湖北省武汉六中位育中学2020-2021学年七年级上学期9月质量检测数学试题(无答案)
武汉市各区2020-2021学年度七上数学期中试题汇编-第23题(word版含解析)

武汉市各区2020-2021学年度七上数学期中试题汇编-第23题1.(2020秋•江岸区期中)观察下列按一定规律排列的三行数:第一行:1,﹣3,9,﹣27,81,…;①第二行:4,0,12,﹣24,84,…,②第三行:﹣2,2,﹣10,26,﹣82,…;③解答下列问题:(1)每一行的第6个数分别是,,;(2)第一行中的某3个相邻数的和是5103,试求出这3个相邻数中的第一个数;(3)取这三行数中每行数的第n个数,记其和为m,则这三个数中最大的数与最小的数的差为(用含m的式子表示).2.(2020秋•武珞路期中)观察下列三行数:(1)每行的第9个数分别为,,.(2)如图,用一个长方形方框框住六个数,左右移动方框,若方框中的六个数左上角数记为x,求这六个数的和(结果用含x式子表示并化简).(3)第三行是否存在连续的三个数的和为381,若存在,求这三个数,若不存在,请说明理由?3.(2020秋•武昌区拼搏期中)如图,是2020年11月的月历,“L”型、“反Z”型两个阴影图形分别覆盖其中四个方格(可以重叠覆盖),设“L”型阴影覆盖的最小数字为a.四个数字之和为S1,“反Z”型阴影覆盖的最小数字为b,四个数字之和为S2.(1)S1=(用含a的式子表示),S2=(用含b的式子表示);(2)S1+S2值能否为46?若能,求a,b的值;若不能,说明理由.(3)从日历中取出1,3,6,10,15,21,28,寻找其规律,并按此规律继续排列下去,若将第1个数记为x1,第2个数记为x2,……,第n个数记为x n,则1x1+1x2+1x3+⋯⋯+1x2020=.4.(2020秋•江汉区期中)将网格中相邻的两个数分别加上同一个数,称为一步变换,比如,我们可以用三步变换将网格1变成网格2,变换过程如图.(1)请用两步变换将网格3变成网格1.(2)请用三步变换将网格4变成网格1.(3)当ab满足什么条件时,网格5通过若干步变换可以变成网格6,请利用网格7中的字母简要说明理由.5.(2020秋•硚口区期中)如图是某年某月的月历,用如图所示的“凹”字型在月历中任意圈出5个数,设“凹”字型框中的五个数分别为a1、a2、a、a3、a4.(1)若a1=1,则a2=,a=.若a=x,则a4=(用含x的式子表示);(2)在移动“凹”字型框过程中,小胖说被框住的5个数字之和可能为106,大胖说被框住的5个数字之和可能为90,你同意他们的说法吗?请说明理由;(3)在另一个“凹”字型框框住的五个数分别为b1、b2、b、b3、b4,且b=2a+1,则符合条件的b的值为.6.(2020秋•武昌区七校期中)观察下列具有一定规律的三行数:第一行1491625……第二行﹣1271423……第三行28183250……(1)第一行第n个数为(用含n的式子表示);(2)取出每行的第m个数,这三个数的和为482,求m的值;(3)第四行的每个数是将第二行相对应的每个数乘以k得到的,若这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,则k=.7.(2020秋•洪山区期中)我国电价实施阶梯收费,即用电价格随用电量增加呈阶梯递增.居民每户用电量的第一档价格每度电一般是0.52~0.62元,受季节、用电时段和地域等影响,对于城乡低保户和五保户则设置10~15度免费电量.已知某市居民用电按如下标准收费:档次每户每月用电量非夏季标准单价第一档不超过200度的部分m元/度第二档超过200度但不超过400度的部分(m+0.05)元/度第三档超过400度的部分(m+0.30)元/度(1)小张:我家上个月电表起码88558,止码88888.m=0.52.请你帮小张算算他家该月要交多少电费.(2)王大爷:我家上个月交了133元电费,政府给我每月减免10度电,m=0.60.请你帮王大爷列出他家该月的用电量x(度)所满足的方程;(3)胡阿姨:我家和邻居家上个月共用电800度,其中我家用电量在200~500度之间.m =0.60.设胡阿姨家用电量为a度.用含a的整式表示:①当200<a<400时,胡阿姨和邻居家该月共缴纳电费元;②当400<a≤500时,胡阿姨和邻居家该月共缴纳电费元.8.(2020秋•汉阳区期中)定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“互异数”,将一个“互异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f (a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12=33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1)填空:①下列两位数:60,63,66中,“互异数”为;②计算:f(23)=;(2)如果一个“互异数”b的十位数字是k,个位数字是2(k+1),且f(b)=8,“互异数”b=.(3)如果m,n都是“互异数”,且m+n=100,则f(m)+f(n)=.9.(2020秋•东湖高新期中)观察下列的三行单项式: 2x 、4x 2、8x 3、16x 4、32x 5、64x 6、……① ﹣4x 、8x 2、﹣16x 3、32x 4、﹣64x 5、128x 6、……② 2x 2、﹣3x 3、5x 4、﹣9x 5、17x 6、﹣33x 7、……③(1)根据你发现的规律,第①行第8个单项式为 ;(2)第②行的第8个单项式为 ,第③行的第8个单项式为 . (3)取每行的第9个单项式,记这三个单项式的和为M ,计算当x =12时,512(M +34)的值.10.(2020秋•江夏区期中)为了有效阻击“新冠肺炎”病毒的传播,武汉人民响应政府号召实施了小区“封闭管理”.为了保障居民的生活需要,某社区组织了20辆汽车运送一批食品、药品以及生活日用品三种应急物资到一些居民小区,按计划每辆汽车只能装运一种应急物资,并且20辆汽车都必须装运、装满.设运送食品的汽车为x 辆,运送药品的汽车比运送食品的汽车数量的15还少1辆,根据表中提供的信息,解答下列问题:应急物资种类 食品 药品 生活日用品每辆汽车运载量/吨 6 5 4 每吨物质所需运费/元120160100(1)20辆汽车一共运送了多少吨应急物资?(用含x 的代数式表示)(2)若x =15,问一共运送了多少吨应急物资?运送这批应急物资的总费用是多少元? 11.(2020秋•黄陂区期中)某体育用品商店出售的乒乓球拍和乒乓球进价,售价如表:进价(元)售价(元) 乒乓球拍 30 30+a (a >0) 乒乓球11+b (b >0)某乒乓球队打算购买15副乒乓球拍,120个乒乓球.(1)该乒乓球队共需花费 元(结果用含a ,b 式子表示); (2)今年“十一”期间该商店开展让利促销活动,提供两种不同的促销方案: 方案一:买一副乒乓球拍送2个乒乓球;方案二:每购买100个乒乓球就赠送1副乒乓球拍.①全部按方案一购买比全部按方案二购买多花多少钱(结果用含a ,b 式子表示)?②若a=5,b=0.2,请你为该乒乓球队设计一个省钱的购买方案,计算说明理由.武汉市各区2020-2021学年度七上数学期中试题汇编-第23题1.(2020秋•江岸区期中)观察下列按一定规律排列的三行数:第一行:1,﹣3,9,﹣27,81,…;①第二行:4,0,12,﹣24,84,…,②第三行:﹣2,2,﹣10,26,﹣82,…;③解答下列问题:(1)每一行的第6个数分别是﹣243,﹣240,242;(2)第一行中的某3个相邻数的和是5103,试求出这3个相邻数中的第一个数;(3)取这三行数中每行数的第n个数,记其和为m,则这三个数中最大的数与最小的数的差为当n为奇数时,2m;当n为偶数时,﹣2m+3(用含m的式子表示).【考点】有理数大小比较;列代数式;规律型:数字的变化类.【解答】解:(1)∵第一行:1,﹣3,9,﹣27,81,…;①第二行:4,0,12,﹣24,84,…,②第三行:﹣2,2,﹣10,26,﹣82,…;③∴第一行的后一个都等于前面的数字乘(﹣3)得到,第二行的数字都是第一行对应的数字加3得到,第三行的数字都是第二行的对应的数字的相反数加2得到,∴每一行的第6个数分别是:81×(﹣3)=﹣243,﹣243+3=﹣240,240+2=242,故答案为:﹣243,﹣240,242;(2)设第一个数为x,则第二个数为﹣3x,第三个数为9x,依题意得:x+(﹣3x)+9x=5103,解得x=729,答:这3个相邻数中第一个数为729;(3)当n为奇数时,依题意得:(﹣3)n﹣1+[(﹣3)n﹣1+3]+{﹣[(﹣3)n﹣1+3]+2}=m,化简,得(﹣3)n﹣1+2=m,则(﹣3)n﹣1=m﹣2,则这三个数中最大的数与最小的数的差为:[(﹣3)n﹣1+3]﹣{﹣[(﹣3)n﹣1+3]+2}=2[(﹣3)n﹣1+3]﹣2=2(m﹣2+3)﹣2=2m;当n为偶数时,依题意得:(﹣3)n﹣1+[(﹣3)n﹣1+3]+{﹣[(﹣3)n﹣1+3]+2}=m,化简,得(﹣3)n﹣1+2=m,则(﹣3)n﹣1=m﹣2,则这三个数中最大的数与最小的数的差为:{﹣[(﹣3)n﹣1+3]+2}﹣(﹣3)n﹣1=﹣2(﹣3)n﹣1﹣1=﹣2(m﹣2)﹣1=﹣2m+3;由上可得,当n为奇数时,这三个数中最大的数与最小的数的差为2m;当n为偶数时,这三个数中最大的数与最小的数的差为﹣2m+3;故答案为:当n为奇数时,2m;当n为偶数时,﹣2m+3.2.(2020秋•武珞路期中)观察下列三行数:(1)每行的第9个数分别为(﹣2)9,﹣29+2,29﹣1.