平面向量基本定理系数等值线

合集下载

平面向量基本定理以及“等和线”的应用

平面向量基本定理以及“等和线”的应用
平面向量基本定理以及 “等和线”的应用
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
问题的提出
平面向量与代数、几何融合的题目综合性强, 难度大,考试要求高。近年,以“等和线”为背景 的试题层出不穷。考生在解决此类问题时,往往因 思路不清、运算繁琐而失分。
本专题将在平面向量基本定理的基础上推导得 出“等和线”解题的原理,并利用“等和线”原理 解决与向量系数有关的最值和范围有关的问题。
所以, 3 y, 3x 3x 3 y 3
当点P与A点重合时,显然有 : 0,所以,选C.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习:如图,四边形OABC是边长为1的正方形,点D在OA 的延长线上,且OD 2,点P为BCD内(含边界)的动点,
uuur uuur uuur
(二)起点不同,平移改造基底型
F
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
(三)合理调节、变换基底型 例题:
1 2
uuur uuur PA, PB1
1 3
uuur PB
.

2x 2x 3y
3y 2x 3y
1
得点
A1 ,
B1,
D
共线,即点
D
在直线
A1 B1
上.
uuur uuur 再由 PC 5PD 知点 C 的轨迹就是直线 A2B2 ,其中 PA2 5PA1, PB2 5PB1 .如下图:

沪教版(上海)数学高二上册-8.3 平面向量等值线 课件 优秀课件PPT

沪教版(上海)数学高二上册-8.3 平面向量等值线 课件  优秀课件PPT
B
与AB1平行的直线
O
A
B1
P
四、探究三
平面内一组基OA, OB及任一向量OP, 一
OP 1OA 2 OB(1,2为实数), 若12 k,则点P的轨迹是什么?
取特殊基向量OA i, OB j B
P
双曲线 xy 12
一般的OA, OB呢?
O
A
☆□
四、探究三 等积线
应用(2010上海卷理13)如图所示,直线x 2与双曲线
:
x2 4
y2
1的渐近线交于E1、E2两点,记OE1
e1,
OE2 e2,任取双曲线上的点P,若OP ae1 be2 (a, b R),则a, b满足的一个等式是_______.ab 1
4
高考题变式:
若此题中满足ab 1,求点P轨迹。 4
☆□
五、探究四
平面内一组基OA, OB及任一向量OP ,
OP 1OA 2 OB(1,2为实数), 若 1 k,则点P的轨迹是什么?
2
B P
O
A
☆□
课堂小结
1. 等值线及其性质; 2. 体会了发现、提出问题的过程;
分析、解决问题的方法;
3. 运用了特殊到一般,数形结合,ቤተ መጻሕፍቲ ባይዱ合情猜测,严格证明的研究方法。
课后思考
若 | OA || OB |,OP 1OA 2 OB, 1. 12 22 k为定值时,则P点的轨迹是什么? 2. 12 22 k为定值时,则P点的轨迹是什么?
OP 1OA 2 OB(1,2为实数),
1 2 2 OP 2OD
1
2
1 3
OP 1 OD 3
1 2
3
4
OP 3 OD 4

从平面向量中的等值线说起(吴波《数学通讯》2015 年第 9期(下半月))

