温度梯度导热系数热阻
导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法导热系数入[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K, C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用C代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/( rf?K)] : 传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,r),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/ rf?K,此处K可用r代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w) :热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(r /W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(rf *K/W )围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻:R=S /入式中:材料层厚度(m);入一材料导热系数[W/(m.k)]多层结构热阻:R=R1+R2+----Rn= S 1/ 入1+ S 2/ 入2+----+ S n/ 入n式中: R1 、R2、---Rn —各层材料热阻(m.k/w)S 1、S 2、--- S n-各层材料厚度(m)入1、入2、---入n-各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri -内表面换热阻(m.k/w)( 一般取0.11) Re -外表面换热阻(m.k/w)( 一般取0.04) R -围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0 —围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp —外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3-外墙周边热桥部位的传热系数[W/(m.k)]Fp —外墙主体部位的面积Fb1 、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式热阻值R(m.k/w) = 1 / 传热系数K [W/( rf?K)]导热系数入[W/(m.k)]= 厚度S (m) / 热阻值R(m.k/w) 厚度S (m)= 热阻值R(m.k/w) * 导热系数入[W/(m.k)]厚度S (m)=导热系数入[W/(m.k)] / 传热系数K [W/( rf?K)]5、围护结构设计厚度的计算厚度S (m)=热阻值R(m.k/w) * 导热系数入[W/(m.k)] *修正系数(见下表)R值和入值是用于衡量建筑材料或装配材料热学性能的两个指标。
导热系数相关公式

导热系数相关公式导热系数是材料的一个重要物理参数,它用来描述材料传导热量的能力。
导热系数越大,材料的导热性能越好,即材料越容易传导热量。
在热传导过程中,导热系数决定了热量从高温区域向低温区域传递的速率。
导热系数的相关公式主要有以下几个:1. 热传导定律热传导定律是描述热量传导的基本物理定律,它可以用来计算导热系数。
根据热传导定律,热流密度(单位面积上的热量流动)与温度梯度(单位长度上的温度变化率)成正比,比例系数就是导热系数。
热传导定律的数学表达式为:热流密度 = -λ * ΔT/Δx其中,λ表示导热系数,ΔT表示温度差,Δx表示距离。
2. 导热方程导热方程是描述材料内部温度分布随时间变化的方程,它也可以用来计算导热系数。
导热方程的数学表达式为:∂T/∂t = α * ∇²T其中,T表示温度,t表示时间,α表示热扩散系数,∇²T表示温度的拉普拉斯算子。
3. 热阻公式热阻是描述材料对热量传递的阻碍程度,它与导热系数有一定的关系。
热阻的计算公式为:热阻 = 厚度/导热系数根据热阻公式可以看出,导热系数越小,热阻越大,材料的导热性能越差。
4. 热导率公式热导率是导热系数的另一种表示方式,它是单位面积上单位时间内通过单位厚度材料传递的热量。
热导率的计算公式为:热导率 = 导热系数 * 密度 * 比热容其中,密度表示材料的密度,比热容表示单位质量材料升高1摄氏度所需的热量。
总结:导热系数是材料导热性能的重要参数,可以通过热传导定律、导热方程、热阻公式和热导率公式等公式来计算。
了解和掌握这些公式,有助于我们评估材料的导热性能,并在工程实践中选择合适的材料。
同时,导热系数的测量方法和影响因素也是研究的重点领域,不断深入研究导热系数的相关公式,将会对材料科学和工程领域的发展产生重要影响。
导热系数与热阻关系的探索与解析

导热系数与热阻关系的探索与解析导热系数与热阻关系的探索与解析导热系数和热阻是研究热传导中两个重要的参数。
在工程和物理学领域中,了解导热系数和热阻的关系对于设计和优化热传导材料和系统非常重要。
在本文中,我们将深入探讨导热系数和热阻的概念,并分析它们之间的关系。
