平面向量等和线法 ,结合高考实例应用,快速秒杀
平面向量基本定理以及“等和线”的应用

突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
问题的提出
平面向量与代数、几何融合的题目综合性强, 难度大,考试要求高。近年,以“等和线”为背景 的试题层出不穷。考生在解决此类问题时,往往因 思路不清、运算繁琐而失分。
本专题将在平面向量基本定理的基础上推导得 出“等和线”解题的原理,并利用“等和线”原理 解决与向量系数有关的最值和范围有关的问题。
所以, 3 y, 3x 3x 3 y 3
当点P与A点重合时,显然有 : 0,所以,选C.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习:如图,四边形OABC是边长为1的正方形,点D在OA 的延长线上,且OD 2,点P为BCD内(含边界)的动点,
uuur uuur uuur
(二)起点不同,平移改造基底型
F
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
(三)合理调节、变换基底型 例题:
1 2
uuur uuur PA, PB1
1 3
uuur PB
.
由
2x 2x 3y
3y 2x 3y
1
得点
A1 ,
B1,
D
共线,即点
D
在直线
A1 B1
上.
uuur uuur 再由 PC 5PD 知点 C 的轨迹就是直线 A2B2 ,其中 PA2 5PA1, PB2 5PB1 .如下图:
第6讲 平面向量等和线定理求系数和问题(解析版)

第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题 ①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数; 【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2OABCP P 1【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系, 则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC =,1CD =,BD ∴∴1122BC CD BD r =,r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为1θ+2)θ+,AP AB AD λμ=+,1θ∴+2)(1θλ+=,0)(0μ+,2)(λ=,2)μ,∴1θλ+=22θμ+=,2sin()2λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAPAD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【答案】A 【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C 【解析】 【分析】设AN t AM =,()01t ≤≤,当0=t 时, 可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC ttλμ=+,根据M 、B 、C 三点共线,可得1t t,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM =,()01t ≤≤,当0=t 时,0AN =,所以0AB AC λμ+=, 所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+(λ,μ∈R ), 所以B t A A A M C λμ=+,即B A A M AC ttλμ=+,因为M 、B 、C 三点共线,所以1t t,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1]. 故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围. 【详解】∵//OD AB ,OP xOA yOB =+,由向量加法的平行四边形法则,OP 为平行四边形的对角线, 该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________. 【答案】[]1,3 【解析】 【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围. 【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,2OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭. 因为OC xOA yOB =+,所以1cos 2sin x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos x y θθθ⎧=⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ+=. 因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,所以s 3co 3in x y θθ+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos1333332x y ππ===+最小. 所以3x y +的取值范围是[]1,3. 故答案为:[]1,3. 【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4 BC .2 D【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值. 【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==, 以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .BC =(),M x y 满足()()22211x y -+-=,设11x y αα⎧=+⎪⎨=+⎪⎩(α为参数,π3π44α-≤≤),依题意AM AB AC λμ=+,即()()()1,12,00,2ααλμ=+,()()1,12,2ααλμ=,λμ⎧⎪⎪⎨⎪⎪⎩,π22sin π4sin 124αλμα⎛⎫++ ⎪⎛⎫⎝⎭+===++ ⎪⎝⎭, 所以当πππ,424αα+==时,λμ+取得最大值为2. 故选:C2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .CD .2【答案】A 【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.