从平面向量中的等值线说起(吴波《数学通讯》2015 年第 9期(下半月))
图2
图3
式将 x 解得x y 放缩将其化为关于 x +y 的 不 等 式 , ︵ 当 C 为A + B 的中点时取最大值 2. y≤2. → → 为标架建立平面仿射坐 说明 以 { O; O O A, B} →+ O → → A 标系 , 题设O 点 C 在此坐标 系 O C=x y B 表明 :
2 则上述解答中得到的方程x 中的坐标即 是 ( x, . y) 2 ︵ + B所 在 的 圆 在 此 坐 标 系 y=1 即 是 图 3 中A y -x
[ 3] 例1 四边形 P Q R S 是四边形A B- 如 图 2,
C A P B Q C D 的 内 接 四 边 形, P =λ B, Q =λ C, R= 1 2 R D S A B C D D, S =λ A. ′、 ′、 ′、 ′分 别 是 四 边 形 λ 3 4
4 0
下半月 ) 数学通讯 — 2 0 1 5 年第 9 期 ( · 专论荟萃 ·
从平面向量中的等值线说起
吴 波
) ( 重庆市长寿龙溪中学 , 0 1 2 4 9 4
1.平面向量基本定理系数等值线 平面向量基本定理 如果e e 1, 2 是同一平 面 内 有且 两个不共线向量 , 则对该平面内的任 一 向 量 a, 使 a= 只有一对实数λ e e λ λ λ 1, 2, 1 1+ 2 2. ] 文[ 称 上 式 中 的λ 1 λ 1, 2 为平面向量基本定理 系数 , 并证明了 :
( O A, B 为渐近线的某 ⅳ )若 点 P 在 以 直 线 O 条双曲线上 , 则λ 反之也成立 . λ 1 2 为定值 . ( 注: 结论 ( 中的“ 定 值” 应当加上 “ 非零” 的 ⅳ) ) 限制 . , ) 文[ 将直线 A 由结论 ( B 以及与A B 平行 1] i 的直线叫作 “ 平面 向 量 基 本 定 理 系 数 的 等 和 线 ” 同 . 、 ( 、 中的直线分别叫作“ 理, 结论 ( 等 差 线” ⅲ) ⅱ) “ ; 等商线 ” 而结论 ( 中的双曲线叫作 “ 等积线 ” . ⅳ) ] 文[ 中还讨论 了 k 的 取 值 范 围 与 等 值 线 的 位 1 置的对应关系 . 本文 拟 探 讨 在 这 些 等 值 线 背 后 隐 藏 的 实 质 , 从 另一个角度加深对平面向量基本定理的理解 . 2.等值线背后的实质

平面向量基本定理系数的等值线法(答案)

平面向量基本定理系数的等值线法(答案)