(2)如图,用一个长方形方框框住六个数,左右移动方框,若方框中的六个数左上角数记为x,求这六个数的和(结果用含x式子表示并化简).(3)第三行是否存在连续的三个数的和为381,若存在,求这三个数,若不存在,请说明理由?【考点】列代数式;一元一次方程的应用.【解答】解:(1)第①行的有理数分别是﹣2,(﹣2)2,(﹣2)3,(﹣2)4,…,故第n个数为(﹣2)n(n是正整数),第9个数为(﹣2)9,第②行的数等于第①行相应的数加2,即第n的数为(﹣2)n+2(n是正整数),第9个数为29+2,第③行的数等于第①行相应的数的相反数减去1,即第n个数是﹣(﹣2)n﹣1(n是正整数),第9个数为﹣29﹣1,故答案为:(﹣2)9,﹣29+2,29﹣1;(2)∵左上角数记为x,∴另五个数分别为:﹣2x,x+2,﹣2x+2,﹣x﹣1,2x﹣1,∴x﹣2x+x+2﹣2x+2﹣x﹣1+2x﹣1=﹣x+2;(3)设这三个数分别为:﹣x﹣1,2x﹣1,﹣4x﹣1,由题意可得:﹣x﹣1+2x﹣1﹣4x﹣1=381,∴x=﹣128,∴这三个数分别为127,﹣257,511.3.(2020秋•武昌区拼搏期中)如图,是2020年11月的月历,“L”型、“反Z”型两个阴影图形分别覆盖其中四个方格(可以重叠覆盖),设“L”型阴影覆盖的最小数字为a.四个数字之和为S1,“反Z”型阴影覆盖的最小数字为b,四个数字之和为S2.(1)S1=4a+24(用含a的式子表示),S2=4b+14(用含b的式子表示);(2)S1+S2值能否为46?若能,求a,b的值;若不能,说明理由.(3)从日历中取出1,3,6,10,15,21,28,寻找其规律,并按此规律继续排列下去,若将第1个数记为x1,第2个数记为x2,……,第n个数记为x n,则1x1+1x2+1x3+⋯⋯+1 x2020=40402021.【考点】规律型:图形的变化类;一元一次方程的应用.【解答】解:(1)∵a+a+7+a+8+a+9=4a+24,∴S1=4a+24.∵b+b+1+b+6+b+7=4b+14,∴S2=4b+14.(2)由(1)得S1+S2=4a+24+4b+14=4(a+b)+38,设S1+S2=4(a+b)+38=46,得a+b=2.又∵a,b都为正整数,∴a=1,b=1.∵b=1时,反Z型不存在,故S1+S2的值不可能为46.答:S1+S2的值能为46,a=1,b=1.(3)由题意:1x1+1x2+1x3+⋯⋯+1x2020=1+13+16+110+⋯+12020=1+11+2+11+2+3+11+2+3+4+⋯+11+2+3+4+⋯+2020 =1+22×3+23×4+24×5+⋯+22020×2021 1+2(12−13+13−14+14−15+⋯+12020−12021)=1+2(12−12021)=1+20192021=40402021.4.(2020秋•江汉区期中)将网格中相邻的两个数分别加上同一个数,称为一步变换,比如,我们可以用三步变换将网格1变成网格2,变换过程如图.(1)请用两步变换将网格3变成网格1.(2)请用三步变换将网格4变成网格1.(3)当ab 满足什么条件时,网格5通过若干步变换可以变成网格6,请利用网格7中的字母简要说明理由.【考点】规律型:数字的变化类.【解答】解:(1)如图,(2)如图,由(1)可得,网格4变成网格1,所以a﹣2b+k=1,b﹣2+k+m=0,a+m+n=0,1﹣2b+n=0,解得,k=1﹣a+2b,m=a﹣3b+1,n=2b﹣1;(3)由网格5变换成网格6,2a+4b﹣2=0,∴a+2b=1.5.(2020秋•硚口区期中)如图是某年某月的月历,用如图所示的“凹”字型在月历中任意圈出5个数,设“凹”字型框中的五个数分别为a1、a2、a、a3、a4.(1)若a1=1,则a2=8,a=9.若a=x,则a4=x﹣6(用含x的式子表示);(2)在移动“凹”字型框过程中,小胖说被框住的5个数字之和可能为106,大胖说被框住的5个数字之和可能为90,你同意他们的说法吗?请说明理由;(3)在另一个“凹”字型框框住的五个数分别为b1、b2、b、b3、b4,且b=2a+1,则符合条件的b的值为21或23或29.【考点】列代数式;一元一次方程的应用.【解答】解:(1)∵a1=a﹣8,a2=a﹣1,a3=a+1,a4=a﹣6,∴a1=1时,a=8+1=9,a2=9﹣1=8,a=x时,a4=x﹣6,故答案为:8,9,x﹣6;(2)小胖的说法对,大胖的说法不对,理由如下:小胖:(a﹣8)+(a﹣1)+a+(a+1)+(a﹣6)=5a﹣14=106,解得:a=24,大胖:(a﹣8)+(a﹣1)+a+(a+1)+(a﹣6)=5a﹣14=90,解得:a=20.8(不符合题意,舍去),∴小胖的说法对,大胖的说法不对;(3)∵a1=a﹣8,a2=a﹣1,a3=a+1,a4=a﹣6,b=2a+1,∴b1=b﹣8=2a﹣7,b2=2a,b3=2a+2,b4=2a﹣5,由图知a、b的值可以为:9,10,11,14,15,16,17,18,21,22,23,24,25,28,29,30,∴2a+1的值可以为:19,21,23,29,31,33,35,37,43,45,47,49,51,57,59,61,∴b的值可以为:21或23或29,故答案为:21或23或29.6.(2020秋•武昌区七校期中)观察下列具有一定规律的三行数:第一行1491625……第二行﹣1271423……第三行28183250……(1)第一行第n个数为n2(用含n的式子表示);(2)取出每行的第m个数,这三个数的和为482,求m的值;(3)第四行的每个数是将第二行相对应的每个数乘以k得到的,若这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,则k=﹣4.【考点】列代数式;规律型:数字的变化类.【解答】解:(1)∵1=12,4=22,9=32,16=42,25=52,…,∴第一行第n个数为n2,故答案为:n2;(2)由表格可知,第二行的第n个数为n2﹣2,第三行的第n个数为2n2,∴第一行的第m个数为m2,第二行的第m个数为m2﹣2,第三行的第m个数为2m2,∵取出每行的第m个数,这三个数的和为482,∴m2+(m2﹣2)+2m2=482,解得m1=11,m2=﹣11(舍去),即m的值是11;(3)∵第四行的每个数是将第二行相对应的每个数乘以k得到的,∴第四行的第n个数为k(n2﹣2),n2+(n2﹣2)+2n2+k(n2﹣2)=n2+n2﹣2+2n2+kn2﹣2k=(4+k)n2﹣(2+2k),∵这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,∴4+k=0,解得k=﹣4,故答案为:﹣4.7.(2020秋•洪山区期中)我国电价实施阶梯收费,即用电价格随用电量增加呈阶梯递增.居民每户用电量的第一档价格每度电一般是0.52~0.62元,受季节、用电时段和地域等影响,对于城乡低保户和五保户则设置10~15度免费电量.已知某市居民用电按如下标准收费:档次每户每月用电量非夏季标准单价第一档不超过200度的部分m元/度第二档超过200度但不超过400度的部分(m+0.05)元/度第三档超过400度的部分(m+0.30)元/度(1)小张:我家上个月电表起码88558,止码88888.m=0.52.请你帮小张算算他家该月要交多少电费.(2)王大爷:我家上个月交了133元电费,政府给我每月减免10度电,m=0.60.请你帮王大爷列出他家该月的用电量x(度)所满足的方程;(3)胡阿姨:我家和邻居家上个月共用电800度,其中我家用电量在200~500度之间.m=0.60.设胡阿姨家用电量为a度.用含a的整式表示:①当200<a<400时,胡阿姨和邻居家该月共缴纳电费(600﹣0.25a)元;②当400<a≤500时,胡阿姨和邻居家该月共缴纳电费(400+0.25a)元.【考点】有理数的混合运算;列代数式;一元一次方程的应用.【解答】解:(1)88888﹣88558=330(度),0.52×200+(0.52+0.05)×(330﹣200)=178.1(元).故小张家该月要交178.1元电费.(2)依题意有200×0.6+(x﹣10﹣200)×(0.6+0.05)=133,即120+0.65(x﹣210)=133;(3)①当200<a<400时,胡阿姨和邻居家该月共缴纳电费200×0.60+0.65(a﹣200)+200×0.60+200×0.65+(800﹣a﹣400)×0.9=(600﹣0.25a)元;②当400<a≤500时,胡阿姨和邻居家该月共缴纳电费200×0.60+0.65×200+0.9(a﹣400)+200×0.60+(800﹣a﹣200)×0.65=(400+0.25a)元.故答案为:(600﹣0.25a);(400+0.25a).8.(2020秋•汉阳区期中)定义:对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“互异数”,将一个“互异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f (a).例如:a=12,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12=33,和与11的商为33÷11=3,所以f(12)=3.根据以上定义,回答下列问题:(1)填空:①下列两位数:60,63,66中,“互异数”为63;②计算:f(23)=5;(2)如果一个“互异数”b的十位数字是k,个位数字是2(k+1),且f(b)=8,“互异数”b=26.(3)如果m,n都是“互异数”,且m+n=100,则f(m)+f(n)=19.