一、导热系数的概念和意义导热系数是一个材料的热传导性能的衡量指标,表示单位时间内单位面积上的热能传递量。
它的单位是瓦特/米·开尔文(W/m·K)。
导热系数越大,表示该材料的热传导性能越好。
导热系数的测量通常通过实验方法获得。
可以使用热量流经材料样品的实验装置,通过测量温度差来计算导热系数。
在实际应用中,导热系数的值可以用于预测热传导过程中的温度分布和热耗散。
二、热阻的概念和意义热阻是一个介质或系统抵抗热流传递的能力。
它是导热系数的倒数,表示单位面积上单位时间内热能传递的难易程度。
热阻的单位是开尔文·米^2/瓦特(K·m^2/W)。
热阻越大,表示该介质或系统的热传导能力越差,热能传递越困难。
热阻通常用于评估材料和系统的隔热性能。
在建筑中,我们希望通过选择具有较低热阻的材料来减少能量损失;在电子设备中,我们关注热阻的大小,以确保元件的正常工作温度。
三、导热系数与热阻的关系导热系数和热阻是相互关联的,它们之间存在如下关系:热阻 = 厚度 / (导热系数× 面积)根据上述公式,我们可以看出,导热系数越大,热阻越小,热传导能力越强。
反之,导热系数越小,热阻越大,热传导能力越弱。
这个关系对于设计和优化热传导材料和系统非常重要。
通过选择具有较高导热系数的材料,可以减小材料的热阻,提高热传导的效率。
然而,并非所有情况下都是导热系数越大越好。
在一些特殊的应用中,我们希望材料具有较低的导热系数,以减少热能的传导,保持温度的稳定性。
这就需要根据具体需求来选择材料,并结合热阻的概念进行综合考虑。
四、总结与回顾通过本文,我们对导热系数与热阻的关系进行了深入探索与解析。
热传导导热系数的定义与计算方法

热传导导热系数的定义与计算方法热传导导热系数(thermal conductivity)是衡量物质导热性能的重要参数。
它描述了热量在物质中传导的速率与温度梯度之间的关系。
了解热传导导热系数的定义与计算方法对于研究热学和工程热力学等领域具有重要意义。
本文将介绍热传导导热系数的基本概念、定义以及常用的计算方法。
一、热传导导热系数的定义热传导导热系数即材料的导热性能指标,代表着单位时间内单位面积和单位温度梯度下的热量传导量。
它的单位是[W/(m·K)]。
热传导导热系数越大,说明材料的导热性能越好,热量在材料中传导得越迅速。
热传导导热系数的计算往往需要考虑材料特性、温度梯度、厚度等因素。
二、热传导导热系数的计算方法热传导导热系数的计算方法有多种,主要包括累积法、电法、绝热板法等。
1. 累积法累积法是一种常用的计算热传导导热系数的方法。
它通过测量所研究材料的导热特性,得到热传导导热系数的数值。
其中,最常用的是热阻法和板热法。
(1)热阻法:热阻法是通过测量材料厚度、面积和温度差,利用热阻和热导率之间的关系计算热传导导热系数。
它适用于固体材料的导热性能测量。
(2)板热法:板热法是利用热板的两侧温度差和热流量来计算热传导导热系数。
这种方法适用于测量材料的导热性能和厚度。
2. 电法电法是另一种常用的计算热传导导热系数的方法。
它利用热电效应来测量材料的热导率,并据此计算热传导导热系数。
电法适用于导电性较好的材料,如金属。
3. 绝热板法绝热板法是一种间接计算热传导导热系数的方法。
它利用绝热板对热传导进行隔离,测量两侧温度差,然后据此计算热传导导热系数。
三、热传导导热系数的应用热传导导热系数在热工学、材料科学、建筑工程等领域有广泛的应用。
1. 热工学领域:热传导导热系数的了解对于热工学系统的设计和性能优化至关重要。
例如,在电子设备的散热设计中,需要考虑材料的热导率和尺寸,以保证散热效果达到预期。
2. 材料科学领域:热传导导热系数是材料性能研究的重要参数之一。
导热系数传热系数热阻值概念及热工计算方法

导热系数传热系数热阻值概念及热工计算方法导热系数是一个物质传导热量的能力的物理量,通常用符号λ表示,单位是W/(m·K)。
它表示单位面积上,厚度为1米的物质在温度差为1摄氏度时,横向通过热传导而传递的热量。
物质的导热系数与物质自身的性质有关,常用于计算材料的热传导过程。
传热系数是指对流传热和传导传热之和。
对流传热是指流体通过对流方式(例如空气对流、液体对流)传递热量的过程。
传导传热是指通过材料内部的分子热传导以及材料之间的热传导传递热量的过程。
传热系数通常用符号α表示,单位是W/(m^2·K)。
传热系数是描述单位面积的物质与流体(例如空气、液体)之间的热量传递能力的参数。
热阻值是描述物质抵抗热传导流动的能力的物理量。
热阻值通常用符号R表示,单位是m^2·K/W。
热阻值可以通过物质的导热系数和物质的厚度计算得到。
热阻值越大,就意味着物质抵抗热量传递的能力越强。
从计算角度来看,热阻值可以用于确定材料层的热传导系数和有效厚度。
在热工计算中,常常需要计算传热过程中的各种参数。
一般来说,可以使用一维热传导方程对传热进行描述。
该方程是基于能量守恒原理建立的,用于计算热传导。
在实际计算中,可以使用有限差分法、有限元法等数值方法求解热传导方程。
对于复杂的传热过程,例如对流传热,可以使用强化传热表达式或经验公式来估算传热系数。
这些经验公式基于实验数据和经验得出,用于估计传热系数。
根据具体的工程问题,可以选择适合的传热模型和传热参数进行计算。
需要注意的是,热传导过程中考虑的因素很多,包括材料的导热性质、热传导路径、表面特性、传热介质等等。
因此,在进行热工计算时,需要综合考虑各种因素,选择合适的传热模型和参数,以确保计算结果的准确性和可靠性。