平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法.二、基本理论(一)平面向共线定理已知OC OB OA μλ+=,若1=+μλ,则C B A ,,三点共线;反之亦然 (二)等和线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ,若点P 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,)1,0(∈k ; (3)当直线AB 在O 点和等和线之间时,),1(+∞∈k ; (4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数; (6)定值k 的变化与等和线到O 点的距离成正比. (三)等差线平面内一组基底OB OA ,及任一向量OP , ),(R OB OA OP ∈+=μλμλ, C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则k =-μλ(定值);反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线 (1)当等差线恰为直线OC 时,0=k ; (2)当等差线过A 点时,1=k ; (3)当等差线在直线OC 与点A 之间时,)1,0(∈k ; (4)当等差线与BA 延长线相交时,),1(+∞∈k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数. (四)等积线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内肘,0>k ;(2)当双曲线的两支都不在AOB ∠内吋,0<k ;(3)特別的,若),(b a OA =,),(b a OB -=,点P 在双曲线)0,0(12222>>=-b a by a x 上时,41=k (五)等商线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,若点P 在过O 点(不与OA 重合)的直线上,则k =μλ(定值),反之也成立,我们把过点O 的直线(除OA 外)称为等商线(1)当等商线过AB 中点吋,1=k ;(2)当等商线与线段AC (除端点)相交时,),1(+∞∈k ; (3)当等商线与线段BC (除端点)相交时,)1,0(∈k ; (4)当等商线为OB 时,0=k ;(5)当等商线与线段BA 延长线相交时,)1,(--∞∈k ; (6)当等商线与线段AB 延长线相交时,)0,1(-∈k ; (7)当等商线与直线AB 平行时,1-=k . (六)等平方和线平面内一组基底OB OA ,及任一向量OP ,),(R OB OA OP ∈+=μλμλ,且OB OA =,若点P 在以AOB ∠角平分线为半长轴的椭圆上,则22μλ+为定值k ,反之也成立,我们把以AOB ∠角平分线为半长轴的椭圆称为等平方和线特別的,若),(b a OA =,),(b a OB -=,,点P 在椭圆)0,0(12222>>=+b a by a x 上时,21=k 三、解题步骤 1、确定等值线为1的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;五、典型例题例1.给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OB y OA x OC +=,其中R y x ∈,,则y x +的最大值是解法1:以点O 为原点,OA 为x 轴建立平面直角坐标系,则)01(,A ,)23,21(-B设θ=∠AOC ,则)sin ,(cos θθC ,所以OB y OA x OC +=)23,21()0,1()sin ,(cos -+=⇒y x θθ ⎪⎪⎩⎪⎪⎨⎧=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=⇒θθθθθsin 32sin 31cos 23sin 21cos y x y y x2)6sin(2sin 3cos ≤+=+=+∴πθθθy x 当且仅当26ππθ=+即3πθ=时等号成立所以2)(max =+y x解法2:设OC 交AB 于点D ,则 当点C 在1C 处时,2)(max =+y x当点C 在A 或B 处时,1)(min =+y x]2,1[∈+∴y x例 2.在正六边形ABCDEF 中,P 是三角形CDE 内(包括边界)的动点,设AF y AB x AP +=,则y x +的取值范围解析:设AP 与BF 相交于点Q ,则 当点P 在点D 处时,4)(max =+y x ,当点P 在CE 上(不如让点P 在AD 与CE 的交点处)时,3)(min =+y x ∴]4,3[∈+y x例3.如图,在平行四边形ABCD 中,N M ,为CD 边的三等分点,S 为AM 与BN 的交点,P 为边AB 边上一动点,Q 为SMN ∆内一点(含边界),若BN y AM x PQ +=,则yx +的取值范围是 解析:作BN PT AM PR ==,,则PT y PR x BN y AM x PQ +=+=所以当点P 在S 点处时,43)(min =+y x ,当点P 在MN 上时,1)(max =+y x , 故∈+y x ]1,43[例4.梯形ABCD 中,AB AD ⊥,1==DC AD ,3=AB ,P 为三角形BCD 内一点(包括边界),AD y AB x AP +=, 则y x +的取值范围 解析:当点P 在点C 处时,34)(max =+y x 当点P 在BD 上时,1)(min =+y x∈+∴y x ]34,1[例5.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若 AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为解析:作AC DN AB DM ==,,则MN ∥BE (BE 在DMN ∆中位线上)∴DN DM AC AB DE 2121λλλλ+=+==+∴21λλ21注:此题为2013年江苏高考题第8题,但点E 为三等分的条件其实没有必要,可舍例 6.在正方形ABCD 中,E 为BC 中点,P 为以AB 为直径的半圆弧上任意一点,设AP y AD x AE +=,则y x +2的最小值为解析:取AD 的中点M ,则AP y AD x AE +=AP y AM x +=2 因为点P 在半圆上滑动,当点E 离直线MP 最近时,y x +2最小 由图可知点P 在半圆上的最高点处时,点E 离直线MP 最近 此时点E 在MP 上,所以=+min )2(y x 1例7.