随机过程孙应飞第一章习题答案1-5
《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
解:{}18,,4,3 =S 。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
解: {}10,,4,3 =S 。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
解: {} ,11,10=S 。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。
(6) 甲乙二人下棋一局,观察棋赛的结果。
解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。
如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。
(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。
解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。
脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。
也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。
图题1-2画出了它的样本函数。
试求)(t ξ的一维概率密度)(x f t ξ。
解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。
中国科学大学随机过程(孙应飞)复习题及标准答案汇总

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。
解:由定义,有:)(2)0()0()}()({2)0()0()]}()()][()({[2)]([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D(2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马尔可夫过程。
证明:我们要证明:n t t t <<<≤∀Λ210,有})()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P Λ形式上我们有:})()(,,)(,)({})()(,,)(,)(,)({})(,,)(,)({})(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤=======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P ΛΛΛΛΛ因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2,,2,1,)(-=n j t X j Λ相互独立即可。
随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。
在学习随机过程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。
下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。
1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。
解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。
由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。
因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。
根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。
将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。
所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。
2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。
解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。
根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。
根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。
将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。
所以,该过程的均值为μ。
根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。
将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。
随机过程习题答案及知识点

协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。
求X(t)的一维和二维分布。
解 先求一维分布。
当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。
这亦是随机过程X(t)的一维分布。
再求二维分布。
当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。
则其线性变换也服从正态分布。
且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。
P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。
X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。
随机过程课后题答案

《随机信号分析》复习备考题第一章概率论简介第二章随机信号概论参考答案:(1))(t X 的一个样本函数的草图(2)时间连续,状态离散,离散型随机过程。
(3)一维概率密度函数:nT t T n A x A x t x p X <<-++-=)1(),(21)(21),(δδ二维概率密度函数:[][]⎪⎩⎪⎨⎧>-<<<-++-++-<<-+++--=nTt T n t nT t T n A x A x A x A x nT t t T n A x A x A x A x t t x x p X 22122112121212121)1(,)1(,)()()()(41,,)1(),()(21)()(21),;,(或δδδδδδδδ参考答案:[][]625.3341683241181)()()(111=⨯+⨯+⨯+⨯==∑t x P t x t X E[][]625.2141283441581)()()(222=⨯+⨯+⨯+⨯==∑t x P t x t X E[]()875.7)13(41)62(83)42(41)51(81,)()(212121=⨯⨯+⨯⨯+⨯⨯+⨯⨯==∑x x P x x t X t X E )1()3(41)2()6(83)4()2(41)5()1(81),;,(212121212121--+--+--+--=x x x x x x x x t t x x p X δδδδδδδδ参考答案:Φ的概率密度为⎪⎩⎪⎨⎧≤≤=Φ其它,020,21)(πϕπϕp均值:[][]021)cos()cos()()(2000=Φ⋅Φ+=Φ+==⎰d t a t a E t X E t m X ππωω 方差:01(t)cos(t)cos(t)X a b ωω=+ 自相关函数:[][12120102011202110102011202(,)()()cos()cos()cos()cos()cos()cos()cos()cos()][cos()cos()][cos()X R t t E X t X t E a t a t a t b t a t b t E a t a t E a t b t E a t b ωωωωωωωωωωω==+Φ⋅+Φ++Φ⋅+Φ++Φ⋅+Φ=+Φ⋅+Φ++Φ⋅+Φ++Φ⋅[[][][]1010*******01020102111201022201211cos(cos()cos()][cos()cos()cos()cos(2)cos()cos(2)22cos ()cos (22E a t a t E b t b t a b E t t t t E t t t t a b t t t t ωωωωωωωωωωωωωωω≈+Φ⋅+Φ++Φ⋅+Φ=-+++Φ+-+++Φ=-+-22201)cos ()cos ()22a b ωτωτ=++第三章平稳随机过程参考答案:0)sin(cos )cos(21)(21)(000lim lim lim=Φ=Φ+==∞→-∞→-∞→⎰⎰T T A dt t A T dt t x T t x T TT T T T T ωωω)cos(2)cos()cos(21)()(020002limτωτωωωτA dt t t A T t x t x T T T =Φ++Φ+=+⎰-∞→由于A 和Φ为统计独立的随机变量,于是有[][][][]021)cos()cos()(2000=ΦΦ+⋅=Φ+⋅=⎰ππωωd t A E t E A E t X E[][][][][][])cos(21)22cos()cos(21)cos()cos()()(),(020*******τωτωωτωτωωωττA E t E A E t t E A E t X t X E t t R X =Φ+++⋅=Φ++Φ+⋅=+=+由图3.5可看出,不同样本函数的A 不同,则相应的时间平均自相关函数)()(τ+t x t x 也不同,),()()(ττ+=+t t R t x t x X 不能以概率1成立,因此该随机过程不具有各态历经性。
中国科学大学随机过程(孙应飞)复习题及答案

中国科学大学随机过程(孙应飞)复习题及答案中国科学大学随机过程(孙应飞)复习题及答案(1)设是一个实的零均值二阶矩过程,其相关函数为,且是一个周期为的函数,即,求方差函数。
解:由定义,有:(2)试证明:如果是一独立增量过程,且,那么它必是一个马尔可夫过程。
证明:我们要证明:,有形式上我们有:因此,我们只要能证明在已知条件下,与相互独立即可。
由独立增量过程的定义可知,当时,增量与相互独立,由于在条件和下,即有与相互独立。
由此可知,在条件下,与相互独立,结果成立。
(3)设随机过程为零初值()的、有平稳增量和独立增量的过程,且对每个,,问过程是否为正态过程,为什么?解:任取,则有:由平稳增量和独立增量性,可知并且独立因此是联合正态分布的,由可知是正态过程。
(4)设为为零初值的标准布朗运动过程,问次过程的均方导数过程是否存在?并说明理由。
解:标准布朗运动的相关函数为:如果标准布朗运动是均方可微的,则存在,但是:故不存在,因此标准布朗运动不是均方可微的。
(5)设,是零初值、强度的泊松过程。
写出过程的转移函数,并问在均方意义下,是否存在,为什么?解:泊松过程的转移率矩阵为:其相关函数为:,由于在,连续,故均方积分存在。
(6)在一计算系统中,每一循环具有误差的概率与先前一个循环是否有误差有关,以0表示误差状态,1表示无误差状态,设状态的一步转移矩阵为:试说明相应齐次马氏链是遍历的,并求其极限分布(平稳分布)。
解:由遍历性定理可知此链是遍历的,极限分布为。
(7)设齐次马氏链一步转移概率矩阵如下:(a)写出切普曼-柯尔莫哥洛夫方程(C-K方程);(b)求步转移概率矩阵;(c)试问此马氏链是平稳序列吗?为什么?解:(a)略(b)(c)此链不具遍历性(8)设,其中为强度为的Poission过程,随机变量与此Poission过程独立,且有如下分布:问:随机过程是否为平稳过程?请说明理由。
由于:故是平稳过程。
(9)设,其中与独立,都服从(a)此过程是否是正态过程?说明理由。