【答案】5 【解析】 【分析】根据||||||AC AQ AD ≤≤及||1||||1AQ AP AQ -≤≤+得到1||5AP ≤≤,根据平面向量知识得到22||4()12AP m n mn =+-,利用2()4m n mn +≤可求出结果.【详解】在边长为2的正六边形ABCDEF 中,AC CD ⊥,||224AD =⨯=, 所以||||4AQ AD ≤=,当且仅当Q 与D 重合时,等号成立,又||||1AP AQ ≤+,即||415AP ≤+=,当||5AP =时,P 是AD 的延长线与圆Q 的交点,此时,由AP mAB nAF =+可知,m n =.因为AP mAB nAF =+,且2π,3AB AF <>=, 所以22222||||2||||||AP m AB mn AB AF n AF =⋅+⋅⋅+⋅22144222()2m n mn =++⋅⋅⋅-22444m n mn =+- 24()12m n mn =+-,所以2211()||312mn m n AP =+-,结合图形可知,0,0m n >>,由2()0m n -≥,得2m n mn +≥,即2m n mn +≥,即2()4m n mn +≤,当且仅当m n =时等号成立,所以22211()()||3124m n m n AP ++-≤,所以||m n AP +≤,又||5AP ≤,时,等号成立, 所以5m n +≤,当且仅当m n =时,等号成立. 即m +n 的最大值为5. 故答案为:5.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,y R ),则x y +的最小值为( )A .12 B .23C .32D .2【答案】D 【解析】 【分析】设OA 与BC 交点为E ,则AE AB AC λμ=+其中1λμ+=,由于()RAO xAB y AC AB AC R OEλμ=+=+-,得()R R x y R OE R OE λμ+=+=--,因为2ROE R ≤< 故x y +的最小值可得.【详解】设OA 与BC 交点为E ,设OE m =,圆的半径为R ,D 为BC 中点,如图所示:则RAO AE R m=-,设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+= 所以()R AO xAB y AC AB AC R m λμ=+=+-,故()R Rx y R m R mλμ+=+=-- 因为120A ∠=︒,则60COD ∠=︒所以1cos602OD R R =︒=则2R m R ≤< ,故22R RR R m R ≥=-- 所以x y +的最小值为2 故选:D 【点睛】设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+=,得()R Rx y R m R mλμ+=+=--是解题的关键. 5.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在 以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]【答案】B解析:由等和线性质知:连接AB ,当C 点在B A 或点时,()1min =+y x ;作AB 的平行线,当与AB 相切时,当C 点在切点时,()2max =+y x6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】根据0OA OB OC ++=可知O 为ABC ∆的重心;根据点M 在OBC ∆内,判断出当M 与O 重合时,2λμ+最小;当M 与C 重合时,2λμ+的值最大,因不含边界,所以取开区间即可.【详解】因为O 是ABC ∆内一点,且0OA OB OC ++=所以O 为ABC ∆的重心M 在OBC ∆内(不含边界),且当M 与O 重合时,2λμ+最小,此时 ()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 所以11,33λμ==,即21λμ+= 当M 与C 重合时,2λμ+最大,此时AM AC =所以0,1λμ==,即22λμ+=因为M 在OBC ∆内且不含边界所以取开区间,即()21,2λμ+∈所以选B【点睛】本题考查了向量在三角形中的线性运算,特殊位置法的应用,属于难题. 7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________. 【答案】54【解析】【分析】由12AM =得出22144λμ+=,即224+161λμ=,且由0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭,然后利用辅助角公式可求出23λμ+的最大值.【详解】 2A π∠=,1AB =,2AC =,AM AB AC λμ=+,则0AB AC ⋅=,且12AM =, 则()222222221244AM AB AC AB AB AC AC λμλλμμλμ=+=+⋅+=+=, 点M 在ABC 内,则0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭, ()3523cos sin sin 44λμθθθϕ∴+=+=+,其中4tan 3ϕ=, 因此,4λμ+的最大值为54. 故答案为:54. 8.如图,扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________【解析】【分析】根据题意将OC xOA yOB =+,两边同时平方可得221x y =+,再三角代换cos sin [0,]2x y πααα==∈,,,利用三角函数的性质即得.【详解】由题意得,0OA OB ⋅=,1OA OB ==,1OC =,由OC xOA yOB =+,等式两边同时平方,得2OC =22222x OA y OB xy ++OA OB ⋅, 所以221x y =+,令AOC α∠=,则cos sin [0,]2x y πααα==∈,,,则22cos sin )x y αααθ+=+=+,其中sin cos [0,]2πθθθ==∈, 因为2πθαθθ≤+≤+,sin()1αθ≤+≤,所以1)αθ≤+≤即2x y +。
平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。