在正方形ABCD 中,E 为AB 中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设AP y DE x AC +=,则y x +的最小值为 解析:作DE AF =,则AP y DE x AC +=AP y AF x += 当点C 离PF 最近时,y x +最小所以当点P 在圆上滑到点B 处时,y x +最小为218.已知1==ON OM ,ON y OM x OP +=(y x ,为实数),若PMN ∆是以M 为直角顶点的直角三角形,则y x -取值的集合为解析:作ON OA -=,则有OA ON OM ==,所以090=∠AMN ,即P M A ,,三点共线,所以ON y OM x OP +=OA y OM x -=所以1=-y x ,故答案为{}1例9.已知椭圆E :12510022=+y x 的上顶点为A ,直线4-=y 交椭圆于C B ,(B 在C 的左侧),点P 在椭圆E 上,若BC n BA m BP +=,求n m +的最大值 解析:可知点P 为椭圆的与AC 平行的切线的切点处时,n m +最大 计算可得=+max )(n m 1813105+ 例10.已知O 为ABC ∆的外心,若)00(,A ,)02(,B ,1=AC ,32π=∠BAC ,且AC AB AO μλ+=,则=+μλ解析:过点O 作OD ∥BC 交AB 于点D ,则ABAD=+μλ O 为ABC ∆的外心⇒点O 在BC 的垂直平分线上⇒点O 的横坐标为1 )23,21(-C ,532523-=-=BCk ,7)221()23(22=--+=BC由正弦定理得3212327sin 2=⨯=⇒∠=OA BACBCOA ,所以点O 的纵坐标为332137=-,直线OD :)1(53332--=-x y ,令0=y 得点D 的坐标为)0,313( 613==+∴AB AD μλ例11.已知O 为ABC ∆的外心,若31cos =∠BAC ,AC AB AO μλ+=,则=+max )(μλ 解析:设AO 交BC 于点D ,则ODAO AOAD AO +==+μλ 当OD 最小即BC AD ⊥时,μλ+最大,此时=+μλ43所以=+max )(μλ43例12.平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为0120 ,OA 与OC 的夹角为030,且1==OB OA ,32=OC ,若OB n OA m OC +=,则n m +的值为解析:设OC 交AB 于点D ,则n m +ODOC=OAD ∆中,331300=⇒==∠=∠OD OA OAD AOD , 所以OD OC =63332== 例13.如图,C B A ,,是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外的点D ,若OB n OA m OC +=,则n m +的取值范围为解析:∈-=+ODOCn m )0,1(-例14.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为)0,5(,)1,2(1=e , )1,2(2-=e 分别是两条渐近线的方向向量,任取双曲线Γ上的点P ,若),(21R b a e b e a OP ∈+=,则b a ,满足的一个等式是解析:等积线:双曲线的方程为1422=-y x ,设)tan ,sec 2(θθP ,则由),(21R b a e b e a OP ∈+=⎩⎨⎧=-=+⇒⎩⎨⎧=-=+⇒-+=⇒θθθθθθtan sec tan sec 222)1,2()1,2()tan ,sec 2(b a b a b a b a b a 1tan sec )()(2222=-=--+⇒θθb a b a 41=⇒ab例15.已知1=OA ,3=OB ,0=⋅OB OA ,点C 在AOB ∠内,且030=∠AOC , 设OB n OA m OC +=,则nm的值为 答案:等商线:分别以OB OA ,为y x ,轴建立平面直角坐标系,则)3,0(),01(B A ,, OB n OA m OC +=)3,()3,0()0,1(n m n m =+=,又030=∠AOC ,所以330tan 30=⇒=nmm n例16.如图,倾斜角为θ的直线OP 与单位圆在第一象限的部分交于点P ,单位圆与坐标轴交于点)01(,-A ,点)10(-,B ,PA 与y 轴交于点N ,PB 与x 轴交于点M ,设),(R y x PN y PM x PO ∈+=,求y x +的最小值解析:设OP 交MN 于点Q ,MN 的中点为D ,则21211111=+-≥-=-==+OQ OQ PO PO PQ PO y x例17.如图,在扇形OAB 中,060=∠AOB ,C 为弧AB 上且不与A 、B 重合的一个动点,OB y OA x OC +=,若)0(>+=λλy x u 存在最大值,则λ的取值范围为解析:因为0>λ,在射线OB 上取点D ,使得OB OD λ1=,则OB y OA x OC +=OD y OA x λ+=,过点C 作CE ∥AD 交OB 于点E ,过点A 作OB AM ⊥于点M ,过点A 作弧AB 的切线交OB 于点N ,则易知当E 离D 最远时u 有最大值,而E 只能在线段MN 上,所以∈u )2,21(例18.在平面直角坐标系中,O 为坐标原点,两定点B A ,满足2=⋅==OB OA OB OA ,则点集{}R OB OA OP P ∈≤++=μλμλμλ,,1,所表示的区域面积为解析:由题意可知60=∠AOB ,设OB OD OA OC -=-=,,R OB OA OP ∈≤++=μλμλμλ,,1,,则可知点P 的轨迹为平行四边形ABCD 及其内部的部分,其面积为3460sin 44210=⨯⨯⨯例19.已知b a ,是两个互相垂直的单位向量,且1=⋅=⋅b c a c ,则对任意的正实数t ,b ta t c 1++的最小值为解析:分别以b a ,为y x ,轴方向上的单位向量,则)1,0(),0,1(==b a ,由1=⋅=⋅b c a c 知)1,1(=c ,)11,1()1,0(1)0,1()1,1(1tt t t b t a t c ++=++=++∴2212)12()2()11()1(12222≥+=+≥+++=++tt t t t t b t a t c。