【考点】因式分解的应用.【解答】解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“互异数”,∴60,63,66中,“互异数”为63,故答案为:63;②f(23)=(23+32)÷11=5,故答案为:5;(2)∵“互异数”b的十位数字是k,个位数字是2(k+1),且f(b)=8,∴{[10k+2(k+1)]+[20(k+1)+k]}÷11=8,解得,k=2,∴b=10k+2(k+1)=26,故答案为26;(3)∵m,n都是“互异数”,且m+n=100,∴设m=10x+y(x、y都不为0的整数,且x≠y,1≤x≤9,1≤≤9),则n=10(9﹣x)+(10﹣y),∴f(m)=x+y,f(n)=(9﹣x)+(10﹣y)=19﹣x﹣y,∴f(m)+f(n)=19,故答案为:19.9.(2020秋•东湖高新期中)观察下列的三行单项式:2x、4x2、8x3、16x4、32x5、64x6、……①﹣4x、8x2、﹣16x3、32x4、﹣64x5、128x6、……②2x2、﹣3x3、5x4、﹣9x5、17x6、﹣33x7、……③(1)根据你发现的规律,第①行第8个单项式为256x8;(2)第②行的第8个单项式为﹣1024x9,第③行的第8个单项式为128x9.(3)取每行的第9个单项式,记这三个单项式的和为M,计算当x=12时,512(M+34)的值.【考点】合并同类项;规律型:数字的变化类;单项式.【解答】解:(1)2x,4x2,8x3,16x4,32x5、64x6、……①所以第8个单项式为28x8=256x8.故答案为:256x8.(2)﹣4x、8x2、﹣16x3、32x4、﹣64x5、128x6、……②∴第n个单项式为(﹣1)n2n+1x n,所以第9个单项式为﹣210x9=﹣1024x9.2x 2,﹣3x 3,5x 4,﹣9x 5,17x 6,﹣33x 7,…;③(20+1)x 2,﹣(21+1)x 3,(22+1)x 4,﹣(23+1)x 5,(24+1)x 6,﹣(25+1)x 7,…(﹣1)n +1(2n ﹣1+1)x n +1;③所以第8个单项式为(﹣1)9(27+1)x 9=﹣128x 9. 故答案为﹣1024x 9.128x 9;(3)第①行第9个单项式为29x 9,第②行第9个单项式为﹣210x 9,第③行的第9个单项式为(28+1)x 10,M =29x 9﹣210x 9+(28+1)x 10. 当x =12时,M =1﹣2+(256+1)11024=−1+14+11024=−34+11024, 512(M +34)=512(−34+11024+34)=12.10.(2020秋•江夏区期中)为了有效阻击“新冠肺炎”病毒的传播,武汉人民响应政府号召实施了小区“封闭管理”.为了保障居民的生活需要,某社区组织了20辆汽车运送一批食品、药品以及生活日用品三种应急物资到一些居民小区,按计划每辆汽车只能装运一种应急物资,并且20辆汽车都必须装运、装满.设运送食品的汽车为x 辆,运送药品的汽车比运送食品的汽车数量的15还少1辆,根据表中提供的信息,解答下列问题:应急物资种类 食品 药品 生活日用品每辆汽车运载量/吨 6 5 4 每吨物质所需运费/元120160100(1)20辆汽车一共运送了多少吨应急物资?(用含x 的代数式表示)(2)若x =15,问一共运送了多少吨应急物资?运送这批应急物资的总费用是多少元? 【考点】列代数式;代数式求值.【解答】解:(1)由题意可知,运送药品的汽车有(15x ﹣1)辆,运送生活日用品的汽车有[20﹣x ﹣(15x ﹣1)],∴20辆汽车一共运送的应急物资有: 6x +5(15x ﹣1)+4[20﹣x ﹣(15x ﹣1)]=6x +x ﹣5+4(20﹣x −15x +1) =7x ﹣5+80﹣4x −4x +4=(115x +79)(吨),∴20辆汽车一共运送了(115x +79)吨应急物资.(2)当x =15时,一共运送的应急物资为:115×15+79=33+79 =112(吨),运送这批应急物资的总费用是:120×6×15+160×5×(15×15﹣1)+100×4×[20﹣15﹣(15×15﹣1)]=10800+1600+1200 =13600(元).∴一共运送了112吨应急物资,运送这批应急物资的总费用是13600元.11.(2020秋•黄陂区期中)某体育用品商店出售的乒乓球拍和乒乓球进价,售价如表:进价(元)售价(元) 乒乓球拍 30 30+a (a >0) 乒乓球11+b (b >0)某乒乓球队打算购买15副乒乓球拍,120个乒乓球.(1)该乒乓球队共需花费 (15a +120b +570) 元(结果用含a ,b 式子表示); (2)今年“十一”期间该商店开展让利促销活动,提供两种不同的促销方案: 方案一:买一副乒乓球拍送2个乒乓球;方案二:每购买100个乒乓球就赠送1副乒乓球拍.①全部按方案一购买比全部按方案二购买多花多少钱(结果用含a ,b 式子表示)? ②若a =5,b =0.2,请你为该乒乓球队设计一个省钱的购买方案,计算说明理由. 【考点】列代数式;代数式求值.【解答】解:(1)该乒乓球队共需花费15(30+a )+120(1+b )=(15a +120b +570)元. 故答案为:(15a +120b +570);(2)①方案一购买所需的费用:15(30+a )+(120﹣15×2)(1+b )=(15a +90b +540)元;方案二购买所需的费用:14(30+a )+120(1+b )=(14a +120b +540)元;(15a+90b+540)﹣(14a+120b+540)=(a﹣30b)元.故全部按方案一购买比全部按方案二购买多花(a﹣30b)元钱;②省钱的购买方案:按照方案二购买100个乒乓球,按照方案一购买14副乒乓球拍.购买所需的费用:14(30+a)+100(1+b)=(14a+100b+520)元,若a=5,b=0.2,则14a+100b+520=70+20+520=610.故省钱的购买方案:按照方案二购买100个乒乓球,按照方案一购买14副乒乓球拍.。
2020-2021学年湖北省武汉市武昌区七校联考七年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市武昌区七校联考七年级(上)期中数学试卷1.如果以东为正方向,向东走8米记作+8米,那么−2米表示()A. 向北走了2米B. 向西走了2米C. 向南走了2米D. 向东走了2米2.用科学记数法表示的数为2.25×105,则原数是()A. 22500B. 225000C. 2250000D. 22503.下列式子是单项式的是()A. 5a−bB. x+1C. 1a D. m24.下面计算正确的是()A. 3x2−x2=3B. a2+4a3=5a5C. 0.25ab−14ba=0 D. 2+3x=5x 5.下列大小比较正确的是()A. −4>−3B. −65<−76C. |−12|<|−13| D. a2≥a6.下列变形正确的是()A. −2(x−2)=−2x−4B. 3(x−1)−x=3x−1−xC. 5x+(5−2x)=5x−5+2xD. 3(x+2)−(x−1)=3x+6−x+17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为()A. 8x+3=7x+4B. 8x−3=7x+4C. x−38=x+47D. x+38=x−478.下列式子中:①ab<0;②a+b=0;③ab <−1;④a|a|=−|b|b,其中能得到a,b异号的有()A. 1个B. 2个C. 3个D. 4个9.已知有理数a,b在数轴上表示的点如图所示,化简|b−a|−|a+2b|+|−a−b|=()A. aB. −a −4bC. 3a +2bD. a −2b10. 已知有理数a ,b ,c 满足a <0<b <c ,则代数式|x −a+b 3|+|x −a+c 2|+|x +c−a 2|的最小值为( )A. cB.2b−a 3C.a+9c−2b6D.3c−2b−11a611. 有理数2的相反数是______ .12. 已知5x 2y a 与−3x a y b 是同类项,则(a +b)2= ______ . 13. 若a ,b 互为相反数,c ,d 互为倒数,则a+b 3+2cd = ______ .14. 已知关于x 的一元一次方程mx 2+nx +5=0的解为x =1,则m +n = ______ . 15. 我们知道,无限循环小数可以转化为分数,例如0.3⋅转化为分数时,可设0.3⋅=x ,则3.3⋅=10x ,两式相减得3=9x ,解得x =13,即0.3⋅=13,则0.1⋅2⋅转化为分数是______ .16. 已知关于x 的绝对值方程2||x −1|−2|=a 有三个解,则a = ______ . 17. 计算:(1)−3+5−3×2;(2)−24÷5−24×(−23+712−38). 18. 解方程(1)8x =−2(x +4); (2)3x+52−2x−13=5.19.已知:多项式A=2m2+mn+n2,B=−m2+mn−n2,求:(1)4A−B;(2)当m=2,n=−2时,求4A−B的值.20.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负):(1)产量最多的一天比产量最少的一天多生产自行车多少辆?(2)根据记录的数据可知,该厂本周实际生产自行车多少辆?21.已知ax3+bx2+cx+d=(x−2)3,小明发现当x=1时,可以得到a+b+c+d=−1.(1)−a+b−c+d=______ ;(2)求8a+4b+2c的值.22.