向前运动,直到受到人或座椅的阻止。
这个定律解释了为什么我们在车辆转弯时会倾向于向外侧倾斜。
第二定律:牛顿运动定律牛顿第二定律描述了物体受力时的加速度与所受力的关系。
它的数学表达式为:力等于质量乘以加速度(F=ma)。
这意味着一个物体所受的力越大,它的加速度也会越大。
例如,当你用力推一个小车,你施加在小车上的力越大,小车的加速度就越大。
这个定律也解释了为什么不同质量的物体在受到相同力的作用下会有不同的加速度。
第三定律:牛顿作用-反作用定律牛顿第三定律表明,对于任何一个物体施加的力都会有一个相等大小、方向相反的反作用力。
简而言之,这意味着每个动力学系统都会存在一个等量但方向相反的力对。
例如,当你站在地面上,你对地面施加一个向下的力,地面会对你施加一个同样大小但方向相反的向上的力。
这个定律解释了为什么我们可以行走和奔跑,以及为什么喷气式飞机能够飞行。
这三个基本定律是动力学的基石,在物理学和工程学等领域应用广泛。
它们提供了一种解释和预测物体运动的方法,并为科学家和工程师提供了指导。
无论是建筑设计、车辆制造还是航空航天技术,都离不开这些基本定律。
总结:动力学的基本定律对于理解物体运动至关重要。
牛顿的三个定律揭示了物体运动的规律,并在科学和工程应用中发挥着重要作用。
了解这些定律不仅可以帮助我们理解自然界中的运动现象,而且可以为我们解决实际问题提供一种方法和框架。
在日常生活中,我们可以通过这些定律来解释和理解我们所观察到的各种现象,使我们对物质世界的认识更加深入。
大学物理第2章质点动力学

第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
大学物理第2章动力学(一)牛定律

内容:
1. 动量与牛顿运动定律 2. 单位制和量纲 3. 力学相对性原理和非惯性系 4. 动量定理、动量守恒定律 *5. 变质量物体的运动 6. 功,动能定理 7. 功能原理 机械能守恒定律 8. 碰撞 * 9. 质心,质心运动定理
重点:牛顿运动定律、应用牛顿定律解题 难点:惯性力,变质量物体的运动
2.1 动量与牛顿运动定律
2.1.1 牛顿第一定律、惯性系
任何物体都保持静止的或沿一直线匀速运动 的状态,直到作用在它上面的力迫使它变为这种 状态为止。 数学表述: F 0 , v const .
意义
阐明了“惯性”的概念:任何物体都具有惯性。 • 说明了力的实质:力是物体运动状态改变的原因。 • 指明了“惯性系”:惯性系中才有惯性。
牛顿三定律只适用于宏观、低速领域,当物体的运动速度 接近光速或研究微观粒子的运动时,需要分别应用相对论力 学和量子力学规律。
2.1.4 几种常见的力 在力学中,物体间的相互作用称为力,力 是使物体加速或发生形变的原因。 1.万有引力和重力
万有引力 (存在于任何两个物体之间的吸引力)
m1m 2 m1m 2 er ˆ F G0 r G0 2 2 r r
mg G 0
Mm R
2
mg
g G 0M R
2
2.弹性力
物体在发生形变时产生的力叫弹力 表现形式:
• 正压力或支持力
• 张力,拉力
• 恢复力
在弹性限度内
f = kx
k叫劲度系数 ——胡克定律
3.摩擦力 两个相互接触的物体在沿接触面相对运动时, 或者有相对运动趋势时,在接触面之间产生一对阻 止相对运动的力,叫做摩擦力。 • 静摩擦力: 大小视外力的大小而定,介于0和某 个最大静力摩擦力fS之间。 f S =S N • 滑动摩擦力: f k =k N
动力学的基本定律和应用