平面向量基本定理及坐标表示知识点讲解+例题讲解(含解析)

平面向量基本定理及坐标表示知识点讲解+例题讲解(含解析)

平面向量的基本定理及坐标表示一、知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.小结:1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y2. 2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)同一向量在不同基底下的表示是相同的.( )(3)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( )解析 (1)共线向量不可以作为基底. (2)同一向量在不同基底下的表示不相同. (4)若b =(0,0),则x 1x 2=y 1y 2无意义.答案 (1)× (2)× (3)√ (4)×2.下列各组向量中,可以作为基底的是( ) A.e 1=(0,0),e 2=(1,-2) B.e 1=(-1,2),e 2=(5,7) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B. 答案 B3.设P 是线段P 1P 2上的一点,若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3). 设P (x ,y ),则(x -1,y -3)=(1,-1), ∴x =2,y =2,则点P (2,2). 答案 A4.(2015·全国Ⅰ卷)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A.(-7,-4) B.(7,4) C.(-1,4)D.(1,4)解析 根据题意得AB→=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4),故选A. 答案 A5.(2017·山东卷)已知向量a =(2,6),b =(-1,λ),若a ∥b ,则λ=________. 解析 ∵a ∥b ,∴2λ+6=0,解得λ=-3. 答案 -36.(2019·苏州月考)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x ,6-y ),即⎩⎨⎧4=5-x ,1=6-y ,解得⎩⎨⎧x =1,y =5. 答案 (1,5)考点一 平面向量基本定理及其应用【例1】 (1)(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC→(λ,μ∈R ),则52μ-λ=( ) A.-12B.1C.32D.-3解析 (1)AM→=λAB →-μAC →=λAB →-μ(AB →+AD →) =(λ-μ)AB→-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1, 即2λ-5μ=1,∴52μ-λ=-12.(2)(2019·北京海淀区调研)在△ABC 中,D 为三角形所在平面内一点,且AD→=13AB→+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.解析:(2)设AE →=xAD →,∵AD →=13AB →+12AC →, ∴AE→=x 3AB →+x 2AC →. 由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x2.因此λ-μ=x 3-x 2=-x 6=-15.答案 (1)A (2)-15【训练1】 (1)(2019·济南质检)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP→=mAB →+25AC →,则实数m 的值为( ) A.-4B.-1C.1D.4解析 (1)根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB→)=AB →+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →. 又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.(2)在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC→=23OA →+13OB →,则|AC→||AB →|=________. 解析:(2)因为OC→=23OA →+13OB →,所以OC →-OA →=-13OA →+13OB →=13(OB →-OA →),所以AC →=13AB →,所以|AC →||AB →|=13.考点二 平面向量的坐标运算【例2】 (1)设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB→+AC →等于( )A.-2AD →B.2AD →C.-3AD →D.3AD →(2)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4解析 (1)由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.(2)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=-2-12=4. 答案 (1)C (2)D【训练2】 (1)已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是________.解析 (1)由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2). 则⎩⎨⎧2-x =-2,3-y =-4,解得⎩⎨⎧x =4,y =7. 所以向量OB→的坐标是(4,7).(2)(2019·天津和平区一模)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85C.2D.83解析:(2)建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1), ∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2), ∵CA→=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2), ∴⎩⎨⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎪⎨⎪⎧λ=65,μ=25,则λ+μ=85.答案 (1)(4,7) (2)B考点三 平面向量共线的坐标表示 角度1 利用向量共线求向量或点的坐标【例3-1】 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3). 答案 (3,3)角度2 利用向量共线求参数【例3-2】 (1)(2018·全国Ⅲ卷)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -3b 共线,则mn =________. 解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12. (2)由2-1≠32,所以a 与b 不共线, 又a -3b =(2,3)-3(-1,2)=(5,-3)≠0. 那么当m a +n b 与a -3b 共线时, 有m 1=n -3,即得m n =-13.答案 (1)12 (2)-13【训练3】 (1)(2019·北师大附中检测)已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点,若AB→∥a ,则点B 的坐标为________.(2)设向量OA →=(1,-2),OB →=(2m ,-1),OC →=(-2n ,0),m ,n ∈R ,O 为坐标原点,若A ,B ,C 三点共线,则m +n 的最大值为( ) A.-3B.-2C.2D.3解析 (1)由题意设B (x ,2x ),则AB→=(x -3,2x ),∵AB →∥a ,∴x -3-2x =0,解得x =-3,∴B (-3,-6).(2)由题意易知,AB →∥AC →,其中AB →=OB →-OA →=(2m -1,1),AC →=OC →-OA →=(-2n -1,2),所以(2m -1)×2=1×(-2n -1),得:2m +1+2n =1. 2m +1+2n ≥22m +n +1,所以2m +n +1≤2-2,即m +n ≤-3. 答案 (1)(-3,-6) (2)A三、课后练习1.如图,在△ABC 中,AD→=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A.89B.49C.83D.43解析 AP→=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89. 答案 A2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A.1B. 2C. 3D.2解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC→|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2. 答案 B3.已知|OA→|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC→=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.解析 ∵OA→·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA→=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ). ∵tan 30°=3n m =33,∴m =3n ,即mn =3. 答案 34.在△ABC 中,点D 满足BD→=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC→,则t =(λ-1)2+μ2的最小值是________. 解析 因为BD→=DC →,所以AD →=12AB →+12AC →.又AE→=λAB →+μAC →,点E 在线段AD 上移动,所以AE→∥AD →,则12λ=12μ,即λ=μ⎝ ⎛⎭⎪⎫0≤λ≤12. 所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝ ⎛⎭⎪⎫λ-122+12.当λ=12时,t 的最小值是12. 答案 125.直角△ABC 中,AB =AC =2,D 为AB 边上的点,且AD DB =2,则CD →·CA →=________;若CD→=xCA →+yCB →,则xy =________. 解析 以A 为原点,分别以AB→,AC →的方向为x 轴、y 轴的正方向建立平面直角坐标系,则A (0,0),B (2,0),C (0,2),D ⎝ ⎛⎭⎪⎫43,0,则CD →=⎝ ⎛⎭⎪⎫43,-2,CA →=(0,-2),CB→=(2,-2),则CD →·CA →=⎝ ⎛⎭⎪⎫43,-2·(0,-2)=43×0+(-2)×(-2)=4.由CD→=x CA →+y CB →=x (0,-2)+y (2,-2)=(2y ,-2x -2y )=⎝ ⎛⎭⎪⎫43,-2得⎩⎪⎨⎪⎧2y =43,-2x -2y =-2,解得⎩⎪⎨⎪⎧x =13,y =23,则xy =29.答案 4 29。

