第4课时:分式的通分

合集下载

3[1].4分式的通分教案

3[1].4分式的通分教案

课题:3.4分式的通分教学目标1.进一步理解分式的基本性质以及分式的变号法则。

2.使学生理解分式通分的意义,掌握分式通分的方法及步骤教学重点让学生知道通分的依据和作用,学会分式通分的方法。

教学难点几个分式最简公分母的确定。

教学过程(一)复习与情境导入1.分式324x x +-中,当x 时分式有意义,当x 时分式没有意义,当x 时分式的值为0。

2.分式的基本性质。

(二)实践与探索1、分式的的变号法则例1 不改变分式的值,使下列分式的分子和分母都不含“—”号:(1)a b 65--; (2)y x 3-; (3)nm -2. 例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)21x x -; (2)322+--x x . 注意:(1)根据分式的意义,分数线代表除号,又起括号的作用。

(2)当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号。

例3若x 、y 的值均扩大为原来的2倍,则分式232yx 的值如何变化?若x 、y 的值均变为原来的一半呢?2、分式的通分(1).把分数65,43,21通分。

解126261621=⨯⨯=,129433343=⨯⨯=,1210625265=⨯⨯= (2.)什么叫分数的通分?答:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。

3.和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分。

通分的关键是确定几个分式的公分母。

4.讨论: (1)求分式4322361,41,21xyy x z y x 的(最简)公分母。

分析:对于三个分式的分母中的系数2,4,6,取其最小公倍数12;对于三个分式的分母的字母,字母x 为底的幂的因式,取其最高次幂x 3,字母y 为底的幂的因式,取其最高次幂y 4,再取字母z 。

所以三个分式的公分母为12x 3y 4z 。

(2) 求分式2241x x -与412-x 的最简公分母。

分式的约分和通分

分式的约分和通分

分式的约分和通分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1: 约分:()532164.1abc bc a - ()()()x y a y x a --322.2 (1)①有没有公因式?②公因式是什么? 解:23235324444164ca abc c abc a abc bc a -=⋅⋅-=- 小结:分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分(2).请学生分析如何约分:由于()y x x y --=-,所以,分子和分母的公因式是:()y x a -,约分可得:解:()()()()()()()()2232322222y x a y x a y x y x a y x a y x a x y a y x a --=--⋅--=---=-- 小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.分子或分母的系数是负数时,一般先把负号提到分式本身的前边.例2 .把下列各式约分:()x x x 525.122-- ()634.222-+++a a a a 解:()()()()x x x x x x xx x 5555525.122+=--+=-- ()()()()()212313634.222-+=-+++=-+++a a a a a a a a a a (五)小结:1.约分的主要步骤:先把分式的分子,分母分解因式,然后约去分子分母中的相同因式的最低次幂,(包括分子分母中系数的最大公约数)。

2.约分的依据是分式的基本性质:约去分子与分母的公因式相当于被约去的公因式同时除原分式的分子分母,根据分式的基本性质,所得的分式与原分式的值相等。

4、分式的通分 课件(人教新课标版)

4、分式的通分 课件(人教新课标版)

2.什么叫约分?把一个分式的分子和分母的公因 式约去,不改变分式的值,这种变形叫做分式的 约分。
约分:

c 25a2b 3
(1) 15ab2c
这是约分的例题哦
x2 9 (2)
x2 6x 9
计算
11 24
这是小 学的!
要计算先干什么?如何进行?
什么叫做分数的通分?
通分:把几个异分母分数化成与原 来相等的同分母分数叫通分.
(二)问题情景
1. 通分:
4 12 8
(1) 7 与 1 12 8
32
最简公分母:
解:7 12
72
12 2
14 24
1 8
1 3 83
3 24
4×3×2=24
(二)问题情景
问题 类比分数的通分你能把下列分式 化为分母相同的分式吗?
3与b 2a2 3ac
(1)引出分式通分的概念:P7
(2)如何进行分式通分?
(七)课后作业
课本P133 第7题
D A
x-y≠0
(x-y)2
12x3y2z
12(a-1)(2 a 2)2
答:(1)正确,因为a≠0是隐含条 件,分子分母同乘以a可的结论.
(2)不正确,因为c=0时,分 式无意义.
解:
1 a
1 b
=
b a ab
4, a b 4ab,
a 2a
2ab 7ab
b 2b
a b 2ab 2(a b ) 7ab
4ab 2ab 2 (4ab ) 7ab
6ab 8ab 7ab
6ab ab
6.
解:(1)32a2b3c = 4a2b 8b2c = 4a2b =- 4a2b .