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5ℎ.已知水流的速度是3km/ℎ.(1)求船在静水中的平均速度;(2)一个小艇从甲码头到乙码头所用时间是从乙码头到甲码头所用时间的一半,求小艇从甲码头到乙码头所用时间.23.观察下列具有一定规律的三行数:(1)第一行第n个数为______ (用含n的式子表示);(2)取出每行的第m个数,这三个数的和为482,求m的值;(3)第四行的每个数是将第二行相对应的每个数乘以k得到的,若这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,则k=______ .24.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示−20,点B表示m,点C表示40,我们称点A和点C在数轴上相距60个长度单位,用式子表示为AC=60,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,运动到B 点停止;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后立刻恢复原速,当P停止运动后,Q也随之停止运动,设运动的时间为t秒,问:(1)BC=______ (用含m的式子表示);(2)若P、Q两点在数轴上点O至点B之间的D点相遇,D点表示10,求m;(3)在(2)的条件下,当PQ=40时,求t.答案和解析1.【答案】B【解析】解:向东走8米记作+8米,则−2米表示为向西走2米,故选:B.根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:2.25×105=225000,故选:B.根据将科学记数法a×10−n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数,可得答案.用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.3.【答案】D【解析】解:A、5a−b是多项式,不合题意;B、x+1是多项式,不合题意;C、1是分式,不合题意;aD、m是单项式,符合题意.2故选:D.直接利用数或字母的积组成的式子叫做单项式,即可得出答案.此题主要考查了单项式,正确掌握相关定义是解题关键.4.【答案】C【解析】解:A、3x2−x2=2x2,故本选项不合题意;B、a2与4a3不是同类项,所以不能合并,故本选项不合题意;ba=0,故本选项符合题意;C、0.25ab−14D 、2与3x 不是同类项,所以不能合并,故本选项不合题意; 故选:C .根据合并同类项法则逐一判断即可,在合并同类项时,系数相加减,字母及其指数不变. 本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.5.【答案】B【解析】解:A 、∵|−4|=4,|−3|=3,4>3, ∴−4<−3, 故本选项不合题意; B 、∵|−65|=65=3630,|−76|=76=3530,3630>3530, ∴−65<−76, 故本选项符合题意;C 、∵|−12|=12=36,|−13|=13=26,36>26, ∴|−12|>|−13|, 故本选项不合题意;D 、当0<a <1时,a 2<a ,例如(12)2=14<12, 故本选项不合题意; 故选:B .选项A 、B 根据两个负数比较大小,绝对值大的反而小判断即可;选项C 根据绝对值的性质去绝对值符号再比较大小即可;选项D 通过列举例子判断即可.本题主要考查了有理数大小的比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.6.【答案】D【解析】解:A 、原式=−2x +4,不符合题意; B 、原式=3x −3−x ,不符合题意; C 、原式=5x +5−2x ,不符合题意; D 、原式=3x +6−x +1,符合题意.将各选项分别去括号合并即可得到结果.此题考查了整式加减中的去括号,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:设这个物品的价格是x元,则可列方程为:x+38=x−47,故选:D.根据“(物品价格+多余的3元)÷每人出钱数=(物品价格−少的钱数)÷每人出钱数”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.8.【答案】C【解析】解:①由ab<0,可得a,b异号,符合题意;②由a+b=0,可得a,b是互为相反数,有可能都为0,不合题意;③由ab<−1,可得a,b异号,符合题意;④由a|a|=−|b|b,可得a,b异号,符合题意;故选:C.直接利用有理数的乘法、加法运算法则、绝对值的性质分别分析得出答案.此题主要考查了有理数的乘法、加法运算法则、绝对值的性质,正确掌握相关运算法则是解题关键.9.【答案】A【解析】解:由数轴知b<−1<0<a<1,所以b−a<0,a+2b<0,−a−b>0,则原式=a−b+a+2b−a−b=a,结合数轴知b<−1<0<a<1,据此判断出b−a<0,a+2b<0,−a−b>0,再利用绝对值的性质去绝对值符号、合并即可得出答案.本题主要考查数轴,解题的关键是结合数轴判断出b−a、a+2b、−a−b与0的大小.10.【答案】A【解析】解:∵a<0<b<c,∴a−c2<a+b3<a+c2,∵|x−a+b3|+|x−a+c2|+|x+c−a2|=|x−a+b3|+|x−a+c2|+|x−a−c2|,∴|x−a+b3|+|x−a+c2|+|x+c−a2|表示为在数轴上,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和,如图,当x=a+b3时,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和最小,最小值为a+c2−a−c2=c,即代数式|x−a+b3|+|x−a+c2|+|x+c−a2|的最小值为c.故选:A.利用a、b、c的大小关系得到a−c2<a+b3<a+c2,由于|x−a+b3|+|x−a+c2|+|x+c−a2|=|x−a+b3|+|x−a+c2|+|x−a−c2|,根据绝对值的定义,代数式的值可表示为在数轴上,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和,然后利用当x=a+b3时,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和最小,从而得到代数的最小值.本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了数轴上两点间的距离.11.【答案】−2【解析】解:有理数2的相反数是−2.故答案为:−2.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.12.【答案】16【解析】解:∵5x2y a与−3x a y b是同类项,∴a=2,b=2,∴(a+b)2=(2+2)2=16.故答案为:16.根据同类项的定义求出a,b的值,再代入要求的式子进行计算即可得出答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.【答案】2【解析】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b3+2cd=03+2×1=0+2=2,故答案为:2.根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.【答案】−5【解析】解:∵关于x的方程mx2+nx+5=0是一元一次方程,∴m=0,∴方程mx2+nx+5=0为nx+5=0,把x=1代入nx+5=0可得:n+5=0,解得n=−5,所以m+n=−5,故答案为:−5.根据题意m =0,把x =1代入方程即可得出一个关于n 的一元一次方程,解方程求得n ,进而即可求得m +n 的值.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.15.【答案】433【解析】解:设0.1⋅2⋅=x ,则12.1⋅2⋅=100x ,两式相减得:12=99x ,解得:x =1299=433,即0.1⋅2⋅=433, 故答案为:433.设0.1⋅2⋅=x ,则12.1⋅2⋅=100x ,两式相减得出12=99x ,求出x 即可.本题考查了等式的性质,解一元一次方程,有理数等知识点,能得出关于x 的方程是解此题的关键.16.【答案】4【解析】解:因为2||x −1|−2|=a ,所以|x −1|−2=±12a ,即|x −1|=2±12a ,所以x −1=±(2±12a),所以x =1±(2±12a),则x =3+12a 或3−12a 或−1−12a 或−1+12a ,因为方程有三个解,所以有两个解相同,当3+12a =3−12a 时,a =0,原方程的解为x =3或−1,不合题意;当3+12a =−1−12a 时,a =−4,原方程的解为x =1或5或−3,符合题意; 当3+12a =−1+12a 时,等式不成立,a 无解;当3−12a =−1−12a 时,等式不成立,a 无解;当3−12a =−1+12a 时,a =4,原方程的解为x =5或1或−3,符合题意;当−1−12a =−1+12a 时,a =0,原方程的解为x =3或−1,不合题意;又由题意可知a >0,所以a =4,故答案为4.根据根据绝对值的定义先求出x ,再根据方程有三个解,列出方程即可解决问题. 