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》

高三数学复习微专题之《平面向量基本定理系数“等和线”的应用》
等和线定理可知,点 P 位于矩形 ABA'B' 内(含边界).其面积 S 4SAOB 4 3 .
衡阳市高中教师数学交流 QQ 群:731847633
衡阳市数学学会
练习 5:如图 13 所示, A, B, C 是圆 O 上的三点, CO 的延长线与线段 BA 的延长
线交于圆 O 外的点 D ,若 OC mOA nOB ,则 m n 的取值范围是
当 AD EF 时, f x, y AD 取得最 小值,此时 f x0 , y0 AD .易知
ABC AEF ,则 AD AH r 4 .
四、解题总结 1、确定等值线为 1 的直线; 2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和 最小值; 3、从长度比或者点的位置两个角度,计算最大值或最小值.
部的动点,设向量 AP m AB n AFm, n R ,则 m n 的取值范围是( )
A . 1,2
B . 5,6
C . 2,5
D .3,5
【分析】
如图 5,设
AP1
m AB n AF ,由等和线结论,m n
AG AB

2 AB AB
2 .此为 m n
的交点,P 为边 AB 上一动点,Q 为 SMN 内一点(含边界),若 PQ x AM y BN ,
则 x y 的取值范围是
.
【分析】
如图 8 所示,作 PS AM ,PT BN ,过 I 作直线 MN 的平行线,由等和线定理
可知,
x

y


3 4
,1
.
(三)基底一方可变
OB'