2021年中考复习数与式-第04讲 分式(教师版)A4

2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。

分式通分的7种技巧

分式通分的7种技巧

通分是解决分式加减的基础,要解决好分式的运算,就必须掌握好分式的通分问题。

通分时常常是先找出最简公分母,将其变为同分母分式,然后再加减。

可在实际运算时,有时找最简公分母十分麻烦,或者在进行通分时,将面临着复杂、繁烦的计算,甚至走进“死胡同”,因此有必要掌握一些常用的通分技巧和方法,这样能使问题变得简单,即化难为易。

现介绍几种常用的通分技巧,供同学们在学习时合理选用。

一、分组通分例1计算-+-。

分析经观察发现,分母的结构有如下特点:a+2与a-2相乘、a+1与a-1相乘可分别构成平方差,故本题可先合理搭配,采用分组通分的方法来解。

解原式=-+-=+=。

点评根据分母的结构特点合理分组后再进行通分,可简化运算。

二、逐步通分例2计算:+++。

分析四个分式分母迥然不同,如果先找最简公分母再通分,结果只能劳而无功。

若把前两个分式通分化简,将结果再与第三个分式通分,依次类推,逐步通分,可使问题得到解决。

解原式=++=++=+=。

三、整体通分例3计算:x+y+。

分析一个整式与分式相加减,将整式当做一个整体,看做分母为1的分式,再通分。

解原式=(x+y)+=+= + =。

四、分解因式,约分后通分例4计算-。

分析观察发现各分式的分子、分母均可分解因式,故应先分解因式,约分后再通分。

解原式=- =-==。

点评当分式的分子、分母可分解因式时,一般应先分解因式,进行约分后再通分。

五、改变排序,一次通分例5计算++。

分析这是轮换式问题,对这样的问题可通过适当改变字母的排列顺序来找到公分母,然后再进行通分。

解原式=++=++==0。

点评面对轮换式的问题,采用这种先行变序、再行通分的方法,常常一次通分就能成功解题。

六、常量代换,自然通分例6设abc=1,试求++的值。

分析根据分式的结构特点和已知条件,运用分式的基本性质和常量代换的方法,本题可获巧解。

解原式=++=++==1。

点评本题的解法很巧妙,它是在认真分析题目特点的基础上,利用分式的基本性质和常量代换,使其由“山重水复”变为“柳暗花明”的。

第四课时分式的通分

第四课时分式的通分

1 x (3) 2 与 x 4 4 2x
2 ( x 2) x 2) (2 x) (
( x 2) x 2) (x 2) ( 2
( ) 2 x 2(x 2)
最简公分 母的符号 为正 取相同因 式的最高 次幂
趁热打铁
1 x , 2 x x 2x 2
的最简公分母是2 x( x 1)
c
最简公 分母
取各分 相同字 单独 母系数 母取最 字母 的最小 高次幂 公倍数
方法归纳
3 ab (1) 2 与 2 2a b ab c
通分要先确定分式的最简公分母。
1.怎样找公分母? 2.找最简公分母应从方面考虑?
一看系数;二看字母
定义 :一般取各分母的所有因式的最高 次幂的积作公分母,它叫做最简
通分后,分母写成乘积的形式或者加减的形式都可以。
通分:
c 5 () 1 , 2ab a 3
练 习
通分:
1 (1) 2 3x
1 (2) 2 x x
5 12xy
1 x2 x
(四)课堂练习:通分
2c 3ac (1) 与 2 bd 4b
2 xy x 与 2 2 (2) 2 (x y) x y
2x 3x ( 2) 与 x5 x5
(x 5) (x 5) 1 1
最简公分母:
分母为多项式 时,取不同的 因式
1(x 5(x 5) )
不同的因式
趁热打铁
1 x , x 1 2( x 1)
的最简公分母是
2( x 1)( x 1)
例1.通分: 2x 3x ( 2) 与 x5 x5
1 1 , (1)求分式 3 2 4 的公分母。 2 x y z 6 xy

分式通分的技巧

分式通分的技巧

分式通分的技巧一、分组通分例1、计算:xy x y x y x y x y x y x y x --+-----+-24352 分析:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。

解:原式)23(452yx x y x y x y x y x y x y x ---+-+--+-= 222244xy xy y x xy y x y x y x y x -=--=-+-+-= 反思:当遇到的分式较多时可以观察是否有相同分母的分式适当分组结合,先将同分母分式相加减,再通分,可以使计算更加简便。

二、先约分再求值例2、计算:969362222++-+++x x x x x x x 分析:我们观察到两个分式都不是单项式,看起来很复杂,计算起来肯定不会很轻松,应首先想到运用约分化简后再计算。

解:原式3323336)3()3(3()3()6(2++=+-+++=+-++++=x x x x x x x x x x x x x 反思:在进行分式加减运算时,不能简单的盲目进行通分,首先要根据题目自身的特点,选用合适的方法,以使运算过程适当简化,本题中利用公式因式分解后,先约分再进行计算就比较简单。