热阻 和导热系数 蓄热系数-概述说明以及解释

热阻和导热系数蓄热系数-概述说明以及解释1.引言1.1 概述热阻、导热系数和蓄热系数是研究热传导性质的重要指标。
热阻是指材料对热传导的阻碍程度,表示了材料传热能力的强弱,通常用于评估绝缘材料与导热材料的性能差异。
导热系数则是指材料导热的能力,是一个描述材料导热性能的物理量。
蓄热系数则涉及到材料储存热能的能力。
这三个指标对于热工领域非常重要,对于材料的选择和应用具有重要的指导意义。
热阻是衡量材料传导热量的阻力。
在传热的过程中,材料会对热量的流动产生一定的阻碍作用,热量在材料中传递的速度将会减慢。
热阻的大小取决于材料的导热性能和几何形状,其中导热性能是热传导过程中最重要的因素之一。
导热系数是一个描述材料导热性能的物理量,它衡量了材料单位面积上单位温度梯度下的传热速率。
导热系数越大,表示材料的导热性能越好,热量在材料中的传递速度也越快。
导热系数与材料的物理性质、结构以及温度有关。
在实际应用中,我们常会根据导热系数的大小选择合适的材料,以便实现高效的热传导。
蓄热系数是描述材料储存热能能力的指标。
材料的蓄热系数越高,说明其具有更好的储热性能,即能在短时间内吸收更多的热量,并能在需要时释放出来。
蓄热系数与材料的热容量和密度相关,可以用来评估材料在太阳能利用、热储能等方面的应用潜力。
综上所述,热阻、导热系数和蓄热系数是研究热传导性质的重要参数。
它们在材料选择和应用领域具有重要的作用,能够指导我们选择合适的材料以实现高效的热传导和储热。
在接下来的文章中,我们将分别介绍热阻、导热系数和蓄热系数的概念、测量方法和应用领域,以期对这些热传导性质有更深入的了解。
1.2 文章结构文章结构部分的内容可以按照以下方式来编写:文章结构部分旨在介绍整篇文章的组织和脉络,方便读者了解文章的逻辑和章节安排。
本文分为引言、正文和结论三个主要部分。
首先,引言部分将为读者提供一个总体概述,介绍本文将要讨论的主要内容。
其次,引言部分还会详细说明文章的结构,以帮助读者更好地理解整篇文章。
导热系数、传热系数、热阻值概念及热工计算方法简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法导热系数λ[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/(㎡?K)]:传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w):热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻: R=δ/λ式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)]多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m.k/w)(一般取0.11)Re —外表面换热阻(m.k/w)(一般取0.04)R —围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp—外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式①热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)]②导热系数λ[W/(m.k)] = 厚度δ(m) / 热阻值R(m.k/w)③厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]④厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]5、围护结构设计厚度的计算厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数(见下表)R值和λ值是用于衡量建筑材料或装配材料热学性能的两个指标。
热传导现象中的导热系数及热阻

热传导现象中的导热系数及热阻热传导是热量从高温区域到低温区域传递的过程。
在物质中,这种传递过程是通过分子之间的碰撞和能量传递实现的。
而导热系数和热阻则是描述热传导现象的两个重要参数。
导热系数(thermal conductivity)是衡量物质导热性能的指标。
它表示单位时间内单位面积上的热量传递量。
导热系数越大,物质导热性能越好,也就是说热量在该物质中传导得越快。
不同材料的导热系数可以有很大差异,比如金属通常具有较高的导热系数,而空气则导热性相对较差。
热阻(thermal resistance)则是描述物质抵抗热量传递的指标。
它表示单位时间内单位面积上的热量通过物质的困难程度。
热阻与导热系数成反比,即物质导热性能越好,其热阻越小。
通过增加物质的厚度或者降低其导热系数,可以增加物质的热阻。
常见的用于增加热阻的材料有绝缘材料,例如聚苯乙烯泡沫等,这些材料的导热系数较低,能够减缓热量传递的速度。
导热系数和热阻在实际生活和工程中有着广泛的应用和重要性。
比如在建筑领域,选用具有较低导热系数的材料,可以提高建筑物的隔热性能,降低能源消耗,提高室内舒适度。
而在电子领域,合理选择热导率高的材料,可以提高电子器件的散热性能,延长器件寿命。
对于不同物质的导热系数和热阻,研究者们开展了大量的实验研究和理论推导。