平面向量等值线法

平面向量等值线法

技巧八平面向量基本定理系数的等值线法一、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达式及平方和时,可以用等值线法。

二、基本理论(一)平面向量共线定理三点共线;反之亦然,则若已知C B A ,,1,=++=μλμλ(二)等和线平面内一组基底OB OA ,及任一向量OP ,()R ∈+=μλμλ,,若点P 在直线AB 上或在平行于AB 的直线上,则)(定值k =+μλ,反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线。

(1)当等和线恰为直线AB 时,1=k ;(2)当等和线在O 点和直线AB 之间时,()1,0∈k ;(3)当直线AB 在O 点和等和线之间时,()∞+∈,1k ;(4)当等和线过O 点时,0=k ;(5)若两等和线关于O 点对称,则定值k 互为相反数;(6)定值k 的变化与等和线到O 点的距离成正比;(三)等差线平面内一组基底,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,C 为线段AB 的中点,若点P 在直线OC 上或在平行于OC 的直线上,则)(定值k =-μλ,反之也成立,我们把直线OC 以及与直线OC 平行的直线称为等差线。

(1)当等差线恰为直线OC 时,0=k ;(2)当等差线过A 点时,1=k ;(3)当等差线在直线OC 与点A 之间时,()1,0∈k ;(4)当等差线与BA 延长线相交时,()∞+∈,1k ;(5)若两等差线关于直线OC 对称,则两定值k 互为相反数;(四)等积线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在以直线OB OA ,为渐近线的双曲线上,则λμ为定值k ,反之也成立,我们把以直线OB OA ,为渐近线的双曲线称为等积线(1)当双曲线有一支在AOB ∠内时,0>k ;(2)当双曲线的两支都不在AOB ∠内时,0<k ;(3)特别的,若()()b a OB b a OA -==,,,,点P 在双曲线)0,0(12222>>=-b a b y a x 时,41=k ;(五)等商线平面内一组基底OB OA ,及任一向量OP ,()R OB OA OP ∈+=μλμλ,,若点P 在过O 点(不与OA 重合)的直线上,则)(定值k =μλ,反之也成立。

(2.14)平面向量基本定理

(2.14)平面向量基本定理

OA tuOuurB tuOuurA
(1 t)OA tOB
变题2
uuur uur 设0A,u0uBur不共uuu线r ,u点ur P在AB上
求证:OP=0A+0B且+=P1,, R
B
A O
真题再现
(2007.全国Ⅱ)在VABC中,已知D是AB边上
uuur 一点,若 AD
uuur uuur 2DB, CD
理解定理——基底
1.设Ouu是ur YAuuBurCD两u对uuu角r 线uu的ur 交点,下列向量组: ① AuuDur与uAuBur ② DuuAur与BuuCur ③ CA与DC ④ OD与OB
其中可作为这个平行四边形所在平面内的 所有向量的基底的是( ) A ①,② B ①,③ C ①,④ D ③,④
有一对实数1, 2 , 使a 1e1 2e2 .
对基本定理的理解
注意三点: ① 基底中两向量不共线 ② 表达形式的唯一确定性 ③ 可表示平面内任一向量
知识点小结
1、平面向量基本定理内容 2、对基本定理的理解
注意三点: ① 基底中两向量不共线 ② 表达形式的唯一确定性 ③ 可表示平面内任一向量
3、平面向量基本定理的应用: ①解(证)向量问题
平面向量的基本定理
By:Cdy
1.向量的合成与分解 2. 什么是平面向量的基本定理。 3.理解什么样的一组向量能做为平面向量的一组 基底
1.实数与向量的积 2.两个向量共线定理
向量b与非零向量a共线 有且只有一个实数λ,使得 b =λa
力的合成与分解
如图在重300N的特体上拴两绳子,这两根 绳子 在铅垂线的两侧,与铅垂线的股夹 角分别为30度,60度,当整个系统处于 平衡状态时,求两根绳子的拉力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档