三、逐步通分法例3、计算:4214121111xx x x ++++++- 分析:我们在计算时,会发现计算的分式较长,不知如何下手,但我们仔细观察各个分式的特点,会发现可以巧妙运用平方差公式逐步通分,会得到想要的结果.解:原式844422181414141212xx x x x x -=++-=++++-= 反思:本题如果用常规方法进行计算太繁琐,根据题目特点巧用平方差公式,采用逐步通分法,从而使运算简便。

四、整体通分法例4、计算y x yx x +-+2分析:我们看到题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式yx y y x y x y x x y x y x x +=+--+=--+=22222)( 反思:将后两项看作一个分母为“1”的整体可使运算简便。

分式的通分.1.2分式通分公开课

分式的通分.1.2分式通分公开课

4、分式通分的基本步骤: (1)将各分母分解因式 (2)寻找最简公分母(方法要记牢) (3)根据分式的基本性质,把各分式的分子 分母乘以同一个整式,化异分母为最简公 分母。(分子运算很重要)
尝试练习一: 通分
x y (1) 与 ab bc 2c 3ac ( 2) 与 2 bd 4b
x y (3) 与 a ( x 2) b( x 2)
分式的基本性质: 分式的分子与分母同时乘以(或除以)同 一个不等于零的整式 ,分式的值不变.
用公式表示为: A A C A A C , . B BC B B C (其中C是不等于零的整式 )
1 1 1 , 2 3, (1)求分式 3 2 4 的最简公分母。 2 x y z 4 x y 6 xy
2
最简公分母是:xy(x-y)2(x+y)
归纳:
确定几个分式的最简公分母的方法:
(1)系数:分式分母系数的最小公倍数; (2)因式:凡各分母中出现的不同因式 都要取到; (3)因式的指数:相同因式取指数最高的。
巩固练习:
1 1 1 1、分式 , , 的最简公分母是B 2 x y z 4 x y 6 xy
2 xy x ( 4) 与 2 2 2 ( x y) x y
3、通分:
1 1 (1) 与 x y x y
1 ⑵ ( a b) 2 ( x y ) 3
1 3 2 , ( a b) ( x y )
1 1 (3) 与 x y x xy
2 2 2
3 2 2 3 4
A、12xyz B、12x3y4z C、24xyz D、24x3y4z
1 x 2(x+1)(x-1) 2.分式 x 2 x , 2( x 1) 的最简公分母是_________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同的 因式
通分:
(1)
3 2a 2b

ab ab2c
(2) 2x 与 3x x5 x5
(1 x5) (1 x5)
2 a2 b2 c 最简
公分 母
1(x 5() x 5)
一般取各分母的所有因式的最 高次幂的积作公分母,它叫做 最简公分母。
总结
分数和分式在约分和通分的做法上有什么共同点? 这些做法的根据是什么?
复习回顾
1. 约分
(1)
6ab 20a2b3
a2 3ab (2) 3b2 ab
(3)a2 36 2a 12
(4) 4 x2 (5)9x2 6xy y2
x2 4x 4
2y 6x
2、化简求值:
(1)
x2 4y2 4x2 8xy
其中
x 2, y 3
(2)

a
2
a2 9 6a
9
其中 a 5
,
x 3y
2
,
1 4xy
的最简公分母是(

A.4xy B.3y 2 C.12xy2 D.12 x2 y2
2.分式
1x x2 x , 2(x 1)
的最简公分母是_________.
3. 三个分式 1 , y , 3 的最简
x x2 x x2 1
公分母 是
4.通分:
(1)
2c
bd

3ac 4b2
约分
通分
分数 找分子与分母的 最大公约数
找所有分母的 最小公倍数
分式 依据
找分子与分母的
找所有分母的
公因式
最简公分母
分数或分式的基本性质
补充例题:
例2、通分
(1) 1 , 3 , 4
3ab3 4a2b 9a3b
(2) 5x , 4 , 2x 2x1 12x 4x2 1
课堂练习:
1.三个分式
y 2x

ab ab2c
(2) 2x 与 3x x5 x5
最简
2 a2 b2 c 公分
最小 最 高
公倍 数次

单 独 字
幂母
(三)例题分析
例1. 通分:
(1)
3 2a 2b

ab ab2c
(2) 2x 与 3x x5 x5
(1 x5) (1 x5)
2 a2b2 c
最简
1(x 5() x 5)
最简
公分 母
公分 母
(2 )( x
2xy 与 x y) 2 x2 y2
5.(补充)通分 :
(1) 2 与 a -1 3a 9 a2 9
(2 )
4x
1 2
x
2

x
1 2
4
问题情景:
1. 通分:
(1) 7 与1 12 8
4 12 8 32
最简公分母:
解:7 7 2 14 4×3×2=24 12 122 24 1 13 3 8 83 24
问题 : 类比分数的通分你能 把下列分式化为分母相同的分
式吗? 3 与 b 2a2 3ac
例题分析:
例1、通分:
(1)
3 2a 2b
相关文档
最新文档