通过测试不同材料的热导率,可以获得导热系数的具体数值。
平衡法、传导法、模拟法等方法都可以用于热导率的测试,这些方法的原理各不相同,但都旨在准确测量热量的传导情况,提取出系数。
而热阻的计算则需要根据材料的厚度和导热系数进行相应的推导和计算。
需要注意的是,在实际应用中,导热系数和热阻并不是恒定不变的,而是与温度变化相关的。
例如,随着温度的升高,固体材料的导热系数通常会变大。
这是因为在高温下,分子之间的碰撞更加频繁,能量传递更加迅速。
这种温度相关性需要考虑在实际应用中,以确保我们对导热系数和热阻的评估是准确的。
总的来说,导热系数和热阻是评估物质导热性能的重要参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均过余温度可按下式计算:
m
1 H
L
dx
0
1 H
L
0
0
cosh m H x cosh mH
dx
0
mH
tanh mH
f
tanh mH
可见,肋片效率是mH的函数。
mHDepartment of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
2. 肋片效率
肋片效率定义: 肋 片 的 实 际 散 热 量 与 假 设 整 个 肋
片都具有肋基温f 度 时0 的 理PPHH想hh散ttm热0 量tt0之比m0
式中tm、m分别为肋面的平均温度和平均过余温度, t0、 0分别为肋基温度与肋基过余温度。
由于m< 0 ,所以肋片效率f 小于1。
h f Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
NCEPU
Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
NCEPU
肋端,x=H,肋端的过余温度
H
0
1
cosh mH
0
cosh mH x cosh mH
肋端过余温度随mH增加而降低。
在稳态情况下, 肋片散热量 应该等于从肋根导入的热量,
Ac
d
dx
x0
0
msin
t
t
0
令m
hP
Ac
h 2l
l
2h
t t 称为过余温度。
数学模 型变为
d 2 m2 0
dx2 x = 0, = 0
x H , d 0
C1emx C2emx
0
emH x emH
emH x emH
dx
双曲余 弦函数
coshx ex ex 2
0
cosh m H x cosh mH
Department of Power Engineering, North China Electric Power University (Beijing 102206)
NCEPU
几点说明:
(1)上述分析结果同样适用于其它形状的等截面直 肋,如圆柱、圆管形肋的一维稳态导热问题;
(2)如果必须考虑肋端面的散热,可以将肋端面面
积折算到侧面上去,相当于肋加高为H+H,其中 H A 对于矩形肋, H
(3)上述分P析结果既适用于肋片被2 加热的情况,也 适用于肋片被冷却的情况;
降 低 , mH 较 小 时 ,
mH=1.0
温度降低缓慢;
mH 较 大 时 , 温 度
降低较快。
mH 2h H
一般取0.7< mH <2
x/H
Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
NCEPU
矩形和三角形肋片效率随mH的变化规律如图。 可见, mH愈大,肋片效率愈低。
肋片效率的 影响因素:
mH 2h H
H
(1)肋片材料的
热导率, f
H
(2)肋片高度H,
H f
mH
(3)肋片厚度, f
(4)肋片与周围流体间对流换热的表面传热系数h ,
(4)对于肋片厚度方向的导热热阻/与表面的对流 换热热阻1/h相比不可忽略的情况,肋片的导热不能认 为是一维的,上述公式不再适用;
(5)上述推导没有考虑辐射换热的影响,对一些温 差较大的场合,必须加以考虑。
Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有 NCEPU
肋片的过余温度从肋根开始沿高度方向按双曲余玄函数
的规律变化,
0
cosh m H x cosh mH
0
cosh mH 1 x / cosh mH
H
肋片的过余温
度沿高度方向逐渐
Acdx
Acdx
Ac
Department of Power Engineering, North China Electric Power University (Beijing 102206)
杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有 NCEPU
代入导热微分方程式,得
d 2t dx2
肋片导热微分方程的两种导 出方法:
(1)由肋片微元段的热平衡 导出;
(2)将肋片导热看作是具有 负的内热源的一维稳态导热。
数学模型:
d2x dx2
0
x = 0, t = t0
x H , dt 0
dx
内热源强度的确定:对于图中所示的微元段,
s Pdx ht t Pht t
x
x0
Am0
sinh mH cosh mH
Acm0tanh mH hPAc0tanh mH
随着mH增大,散热量增加,开始增加迅速,后来越来
越缓慢,逐渐趋于一渐近值。(增加肋高的经济性) Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有 NCEPU