本题考查了含绝对值符号的一元一次方程,正确掌握绝对值的定义和解一元一次方程的方法是解题的关键.17.【答案】解:(1)原式=−3+5−6=−9+5=−4;(2)原式=−16÷5−24×(−23)−24×712−24×(−38)=−165+16−14+9 =395.【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘方的意义,以及乘法分配律计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)8x =−2(x +4),去括号,得8x =−2x −8,移项,得8x +2x =−8,合并同类项,得10x =−8,系数化为1,得x =−45;(2)3x+52−2x−13=5,去分母,得3(3x +5)−2(2x −1)=30,去括号,得9x +15−4x +2=30,移项,得9x−4x=30−15−2,合并同类项,得5x=13,.系数化为1,得x=135【解析】(1)方程去括号,移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.本题主要考查了解一元一次方程,解一元一次方程的步骤有去分母,去括号,移项,合并同类项,系数化为1.19.【答案】解:(1)4A−B=4(2m2+mn+n2)−(−m2+mn−n2)=8m2+4mn+4n2+m2−mn+n2=9m2+5n2+3mn.(2)当m=2,n=−2时,4A−B=9×22+5×(−2)2+3×2×(−2)=36+20−12=44.【解析】(1)把A与B代入4A−B,去括号合并即可得到结果;(2)将m=2,n=−2代入4A−B可求出答案.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)15−(−10)=25(辆),答:产量最多的一天比产量最少的一天多生产自行车25辆.(2)1400+5−2−4+13−10+15−9=1408(辆),答:该厂本周实际生产自行车1408辆.【解析】(1)根据有理数的减法运算,可得答案;(2)根据有理数的加法,可得答案.本题考查了正数和负数,利用了有理数的加减法运算.21.【答案】−27【解析】解:(1)当x=−1时,ax3+bx2+cx+d=−a+b−c+d=(−1−2)3=−27.故答案为:−27;(2)当x=0时,ax3+bx2+cx+d=d=(0−2)3=−8,当x=2时,ax3+bx2+cx+d=8a+4b+2c+d=(2−2)3=0,则8a+4b+2c=8.(1)令x=−1即可求得−a+b−c+d的值;(2)令x=0即可确定出d的值,再令x=2即可求得8a+4b+2c的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.22.【答案】解:设船在静水中的平均速度为x km/ℎ,根据往返路程相等,列得2(x+3)=2.5(x−3),解得x=27.答:在静水中的速度为27km/ℎ.(2)设小艇在静水中速度为ykm/ℎ,从甲码头到乙码头所用时间为th,由题意可得:t(y+3)=2t(y−3),∵t≠0,∴y+3=2(y−3),解得y=9,甲乙码头距离=(27+3)×2=60(km),=5(ℎ),小艇从甲码头到乙码头所用时间:609+3答:小艇从甲码头到乙码头所用时间为5小时.【解析】(1)等量关系为:顺水速度×顺水时间=逆水速度×逆水时间.即2×(静水速度+水流速度)=2.5×(静水速度−水流速度);(2)由等量关系为:顺水速度×顺水时间=逆水速度×逆水时间,列出方程,可求小艇在静水中速度,即可求解.此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度−水流速度,列出方程求解.23.【答案】n2−4【解析】解:(1)∵1=12,4=22,9=32,16=42,25=52,…,∴第一行第n个数为n2,故答案为:n2;(2)由表格可知,第二行的第n个数为n2−2,第三行的第n个数为2n2,∴第一行的第m个数为m2,第二行的第m个数为m2−2,第三行的第m个数为2m2,∵取出每行的第m个数,这三个数的和为482,∴m2+(m2−2)+2m2=482,解得m1=11,m2=−11(舍去),即m的值是11;(3)∵第四行的每个数是将第二行相对应的每个数乘以k得到的,∴第四行的第n个数为k(n2−2),n2+(n2−2)+2n2+k(n2−2)=n2+n2−2+2n2+kn2−2k=(4+k)n2−(2+2k),∵这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,∴4+k=0,解得k=−4,故答案为:−4.(1)根据表格中的数据,可以发现第一行数字的变化特点,从而可以写出第n个数;(2)根据表格中的数据,可以写出第二行和第三行的第n个数字,然后根据取出每行的第m个数,这三个数的和为482,可以求出m的值;(3)根据题意可以写出第四行的第n个数,然后根据这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,可以求得k的值.本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的m和k的值.24.【答案】40−m【解析】解:(1)BC=40−m.故答案为:40−m;(2)202+101=20(秒),40−m+m−102=20,解得m=30;(3)当t≤10时,P:−20+2t,Q:40−t,依题意有(40−t)−(−20+2t)=40,解得t=203;当10<t<25时,PQ≠40;当t≥25时,P:t−10,Q:25−t,依题意有(t−10)−(25−t)=40.解得t=752.综上:t=203或752.(1)根据两点间的距离公式即可求解;(2)先求出动点P的运动时间,再根据时间的等量关系列出方程计算即可求解;(3)分三种情况:当t≤10时;当10<t<25时;当t≥25时;进行讨论即可求解.本题考查了一元一次方程的应用,数轴,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用,易错点是分类计算时不重不漏.。
2020-2021年湖北省武汉市某校初一(上)期末考试数学试卷

2020-2021年湖北省武汉市某校初一(上)期末考试数学试卷一、选择题1. 2020年12月14日(周一)武汉市某学校操场上的气温为2∘C,当时学校七年级1班教室内的气温是20∘C,此时这个教室的室外的气温比室内气温低( )∘CA.18B.−18C.22D.−222. 若−3x2y n与5x m y3是同类项,则m−n的值是( )A.0B.1C.−1D.53. 香蕉的单价为a元/千克,苹果的单价为b元/千克,买2千克苹果和3千克香蕉共需()元A.a+bB.3a+2bC.2a+3bD.5(a+b)4. 用四舍五入法将201850精确到万位的近似值是( )A.2.0×105B.2.1×105C.2.2×105D.2×1055. 在时刻9:30,墙上挂钟的时针与分针之间的夹角是( )A.115∘B.105∘C.100∘D.90∘6. 如图所示的几何体是由五个小正方体搭建而成的,则从左面看到的平面图形是( )A. B. C. D.7. 某学校有x间男生宿舍和y个男生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程中正确的是( )①8x−4=10x+6②y−48=y+610③y+48=y−610④8x+4=10x−6A.①③B.②④C.①②D.③④8. 解方程2x+13−10x+16=1时,去分母、去括号后,正确结果是()A.4x+1−10x+1=1B.4x+2−10x−1=1C.4x+2−10x−1=6D.4x+2−10x+1=69. 如图,D,E顺次为线段AB上的两点,AB=19,BE−DE=5,C是AD的中点,则AE−AC的值是( )A.5B.6C.7D.810. 将一副学生用三角板(一个锐角为30∘的直角三角形,一个锐角为45∘的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE平分∠AOD②∠AOC=∠BOD③∠AOC−∠CEA=15∘④∠COB+∠AOD=180∘A.0B.1C.2D.3二、填空题−5的相反数是________,−5的倒数是________,−5的绝对值是________.货轮O在航行过程中,发现灯塔A在它南偏西20∘的方向上,同时在它北偏东78∘方向上发现了客轮B,则此时∠AOB的度数大小是________.计算−b−(2.6b−0.6b)的结果是________.一个角的一半比它的补角小30∘,则这个角的度数是________.父亲和女儿的年龄之和是96,当父亲的年龄是女儿现在年龄的2倍时,女儿的年龄比父亲现在年龄的13多2,则父亲现在的年龄是________.如图是由六个不同颜色的正方形组成的矩形,已知中间最小的一个正方形A的边长为1,那么矩形中正方形E的面积是________.三、解答题计算:(1)314+(−7)−(−534)+12;(2)−(−2)2+22−(−1)9×(13−12)+16−8.解方程:(1)3(x−3)=2(5x−7)+6(1−x);(2)x−10.3−x+20.5=1.2.先化简,再求值:3a2b−2ab2−2(ab−32a2b)+ab+3ab2,其中a=−3,b=−2.某商场购进一批服装,一件服装的标价为400元.(1)若按标价的6折销售,则实际售价是多少?(2)在(1)的条件下销售这件服装仍可获利20%,问这件服装每件的进价为多少元?