动力学的基本定律和应用动力学(dynamics)是研究物体运动的规律以及运动状态变化的学科。
在物理学中,动力学通过基本定律来描述和解释物体运动的方式。
本文将介绍动力学的基本定律,并探讨其在科学研究和技术应用中的具体应用。
一、牛顿第一定律——惯性定律牛顿第一定律也被称为惯性定律,其表述为:“一个物体如果受到合力的作用,将会以匀速直线运动的状态持续下去;一个物体如果不受合力的作用,将会保持静止状态”。
惯性定律在科学研究中具有广泛的应用。
例如,在天文学中,根据惯性定律,科学家可以预测行星、恒星等天体在太空中的运动轨迹,进而研究宇宙演化的规律。
此外,惯性定律也在交通工具设计中发挥着重要作用。
以汽车为例,当车辆突然加速或者减速时,驾驶员和乘客的身体会出现相应的惯性反应,这就是惯性定律的具体表现。
工程师们通过研究惯性定律,设计和改进车辆的安全设施,以减轻事故发生时乘员受伤的可能性。
二、牛顿第二定律——运动定律牛顿第二定律是动力学中最重要的定律之一,它可以描述物体在受力作用下的运动状态。
牛顿第二定律的公式表述为:F = ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律可以用于解释各种物体运动的现象。
例如,当足球在比赛中被踢出一脚时,根据牛顿第二定律,可以计算出足球在空中的运动轨迹和速度。
运动员在进行射门时,也需要根据牛顿第二定律调整自己的动作和力度,以确保足球获得期望的运动状态。
此外,牛顿第二定律也在工程学领域得到广泛应用。
例如,建筑物的结构设计中考虑到重力和风力等外力对建筑物的作用,通过应用牛顿第二定律,工程师可以计算建筑物在不同条件下的受力情况,从而保证建筑物的稳定性和安全性。
三、牛顿第三定律——作用与反作用定律牛顿第三定律也被称为作用与反作用定律,其表述为:“对于两个物体之间的相互作用,作用力与反作用力大小相等、方向相反,且分别作用于两个物体上”。
作用与反作用定律在现实生活中随处可见。
大学物理第2章-质点动力学基本定律

势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
大学物理学第2章 动力学

受力分析涉及变力的情况
例1 如图长为 l 的轻绳,一端系质量为 m 的小球,
另有一水端平系 速于 度定v0点,o求,小t球在0任时意小位球置位的于速最率低及位绳置的,张并力具.
解 FT mg cos ma n
mg sin ma
FT mg cos mv2 / l
mm
1.图中A为定滑轮,B为动滑轮,三个物体的质量分
别 为 m1=200g , m2=100g , m3=50g , 滑 轮 及 绳 的 质 量 以及摩擦均忽略不计。求:
(1)每个物体的加速度;
(2)两根绳子的张力T1与T2。
A
T T 求a1:
a1 T1
a1
m1g (m2 m3 )g m1 m2 m3 a1 m1
直角坐标系:
F Fxi Fy j Fzk
a
axi
a
y
j
az
k
Fx max
Fy may Fz maz
Fx
max
m dvx dt
d2x m dt2
Fy ma y
m dvy dt
m
d2 dt
y
2
Fz
ma z
m dvz dt
(a) F=(m+M)g
(b) F>(m+M)g
F
(c) F=0
(d) F<(m+M)g
(d)
m M
如图所示,一只质量为m的猫,抓住一根竖直悬吊的 质量为M的直杆。当悬线突然断开时,猫沿杆竖直向 上爬,以保持它离天花板的高度不变。在此情况中, 杆具有的加速度应是下面的哪一个答案?
大学物理第2章动力学基本定律选择题

(D) 动量和角动量守恒,但机械能是否守恒不能断定
34. 一质量为 m0 的弹簧振子,水平放置静止在平衡位置,如图 2-1-34 所示.一质量为
m
的子弹以水平速度
v
射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势
能为
[
] (A) 1 mv2
2
m2v2 (B) 2(m0 m)
m0 v B
25. 如图 2-1-25 所示,劲度系数 k 1000 N m-1 的轻质弹簧一端固定
在天花板上, 另一端悬挂一质量为 m = 2 kg 的物体, 并用手托着物体使弹簧
无伸长.现突然撒手, 取 g 10 m s-2 , 则弹簧的最大伸长量为
[ ] (A) 0.01 m
(B) 0.02 m
图 2-1-30
(C) 1 2
(D) 1 4
31. 关于功的概念有以下几种说法: (1) 保守力做正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点做的功为零. (3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零.
在上述说法中
[ ] (A) (1)、(2)是正确的
gR 2
(R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力,
r
对于发射速度 v0
[
] (A) v 越小相应的 v0 越大
(B) v 1 v0
(C) v 越大相应的 v0 越大
(D) v v0
28. 设一子弹穿过厚度为 l 的木块其初速度大小至少为 v.如果木块的材料不变, 而厚度
细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间
m1
动力学三大基本定律