2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.2017全国3卷(理)T12 1.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .22 C .5D .22020年江苏省高考2.在中,,,,在边上(不与端点重合).延长到,使得.当为中点时,的长度为 ;若为常数且,则的长度是 .ABC ∆3BC =4AC =90ACB ∠=︒D AB CD P 9CP =D AB PD 3()(2PC mPA m PB m =+−0m ≠3)2m ≠BD题型一 向量共线定理:构造方程组求系数2023·深圳二模1.已知OAB 中,OC CA =,2OD DB =,AD 与BC 相交于点M ,OM xOA yOB =+,则有序数对(,)x y =( )A .11,23⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .11,24⎛⎫ ⎪⎝⎭D .11,42⎛⎫ ⎪⎝⎭江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)2.在ABC 中,已知2BD DC =,CE EA =,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y += .3.在ABC 中,3BC BD =,2CF FA =,E 是AB 的中点,EF 与AD 交于点P ,若AP mAB nAC =+,则m n +=( ) A .37 B .47 C .67D .1题型二 向量共线定理:结合不等式求最值2024届·湖南师大附中月考(二)4.ABC 中,D 为AC 上一点且满足13AD DC =,若P 为BD 上一点,且满足,,AP AB AC λμλμ=+为正实数,则下列结论正确的是( )A .λμ的最小值为116B .λμ的最大值为1C .114λμ+的最小值为4D .114λμ+的最大值为165.如图,在ABC 中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N .若AM AB λ=,(0,0)AN AC μλμ=>>,则1λμ−的最小值是 .重点题型·归类精讲2024届·重庆市西南大学附中、重庆育才中学十月联考6.(多选)在三角形ABC 中,点D 足AB 边上的四等分点且3AD DB =,AC 边上存在点E 满足()0EA CE λλ=>,直线CD 和直线BE 交于点F ,若()0FC DF μμ=>,则( )A .1344CD CA CB =+B .4λμ=C .2164λμ+的最小值为17D .49CF EA CD CA ⋅≤⋅的延长线交于点F,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A. 3144EB EF EA =+ B. 14λμ=C. 11λμ+的最大值为1 D. 49EC AD EB EA⋅≥−⋅题型三 等和线:求系数和最值,范围8.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +的取值范围是________.FEDCB AFED9.如图,在直角梯形ABCD 中,AD AB ⊥,//AB DC ,1AD DC ==,2AB =,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设(,R)AP AD AB λμλμ=+∈,则λμ+取值范围是 .10.给定两个长度为3的平面向量OA 和OB ,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若=OC xOA yOB +,其中,x y R ∈,则x y +的最大值是_____;2x y +的最大值是______.11.如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y R =+∈,则2x+y 的最小值为( )A .-1B .1C .2D .312.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )OACE BDCPA .4B .3C .2D .213.直角梯形中ABCD ,ABD BC AD CD CB ∆⊥,,//是边长为2的正三角形,P 是平面上的动点,1||=CP ,),(R AB AD AP ∈+=μλμλ设,则μλ+的值可以为( ) A. 0 B.1 C.2 D.3专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
平面向量等值线法

技巧八平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法。
二、基本理论(一)平面向量共线定理三点共线;反之亦然,则若已知C B A ,,1,=++=μλμλ(二)等和线平面内一组基底OB OA ,及任一向量OP ,()R ∈+=μλμλ,,若点P 在直线AB 上或在平行于AB 的直线上,则)(定值k =+μλ,反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线。
(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,()1,0∈k ;(3)当直线AB 在O 点和等和线之间时,()∞+∈,1k ;(4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数;(6)定值k 的变化与等和线到O 点的距离成正比;(三)等差线平面内一组基底,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则)(定值k =-μλ,反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线。
(1)当等差线恰为直线OC 时,0=k ;(2)当等差线过A 点时,1=k ;(3)当等差线在直线OC 与点A 之间时,()1,0∈k ;(4)当等差线与BA 延长线相交时,()∞+∈,1k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数;(四)等积线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内时,0>k ;(2)当双曲线的两支都不在AOB ∠内时,0<k ;(3)特别的,若()()b a OB b a OA -==,,,,点P 在双曲线)0,0(12222>>=-b a b y a x 时,41=k ;(五)等商线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在过O 点(不与OA 重合)的直线上,则)(定值k =μλ,反之也成立。
20240905-专题3:平面向量之等和线