某学校组织四名学生参加知识竞赛,知识竞赛共设20道选择题,各题分值相同,每题必答,下表记录了其中2名学生参赛后的得分情况.(1)参赛学生C得72分,他答对了几道题?答错了几道题?为什么?(2)参赛学生D说他可以得94分,你认为可能吗?为什么?下表中有两种移动电话计费方式:其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.已知当方式一主叫超时20分钟,方式二主叫超时40分钟时,两种方式共收费160元.(1)求x的值;(2)若每月主叫时间不超过400分钟,当主叫时间为多少分钟时,两种方式收费相同?(3)若某月主叫时间为700分钟,选择哪种方式计费更省钱?点A,B在数轴上所对应的数分别是x,y,其中x,y满足(x−3)2+|y+5|=0.(1)求x,y的值;(2)数轴上有一点M,使得|AM|+|BM|=74|AB|,求点M所对应的数;(3)点D是AB的中点,O为原点,数轴上有一动点P,直接写出|PA|+|PB|的最小值是________;|PD|−|PO|的最小值是________;|PA|+|PB|+|PD|−|PO|取最小时,点P对应的数a的取值范围是________.已知O为直线AB上一点,射线OD,OC,OE位于直线AB上方,OD在OE的左侧,∠AOC=120∘,∠DOE =α.(1)如图1,α=70∘,当OD平分∠AOC时,求∠EOB的度数;(2)如图2,若∠DOC=2∠AOD,且α<80∘,求∠EOB(用α表示).(3)若α=90∘,点F在射线OB上,若射线OF绕点O顺时针旋转n∘(0<n<180∘),∠FOA=2∠AOD,OH平分∠EOC,当∠FOH=120∘时,求n的值.参考答案与试题解析2020-2021年湖北省武汉市某校初一(上)期末考试数学试卷一、选择题1.【答案】A【考点】有理数的减法【解析】用冷藏室的温度减去低的温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:由题意,得2∘C−20∘C=−18∘C,则此时这个教室的室外气温比室内气温低18∘C.故选A.2.【答案】C【考点】同类项的概念【解析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此解答可得.【解答】解:∵−3x2y n与5x m y3是同类项,∴2=m,n=3,∴m−n=2−3=−1.故选C.3.【答案】B【考点】列代数式【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【解答】解:由题意,得买单价为a元的香蕉3千克用去3a元,买单价为b元的苹果2千克用去2b元,则共需(3a+2b)元.故选B.4.【答案】A 【考点】科学记数法与有效数字【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于201947有6位,所以可以确定n=6−1=5.用科学记数法表示的数的精确度要把它还原成原数,再看精确到哪一位.【解答】解:201850=2.01850×105≈2.0×105.故选A.5.【答案】B【考点】钟面角【解析】根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,等于分针旋转的角度;再根据时针的角减去分针旋转的角等于时针与分针的夹角,可得答案.【解答】解:9:30时,挂钟的时针与分针之间的夹角是9×30∘+30∘×12−6×30∘=105∘.故选B.6.【答案】D【考点】简单组合体的三视图【解析】由俯视图可得最底层几何体的个数,进而把最后一个几何体放在第二层中的任意一个位置,判断主视图即可.【解答】解:从左面看可得到从左往右两列正方形的个数依次为1,2,如图所示.故选D.7.【答案】B【考点】由实际问题抽象出一元一次方程【解析】根据总人数和宿舍间数为等量关系,分别列出方程即可.【解答】解:根据总人数为等量关系可列方程为8x+4=10x−6;根据宿舍间数为等量关系可列方程为y−48=y+610.综上所述,正确的是②④.故选B.8.【答案】C【考点】解一元一次方程【解析】方程去分母,去括号得到结果,即可做出判断.【解答】解:方程去分母,得2(2x+1)−(10x+1)=6,去括号,得4x+2−10x−1=6.故选C.9.【答案】C【考点】线段的中点线段的和差【解析】由AB=19,得到BE=19−AE,由BE−DE=7,得至DE=12−AE,根据线段的和差及中点的定义即可得到结论.【解答】解:设AE=m.∵AB=19,∴BE=AB−AE=19−m.∵BE−DE=5,∴19−m−DE=5,∴DE=14−m,∴AD=AB−BE−DE=19−(19−m)−(14−m)=19−19+m−14+m=2m−14.∵C是AD的中点,∴AC=12AD=12×(2m−14)=m−7,∴AE−AC=7. 故选C.10.【答案】D【考点】角的计算【解析】【解答】解:如图,设AB与OC交于点P.没有条件能证明OE平分∠AOD,故①说法错误;∵∠AOB=∠DOC=90∘,∴∠AOB−∠BOC=∠DOC−∠BOC,即∠AOC=∠BOD,故②说法正确;∵∠CPE=∠APO,∠C=45∘,∠A=30∘,∴∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180∘,∴∠AOC−∠CEA=15∘,故③说法正确;∵∠AOB=∠COD=90∘,∠AOC=∠BOD,∴∠COB+∠AOD=∠AOB+∠COD=180∘,故④说法正确.综上所述,正确的有②③④,共3个.故选D.二、填空题【答案】5,−15,5【考点】相反数绝对值倒数【解析】根据相反数的定义,只有符号不同的两个数是互为相反数,−5的相反数为5,根据倒数的定义,互为倒数的两数乘积为1,−5×(−15)=1,根据绝对值的定义,这个数在数轴上的点到原点的距离,−5的绝对值为5.【解答】解:−5的相反数为−(−5)=5,−5×(−15)=1,则−5的倒数是−15,−5的绝对值为|−5|=5.故答案为:5;−15;5.【答案】122∘【考点】方向角角的计算【解析】利用方向角的位置,即可得到答案.【解答】解:由题意,作图如下:则∠AOB=20∘+90∘+90∘−78∘=122∘.故答案为:122∘.【答案】−3b【考点】有理数的加减混合运算合并同类项【解析】此题暂无解析【解答】解:−b−(2.6b−0.6b)=−b−2b=−(b+2b)=−3b.故答案为:−3b.【答案】100∘【考点】余角和补角【解析】设这个角为x,互为补角的两个角的和等于180∘表示出它的补角,然后列出方程求解即可.【解答】解:设这个角为x,则它的补角为180∘−x,由题意,得12x=180∘−x−30∘,解得x=100∘.故答案为:100∘.【答案】66【考点】一元一次方程的应用——其他问题由实际问题抽象出一元一次方程【解析】设出父亲现在的年龄,利用关系式,构造方程即可得出答案.【解答】解:设父亲现在的年龄是x,则女儿的年龄是(96−x).由题意,得2(96−x)−(13x+2)=x−(96−x),解得x=66,则父亲现在的年龄是66.故答案为:66.【答案】25【考点】图形的剪拼由实际问题抽象出一元一次方程一元一次方程的应用——面积问题【解析】由题可知,由于矩形色块图中全是正方形,设左下角小正方形边长为x,由上下两个相对棱相等,得等量关系求解.【解答】解:设正方形E的边长为x,则矩形的长(下边)为x+2(x−1)=3x−2,矩形的长(上边)为(x+1)+(x+1+1)=2x+3,则3x−2=2x+3,解得x=5,即矩形中正方形E的面积是5×5=25.故答案为:25.三、解答题【答案】解:(1)原式=314−7+534+12=(314+534)+(12−7)=9+5 =14.(2)原式=−4+4−(−1)×(−16)+16−8 =−16+16−8=−8.【考点】有理数的混合运算 有理数的乘方 有理数的乘法 【解析】 此题暂无解析 【解答】解:(1)原式=314−7+534+12 =(314+534)+(12−7)=9+5 =14.(2)原式=−4+4−(−1)×(−16)+16−8 =−16+16−8=−8. 【答案】解:(1)去括号,得3x −9=10x −14+6−6x , 移项,得3x −10x +6x =9−14+6, 合并同类项,得−x =1, 系数化为1,得x =−1.(2)去分母,得0.5(x −1)−0.3(x +2)=1.2×0.3×0.5, 去括号,得0.5x −0.5−0.3x −0.6=0.18, 移项,得0.5x −0.3x =0.5+0.6+0.18, 合并同类项,得0.2x =1.28, 化系数为1,得x =6.4. 【考点】解一元一次方程 【解析】 此题暂无解析【解答】解:(1)去括号,得3x −9=10x −14+6−6x , 移项,得3x −10x +6x =9−14+6, 合并同类项,得−x =1, 系数化为1,得x =−1.(2)去分母,得0.5(x −1)−0.3(x +2)=1.2×0.3×0.5, 去括号,得0.5x −0.5−0.3x −0.6=0.18, 移项,得0.5x −0.3x =0.5+0.6+0.18, 合并同类项,得0.2x =1.28, 化系数为1,得x =6.4. 【答案】解:原式=3a 2b −2ab 2−2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2−ab . ∵ a =−3,b =−2,∴ 原式=6×(−3)2×(−2)+(−3)×(−2)2−(−3)×(−2) =6×9×(−2)+(−3)×4−6 =−108−12−6 =−126.