动力学三大基本定律牛顿的物理学思想主要是在绝对空间建立了经典物理学体系,这包括动力学三大定律,在前人的工作上结合他杰出的数学思维发现了引力定律,实现了天上的物理学和地上的物理学的一个大综合。
牛顿的宇宙观为,时间是绝对的、单向的,空间是均匀无限的。
牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。
物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。
物体的这种性质称为惯性。
所以牛顿第一定律也称为惯性定律。
第一定律也阐明了力的概念。
明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。
因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。
在日常生活中不注意这点,往往容易产生错觉。
牛顿第二定律:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
第二定律定量描述了力作用的效果,定量地量度了物体的惯性大小。
它是矢量式,并且是瞬时关系。
物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。
真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的质量如何,都具有的相同的加速度。
因此在作自由落体时,在相同的时间间隔中,它们的速度改变是相同的。
牛顿第三定律:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。
要改变一个物体的运动状态,必须有其它物体和它相互作用。
物体之间的相互作用是通过力体现的。
并且指出力的作用是相互的,有作用必有反作用力。
它们是作用在同一条直线上,大小相等,方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 动力学基本定律
习 题
2.1 用力F 推水平地面上一质量为M 的木箱,如图所示。
设力F 与水平面的夹角为α,木箱与地面间的滑动摩擦系数和静摩擦系数分别为µk 和µs 。
求:
(1)要推动木箱,F 至少应多大?此后维持木箱匀速前进的力F 要多大?
(2)证明当α角大于某一定值α0时,无论用多大的力F ,也不能使木箱前进,α0是多大?
2.2 设质量m =10kg 的小球挂在倾
角α=30°的光滑斜面上,
如图所示。
求:
(1)当斜面以加速度
g
a 31=
沿图
所示的方向运动时,绳中的张力及小球对斜面的正压力各是多大?
(2)当斜面的加速度至少为多大
时,小球对斜面的正压力为零?
2.3 如图所示,A 为定滑轮,B 为动滑轮,三个物体的质量分别为:
m 1=200g ,m 2=100g ,m 3=50g 。
求:
(1)每个物体的加速度;
(2)两根绳中的张力T 1和T 2,假定滑轮和绳的质量以及绳的伸长和摩擦力均忽略。
2.4 如图所示,物体A 和B 的质量分别为10kg 和5kg ,A 与桌面间摩擦系数为0.20,为防止A 移动,C 的最小质量是多少?如果撤去C ,试求此时系统
的加速度。
滑轮的质量及摩擦不计。
2.5 如图所示,卡车从静止开始作匀加速直线运动。
在10s 内速率达到20m/s 。
车上一质量为5kg 的木箱离卡车后缘S =3m ,当t =0 时,木箱开始滑动,木箱与车厢的摩擦系数为 0.15。
求:
(1)木箱相对地面的加速度;
(2)木箱到达卡车后缘所经历的时间; (3)木箱落地时速度的水平分量。
2.6 质量为M 的三角形木块,放在光滑的水平面上,另一质量为m
的方木块放在斜面上,如图所示。
如果两木块间的摩擦可忽略不计,求m 相对于M 的加速度。
2.7 在与速率成正比的阻力影响下,一个质点具有加速度a=-0.2v 。
求需多长时间才能使质点的速率减小到原来速率的一半。
2.8 光滑的桌面上放置一固定的圆环带,半径为R 。
一物体贴着环带内侧运动,如图所示。
物体与环带间的滑动摩擦系数为µk 。
设在某一时刻物体经过A 点时的速率为v 0。
求此后t 时刻物体的速率和从A 点开始所经历的路程。