专题3 平面向量的等和线根据平面向量基本定理,如果P A →,PB →为同一平面内两个不共线的向量,那么这个平面内的任意向量PC→都可以由P A →,PB →唯一线性表示:PC →=xP A →+yPB →.特殊地,如果点C 正好在直线AB 上,那么x +y =1,反之如果x +y =1,那么点C 一定在直线AB 上.于是有三点共线结论:已知P A →,PB →为平面内两个不共线的向量,设PC →=xP A →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.以上讨论了点C 在直线AB 上的特殊情况,得到了平面向量中的三点共线结论.下面讨论点C 不在直线AB 上的情况.如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xP A →+yPB →(x ,y ∈R ).1.平面向量等和线定义(1)当直线DE 经过点P 时,容易得到x +y =0.(2)当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λP A →+μPB →(λ,μ∈R ),则λ+μ=1.由△P AB 与△PED 相似,知必存在一个常数k ∈R ,使得PC →=kPF →(其中k =|PC ||PF |=|PE ||P A |=|PD ||PB |),则PC →=kPF →=kλP A →+kμPB →.又PC →=xP A →+yPB →(x ,y ∈R ),所以x +y =kλ+kμ=k .以上过程可逆.在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.2.平面向量等和线定理平面内一组基底PA →,PB →及任一向量PF →满足:PF →=λPA →+μPB →(λ,μ∈R ),若点F 在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.3.平面向量等和线性质(1)当等和线恰为直线AB 时,k =1;(2)当等和线在点P 和直线AB 之间时,k ∈(0,1);(3)当直线AB 在点P 和等和线之间时,k ∈(1,+∞);(4)当等和线过点P 时,k =0;(5)若两等和线关于点P 对称,则定值k 互为相反数.例1.如图,A ,B 分别是射线OM ,ON 上的点,给出下列以O 为起点的向量:①OA →+2OB →;②12OA →+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →+BA →+23OB →.其中终点落在阴影区域(不包括边界)内的向量的序号是________(写出满足条件的所有向量的序号).例2.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .54例3.在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,且AF →=λa +μb ,则λ+μ等于( )A .1B .34C .23D .12例4.在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是________.练习1.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2练习2.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22练习3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.练习4.已知点O 为△ABC 的边AB 的中点,D 为边BC 的三等分点,DC =2DB ,P 为△ADC 内(包括边界)任一点,若OP →=xOB →+yOD →,则x -2y 的取值范围为________.。
平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案

平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。
向量等和线定理及其应用

向量等和线定理及其应用向量等和线定理是矢量计算中非常重要的一个定理,它可以大大简化向量计算的复杂度。
在本文中,我们将会介绍向量等和线定理的定义、特点以及其在实际应用中的一些常见例子。
定义:简单来说,向量等和线定理是指如果有多个向量之和等于零,则这些向量的起点在同一条直线上。
换句话说,如果有向量集合{u1, u2, u3, …, un}之和为零,则这些向量的起点可以通过同一条直线传递。
特点:向量等和线定理的特点是简单明了,既容易理解也方便计算。
此外,利用这个定理可以解决许多应用问题,如在物理学中获得力学平衡等。
应用:向量等和线定理有很多应用,其中一些常见的应用如下:1.平衡力的问题当一个物体处于平衡状态时,物理定律告诉我们该物体所受的所有力的和必须为零。
如果将力量分解成矢量之后,可以使用向量等和线定理来确定力的合力方向。
如图所示,有两个人在左右拉着一根绳子,其中一个人施加的力为F1 ,另一个人施加的力为F2。
这两个力的和必须为零,因为绳子没有运动。
因此,使用向量等和线定理,可以确定绳子的张力方向。
2.动力系统模拟向量等和线定理也用于模拟动力系统的问题,比如说,模拟空中飞行时要考虑大气阻力的影响。
在这种情况下,可以使用向量等和线定理来计算空气与机身之间的力平衡,这样可以更准确地理解飞行器的运动轨迹。
3.三角形重心绘图另一个例子是利用向量等和线定理计算三角形的重心位置。
重心是一个三角形内的一个点,它与三角形三个定点的距离成比例。
使用向量等和线定理和平移性质,可以很容易地计算出三角形的重心位置。
总结:向量等和线定理是向量计算非常重要的定理之一。
其在应用中起到了重要的作用,比如力学平衡的问题、动力系统的模拟等。
掌握向量等和线定理可以帮助我们更容易地理解并解决计算问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:
过点A作AF DE,设AF与BC的延长线交于点 H, 1 易知AF FH,即DF为BC的中位线,因此 1 2 2
思考:若所求的式子是系数的线性关系式而不是系数和呢?
考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操 作,那么理论上来说,所有的系数之间的线性关系,我们都 可以通过调节基底,使得要求的表达式是两个新基底的系数 和
3
,
解析:
课后巩固:
2009安徽 (文)14在平行四边形 ABCD中, E和F分别是边 CD和 1、
BC的中点,若 AC AE AF , 其中 , R.则 ______ . 2、 (苏州大学 2013 高考考前指导卷 (1)13)已知点 O是ABC的外心, 2 AB 2a, AC , BAC 120 , 若 AO AB AC, 则 最小值为 ____. a 3、 (2014 宁波一模 )已知点 O是ABC的外心,且 AB 3, AC 4, 若 存在非零实数 x, y,使得 AO x AB y AC, 且x 2 y 1, 则cosBAC _____.