【考点】整式的加减——化简求值 【解析】 此题暂无解析 【解答】解:原式=3a 2b −2ab 2−2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2−ab . ∵ a =−3,b =−2,∴ 原式=6×(−3)2×(−2)+(−3)×(−2)2−(−3)×(−2) =6×9×(−2)+(−3)×4−6 =−108−12−6 =−126. 【答案】解:(1)由题意,得实际售价为400×0.6=240(元). 答:若按标价的6折销售,则实际售价是240元. (2)设这件服装每件的进价为x 元. 由题意,得0.6×400=1.2x , 解得x =200.答:这件服装每件的进价为200元. 【考点】 有理数的乘法一元一次方程的应用——打折销售问题 【解析】 此题暂无解析 【解答】解:(1)由题意,得实际售价为400×0.6=240(元). 答:若按标价的6折销售,则实际售价是240元. (2)设这件服装每件的进价为x元.由题意,得0.6×400=1.2x,解得x=200.答:这件服装每件的进价为200元.【答案】解:(1)设学生答对一题得x分.由题意,得86−18x2=79−17x3,解得x=5,则学生答对一题得5分,答错一题扣2分.由于学生C得分72分,则设这名学生答对y题,答错(20−y)题.所以5y+(20−y)×(−2)=72,解得y=16,则20−y=4.答:参赛学生C答对了16题,答错了4题.(2)假设学生D答对a道题,答错(20−a)道题,且a为自然数,则5a+(20−a)×(−2)=94,解得a=1347,不是自然数,故学生D的说法不可能出现.【考点】一元一次方程的应用——其他问题由实际问题抽象出一元一次方程【解析】此题暂无解析【解答】解:(1)设学生答对一题得x分.由题意,得86−18x2=79−17x3,解得x=5,则学生答对一题得5分,答错一题扣2分.由于学生C得分72分,则设这名学生答对y题,答错(20−y)题.所以5y+(20−y)×(−2)=72,解得y=16,则20−y=4.答:参赛学生C答对了16题,答错了4题.(2)假设学生D答对a道题,答错(20−a)道题,且a为自然数,则5a+(20−a)×(−2)=94,解得a=1347,不是自然数,故学生D的说法不可能出现.【答案】解:(1)由题意可列方程为58+20x+88+40(x+0.05)=160,解得x=0.2.(2)设主叫时间为t分钟时,两种方式收费相同.由题意,得58+(t−200)×0.2=88,解得t=350.答:当主叫时间为350分钟时,两种方式收费相同.(3)由(1)可知,方式一主叫超时费0.2元/min,方式二主叫超时费0.25元/min,若某月主叫时间为700分钟,则方式一收费为58+(700−200)×0.2=158(元);方式二收费为88+(700−400)×0.25=163(元),又158<163,故某月主叫时间为700分钟时,选择方式一收费更省钱.【考点】一元一次方程的应用——其他问题由实际问题抽象出一元一次方程有理数的乘法【解析】此题暂无解析【解答】解:(1)由题意可列方程为58+20x+88+40(x+0.05)=160,解得x=0.2.(2)设主叫时间为t分钟时,两种方式收费相同.由题意,得58+(t−200)×0.2=88,解得t=350.答:当主叫时间为350分钟时,两种方式收费相同.(3)由(1)可知,方式一主叫超时费0.2元/min,方式二主叫超时费0.25元/min,若某月主叫时间为700分钟,则方式一收费为58+(700−200)×0.2=158(元);方式二收费为88+(700−400)×0.25=163(元),又158<163,故某月主叫时间为700分钟时,选择方式一收费更省钱.【答案】解:(1)∵(x−3)2+|y+5|=0,∴x−3=0,y+5=0,解得x=3,y=−5.(2)由(1)可知,x=3,y=−5.则|AB|=8,所以74|AB|=14,即|AM|+|BM|=14.如图,若点M在点A的右侧时,设点M所对应的数是a,则|AM|+|BM|=a−3+a−(−5)=2a+2=14,解得a=6;如图,若点M在点B的左侧时,设点M所对应的数是b,则|AM|+|BM|=3−b+(−5)−b=−2−2b=14,解得b=−8.综上所述,点M所对应的数为6或−8.8,−1,−5≤a≤−1【考点】非负数的性质:绝对值绝对值非负数的性质:偶次方数轴【解析】利用绝对值的意义以及偶次方的性质得解.先有(1)得|AB|=8,再分三种情况讨论得解.分P点的位置进行验证,可得解.【解答】解:(1)∵(x−3)2+|y+5|=0,∴x−3=0,y+5=0,解得x=3,y=−5.(2)由(1)可知,x=3,y=−5.则|AB|=8,所以74|AB|=14,即|AM|+|BM|=14.如图,若点M在点A的右侧时,设点M所对应的数是a,则|AM|+|BM|=a−3+a−(−5)=2a+2=14,解得a=6;如图,若点M在点B的左侧时,设点M所对应的数是b,则|AM|+|BM|=3−b+(−5)−b=−2−2b=14,解得b=−8.综上所述,点M所对应的数为6或−8.(3)设点P在数轴上对应的数是a,则|PA|+|PB|=|a−3|+|a+5|,当点P在|AB|中间时,即−5≤a≤3,此时|PA|+|PB|取得最小值,且最小值是|AB|=8.由(1)可知,点A对应的数是3,点B对应的数是−5,则点D在数轴上对应的数是−1,当P在|OD|中间时,|PD|−|PO|最小值是−1.|PA|+|PB|+|PD|−|PO|=|a−3|+|a+5|−|a+1|−|a|,则|PA|+|PB|+|PD|−|PO|最小时,取上两问共同区域,即−5≤a≤−1,故点P对应的数a的取值范围是−5≤a≤−1.故答案为:8;−1;−5≤a≤−1.【答案】解:(1)∵∠AOC=120∘,OD平分∠AOC,∴∠AOD=∠DOC=60∘,∴∠BOC=60∘.又∠DOE=α=70∘,∴∠COE=70∘−60∘=10∘,∴∠BOE=∠BOC−∠COE=50∘.(2)∵∠AOC=120∘,∠DOC=2∠AOD,∴∠AOD=13∠AOC=40∘,∴∠DOC=80∘,∴∠EOC=∠DOC−∠DOE=80∘−α,∴∠EOB=∠BOC+∠EOC=60∘+80∘−α=140∘−α.(3)①如图,若∠DOE在∠AOC的内部,设∠BOF=n,则∠FOA=180∘−n.∵∠FOA=2∠AOD,∴∠AOD=12∠FOA=12(180∘−n)=90∘−12n.∵∠AOC=120∘,∴∠AOD+∠EOC=30∘. 又OH平分∠EOC,∴∠EOH=12∠EOC=12(30∘−∠AOD)=12(30∘−90∘+12n)=14n−30∘.又∠FOH=120∘,∴180∘−n+90∘−12n+90∘+14n−30∘=120∘,解得n=168∘,②如图,当∠DOE在射线OC的两侧时,设∠BOF=n,,则∠FOA=180∘−n. ∵∠FOA=2∠AOD,∴∠AOD=12∠FOA=90∘−12n.∵∠AOC=120∘,∴∠COE=∠AOD+∠DOE−∠AOC=90∘−12n+90∘−120∘=60∘−12n.∵OH平分∠EOC,∴∠EOH=12∠EOC=30∘−14n,又∠FOH=120∘,∴∠BOF+∠EOH+90∘−∠AOD=120∘,即n+30∘−14n+90∘−(90∘−12n)=120∘,解得n=72∘.综上所述,射线OF绕点O顺时针旋转的角度为168∘或72∘.【考点】角的计算角平分线的定义【解析】此题暂无解析【解答】解:(1)∵∠AOC=120∘,OD平分∠AOC,∴∠AOD=∠DOC=60∘,∴∠BOC=60∘.又∠DOE=α=70∘,∴∠COE=70∘−60∘=10∘,∴∠BOE=∠BOC−∠COE=50∘.(2)∵∠AOC=120∘,∠DOC=2∠AOD,∴∠AOD=13∠AOC=40∘,∴∠DOC=80∘,∴∠EOC=∠DOC−∠DOE=80∘−α,∴∠EOB=∠BOC+∠EOC=60∘+80∘−α=140∘−α.(3)①如图,若∠DOE在∠AOC的内部,设∠BOF=n,则∠FOA=180∘−n.∵∠FOA=2∠AOD,∴∠AOD=12∠FOA=12(180∘−n)=90∘−12n.∵∠AOC=120∘,∴∠AOD+∠EOC=30∘.又OH平分∠EOC,∴∠EOH=12∠EOC=12(30∘−∠AOD)=12(30∘−90∘+12n)=14n−30∘.又∠FOH=120∘,∴180∘−n+90∘−12n+90∘+14n−30∘=120∘,解得n=168∘,②如图,当∠DOE在射线OC的两侧时,设∠BOF=n,,则∠FOA=180∘−n. ∵∠FOA=2∠AOD,∴∠AOD=12∠FOA=90∘−12n.∵∠AOC=120∘,∴∠COE=∠AOD+∠DOE−∠AOC=90∘−12n+90∘−120∘=60∘−12n.∵OH平分∠EOC,∴∠EOH=12∠EOC=30∘−14n,又∠FOH=120∘,∴∠BOF+∠EOH+90∘−∠AOD=120∘,即n+30∘−14n+90∘−(90∘−12n)=120∘,解得n=72∘.综上所述,射线OF绕点O顺时针旋转的角度为168∘或72∘.。
精品解析:湖北省武汉市武汉六初、六中上智2021-2022学年九年级上学期9月月考数学试题(解析版)

【解析】
【分析】利用抛物线的对称轴方程得到 ,则可对①进行判断;利用 时, 可对②进行判断;利用抛物线的对称性得到抛物线与 轴的另一个交点坐标为 ,进而可得到b、c与a的关系,代入一元二次方程cx2+bx+a=0求解即可对③进行判断;利用抛物线在 轴下方对应的自变量的范围可对④进行判断.