2.9 跳伞员与装备的质量共为m ,从伞塔上起跳时立即张伞,可粗略地认为张伞时速度为零,此后空气阻力与速率平方成正比,
即f=k v2,求跳伞员的运动速率v随时间t变化的规律和极限速率v T。
2.10 在水平面上以速率v行驶的汽车,当与前面一堵墙相距为d时,司机才发现必须制动或转弯,设车轮与地面之间的静摩擦系数为µs,问若司机制动停车(不转弯),他需要的最小距离d1为多大?若他作90°拐弯(不制动),他需要的最小距离d2又是多大?哪种办法最安全?
2.11 地球自转是逐渐变慢的。
在1987年完成365次自转比1900年长1.14s,求在1900年至1987年这段时间内,地球自转的平均角加速度。
2.12 水分子的形状如图所示,从光谱分析得知水分子对AA′轴的转动惯量是J A A′=1.93×10-47kg・m2,对BB′轴的转动惯量是J BB′=1.14×10-47kg・m2。
试由此数据和各原子的质量求出氢和氧原子间的距离d和夹角θ。
假设各原子都可当作质点处理。
2.13 一半圆形细棒,半径为R,质量为m,如图所示。
AA
′过半圆形圆心且在半圆形平面内。
试求细棒对轴AA′的转动
惯量。
2.14 如图所示。
两物体质量分别为m1和m2。
定滑轮的质量为m,半径为r,可视作均匀圆盘。
已知m2与桌面间的滑动摩擦系数为µk,求m1下落的加速度和两段绳子中的张力各是多少?设绳子和滑轮间无相对滑动,滑轮轴受的摩擦力忽略不计。
2.15 如图所示,两个鼓轮的半径分别为R1和R2,质量分别为M1和M2。
二者都可视为均匀圆柱体而且同轴固结在一起。
鼓轮可以绕一水平固定轴自由转动。
今在两鼓轮上各绕以细绳,绳端分别挂上质量是m1和m2的两个物体。
求在重力作用下,m2下落时鼓轮的角加速度。
2.16 飞轮的质量m=60kg,半径R=0.25m,绕其水平中心轴O
转动,转速为900r/min。
现利用一制动用的闸杆,在闸杆的一端加
一竖直方向的制动力F,可使飞轮减速。
已知闸杆的尺寸如图所示,
闸瓦与飞轮之间的摩擦系数µ=0.4,飞轮的转动惯量可按匀质圆盘计算。
(1)设F=100 N,问可使飞轮在多长时间内停止转动?在这段时间里,飞轮转了几转?
(2)如要在2s内使飞轮减速一半,需加多大的制动力F?
2.17 一
质量为m,长
为L的匀质细
杆,在水平面
上绕其端点O
转动,如图所
示。
若初始角
速度为ω0,杆与水平面的滑动摩擦系数为µ。
求:
(1)细杆所受的摩擦力矩M ;
(2)若细杆只受此摩擦力矩的作用,它转动多少圈而静止?
2.18 一根均匀米尺,用钉子在60cm 刻度线处被钉到墙上,使它们可以在竖直平面内自由转动。
先用手使米尺保持水平,然后释放。
求刚释放时米尺的角加速度和米尺到竖直位置时的角加速度各是多大。
部分习题答案
2.1 (1)αµαµsin cos s s Mg −;αµαµsin cos k k Mg
− (2)
k tg µ1
1
− 2.2 (1) 77.3N 68.5N; (2) 17.0m/s 2
2.3 (1)a 1=1.96m/s 2向下; a 2=1.96m /s 2向下;
a 3=5.88m/s 2向上
(2) T 1=1.57N ; T2=0.784N 2.4 15kg, 1.96m/s 2 2.5 (1)μg ; (2) 3.36s; (3) 4.95m/s
2.6
θθ
2sin 1sin )1(M m M m
g ++ 2.7 3.47s
2.8 t v R R v k µ00+; 1ln[0R t v R
k k
µµ+ 2.9 )1/()1(22+−=′
′
t t t t
T e
e
v v
其中
k mg v T =
kg m t =′ 2.11 -9.58×10-22rad/s 2
2.12 d=9.59×10-11m; θ=104°54′
2.13 2
2
1mR 2.14
g
m
m m m m a k 21
)(2121++−=µ 2.15
222221111122)21
()21()(R m M R m M g
R m R m +++−=
β 2.16 (1)7.07s 约53转 (2)177N
2.17 (1)mgL
M µ21= (2)
g L n πµω62
0= 2.18 β=10.5rad/s 2 ω=4.58rad/s。