本专题存在的意义:
1、等和线法巧妙的将代数问题转化为了图形的关系,将具体的代数 式运算转化为了距离的长短比例关系问题,这是数形结合思想的非常 直接的体现。 2、等和线法将复杂的不等式问题,范围问题,数量积问题转化为了 简单,直接,操作方便的点到直线距离问题,很多时候用相似即可迅 速解决,提高了做题效率与正确率,提升了学生的学习热情与兴趣。
思考:若是基底向量中有一个变化的向量,该如何处理,是否可以用等和线 呢?
思考这个问题,下节课一起探讨:
2011 苏州一模 13如图,在正方形 ABCD中, E为AB的中点,
P为以 A为圆心, AB为半径的圆弧上的任意 一点, 设 AC DE AP, 则 的最小值为 _____.
典型例题
例4、 (2013 杭州一模 17)如图,在扇形 OAB中, AOB C为弧AB上的一个动点,若 OC xOA yOB, 则x 3 y的取值范围是 ____.
OB OB OC xOA 3 y , 令OB' ,那么则要考虑以向量 3 3 OA, OB为基底。显然,当 ' C在A点时,经过 k 1的等和线, 的等和线,所以系数和 k的取值范围是 1,3 C在B点时,经过 k 3的等和线,这两个分别 是最近跟最远
典型例题:
例1、 (2013 .南通二模 )如图,正六边形 ABCDEF中, P是CDE内(包括边界 )的动点,设 AP AB AF (, R),则 的取值范围是 __________ _.
解析:
BF为k 1的等和线, P在CDE内时, EC是最近的等和线,过 D点的等和线是最远的 AN AD , 3,4 AM AM
平面向量等和线法
2019.1.10
为什么要研究这个专题?
1、平面向量由于其与代数,几何均有相当高的融合性,常与这两者有机结合 ,进行考查,综合性强,难度大。 2、向量的表示以及数乘运算是B级考点,而此类题型的考查常会与向量的数 量积、不等式等C级考点结合,考试要求高。 3、课本上有多处出现了“等和线”的基本题型,其理论基础多次被提及。 4、此类题目要求学生在数形结合,转化化归等数学思想上有很高的理解,对 于此类题目学生普遍束手无策。 5、最近3年高考中,每年至少有2道此类题目出现,模拟题中更数不胜数, 故有必要进行一个此专题的讲解。
高考真题
2013安徽(理)、2013江苏、2013北京(文 )、2014天津、2014陕西、2015新课标(理 )、2015北京(理)
课本溯源
苏教版必修4,P77,题11
已知O是坐标原点 , A3,1, B 1,3.若点C满足OC OA OB, 其中 , R, 且 1,求点 C的轨迹方程
诸如此类的已知图形求系数和或者已知系数和求图形的题目在历年 的真题与模拟题中屡见不鲜。学生在解决此类问题时,往往要通过 建系或者利用角度与数量积处理,思路不清晰且解题繁琐,得分率 普遍不高。故特地做此专题,希望能给出一个简单的方法解决此类 问题。
等和线的理论基础
深入研究
y x 若OC OD ,那么OC xOA yOB OA OB OD
典型例题:
例2、 (2009 安徽 (理)14)给定两个长度为 1的平面向 2 量OA和OB,它们的夹角为 ,如图所示,点 C 3 在以 O为圆心的圆弧 AB上变动,若 OC xOA yOBx, y R , 则x y的最大值是 _____. 解析:
所有与 AB平行的直线中,切线离 圆心最远,即此时取得 k最大 结合角度,不难得到 kmax 2
谢谢!
思考:如果起点不同,是否能用“等和线”做呢?
我们高中阶段研究的是自由向量,向量是可以任意平移的。 在使用等和线解题的时候,若是起点不同一定要将向量平移到起点 重合。 实际上,对于向量而言,若起点没有约束,单纯研究终点是没有任 何意义的。
典型例题
例3、 (2013 江苏10)设D, E分别是 ABC的边 AB, BC上的点, 1 2 AD AB, BE BC, 若DE 1 AB 2 AC1 , 2 R , 2 3 则1 2的值为 ________ .
x
y
1,即x y
进一步探究
过C点作直线 l // AB, 在l上任作一点 C',连接 OC' AB D'
同理可得,以 OA, OB 为基底时, OC'对应的系数和依然为
Hale Waihona Puke 结论在向量起点相同的前提 下,所有以与 AB平行 的直线上面的点为终点 的向量,其基底的系 数和为定值,这样的线 ,我们称之为“等和 线”。值的大小与起点 到等和线的距离成正 比,若等和线与 AB在起点的两侧时,值为 负。