【详解】解:∵二次函数y=kx2﹣3x+1的图象与x轴有公共点,
∴Δ=(−3)2−4k≥0,解得k≤ ,
又∵y=kx2﹣3x+1是二次函数,
∴k≠0,
∴k的取值范围是k≤ 且k≠0,
故答案为:k≤ 且k≠0.
【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),Δ=b2−4ac决定抛物线与x轴的交点个数:当Δ=b2−4ac>0时,抛物线与x轴有2个交点;当Δ=b2−4ac=0时,抛物线与x轴有1个交点;当Δ=b2−4ac<0时,抛物线与x轴没有交点.
【详解】A、三角形既不是轴对称图形也不是中心对称图形,故不符合题意;
B、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;
C、平行四边形是中心对答图形,但不是轴对称图形,故不符合题意;
D、菱形既是轴对称图形,对称轴是两条对角线所在的直线,也是中心对称图形,对称中心是两对角线的交点,故符合题意;
∵y=x2﹣4|x|+2,
∴与y轴的交点为(0,2),
当x>0时,y=2时,x=4,当x<0时,y=2时,x= -4,则关于y轴对称,
当x<0时,y的最小值为2;
∵m≤x≤m+1,
∴当x<0时,y=2时,m= -4,
同理当x>0时,y的最小值为2;m≤x≤m+1,m+1=4,m=3,
〈word版〉2020-2021学年七年级上学期10月月考数学试题部分附答案共3份

2020-2121学年上学期武汉大方学校七年级 9 月考试数 学 试 卷(附答案)班级: 姓名:温馨提示:本试卷由试题卷和答题卡两部分组成,考试时间 120 分钟,满分 120 分。
请将每小题答案填在答题卡对应的位置,答在试卷上无效。
一、选择题(每小题3分,共30分)1.一天的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A .-10℃B .-6℃C .10℃D .6℃2.下列算式正确的是( )A .(-14)-5=-9B .0-(-3)=3C .(-3)-(-3)=-6D .|5-3|=-(5-3)3.据报道今年国庆出游的全部旅客达到589000000,用科学计数法表示589000000为( )A .5.89×109B .5.89×108C .58.9×108D .0.589×1094.在中百超市,某品牌的食品包装袋上“质量”标注:500 g ±20 g ;下列待检查的各袋食品中质量合格是( )A .530 gB .515 gC .470 gD .450 g5.有理数a ,b ,c 在数轴上的对应点的位置如图所示,则( )10-1b aA .a +b =0B .a +b >0C .a -b <0D .a -b >06.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .27.已知a 、b 在数轴上的位置如图,把a 、b 、-a 、-b 从小到大排列正确的是( ) a b 0A .-a <-b <a <bB .a <-b <b <-aC .-b <a <-a <bD .a <b <-b <-a8. 已知-1<a <0,则a 、a 1、a 3的大小关系为( ) A .a 3<a <a 1 B .a <a 1<a 3C .a 1<a <a 3D .a <a 3<a1 9.下列说法:①若a >0,b <0,则a -b >0;②若a <0,b <0,则a -(-b )<0;③若a<0,b <0,|a |>|b |,则a -b <0,其中正确的是( )A .①②③B .①②C .①③D .②③10.如图,数轴上标出若干个点,每相邻两个点的距离为1个单位,点E 、F 、M 、N 对应的数分别为a 、b 、c 、d ,且d -2a =8,那么数轴的原点是( )NM F E A .E 点 B .F 点 C .M 点D .N 点二、填空题(共6小题,每小题3分,共18分)11.-13的倒数是_________________;213的相反数是_________________;-5的绝对值是_________.12.将3.149精确到十分位为 .13. 用“>”“<”“=”号填空:(1) 45 4;(2)227- 3.14-;(3)3()4-- [](0.75)-+-14.已知|x|=1,|y|=2020,x+y >0,则x y = .15.定义新运算“*”,规定a *b =a ×b -(b -1)×b ,则2*(-3)= .16.已知a 、b 、c 是非零有理数,且a +b +c =0,abc <0,求||||||a b abc a b abc ++= . 三、解答题(共8题,共72分)17.(本题8分)把下列各数填到相应的括号内:+203、0、+6.4、-9、75-、3.14、-0.1 整数: { … } 正有理数:{ … }负分数: { … }非负整数:{ … }18. (本题8分)计算(1) 2)2131()6(--⨯-(2) )21(1)2()121(124-÷--⨯----19.(本题8分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求22583a b cd m +-+的值.20.(本题8分)有理数a ,b ,c 在数轴上的位置如图所示.(1)判断大小:a 0;b 0;c 0;(2)化简:|b +c |+| a -b |-| c +a -b |.-cb a 021.(本题8分)快递配送员在一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(单位:千米):+10、-3、-5、+4、+6、+5、-3、-6、-4、+10(1) 在送快递过程中最远距出发点___________千米(2) 这天送完最后一个快递时,在出发点的什么方向,距离出发点是多少千米?(3) 如果送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?22.(本题10分)22. (2+4+4=10分)观察下面三行数-2, 4, -8, 16, -32, 64,…①-4, 2, -10, 14, -34, 62,…②3, -3, 9, -15, 33, -63,…③(1)第①行的第7个数是_______;第n 个数是_______.(2)第①行的第n个数是x,则第②行的第n个数是________;第③行的第n个数是_________.(3)是否存在正整数k,使每行的第k个数相加的和等于-257,若存在求k的值,若不存在,请说明理由.23.(本小题满分10分)数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)数轴上表示3和5两点之间的距离是______,数轴上表示2和-5两点之间的距离是____。
2020-2021学年湖北省某校初一(上)期中联考数学试卷答案及解析

2020-2021学年湖北省某校初一(上)期中联考数学试卷一、选择题1. 我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走7步记作( )A.+7步B.−7步C.+12步D.−12步2. 单项式−3x2y系数和次数分别是( )A.−3和2B.3和−3C.−3和3D.3和23. 下列不是同类项的是( )A.3x2y与−6xy2B.−ab3与b3aC.12和0D.2xyz与−12zyx4. 一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A.2.18×106B.2.18×105C.21.8×106D.21.8×1055. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)6. 下列各数|−2|,−(−2)2,−(−2),(−2)3中,负数的个数有()A.1个B.2个C.3个D.4个7. 下列去括号正确的是( )A.a−(b−c)=a−b−cB.x2−[−(−x+y)]=x2−x+yC.m−2(p−q)=m−2p+qD.a+(b−c−2d)=a+b−c+2d8. 下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=−1;③若a2=b2,则a=b;④若a<0,b<0,则|ab−a|=ab−a.其中正确的个数有()A.1个B.2个C.3个D.4个9. 已知a,b,c为非零的实数,则a|a|+ab|ab|+ac|ac|+bc|bc|的可能值的个数为( )A.4B.5C.6D.710. 如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a−3bB.4a−8bC.2a−4bD.4a−10b二、填空题仙桃位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6∘C,最低气温是−4∘C,则当天的温差为________∘C.若|a|=5,|b|=2,且a>b,则a+b=________.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成________个.若2m2+m−1=0,则4m2+2m+5的值为________.若单项式(n+3)x3y2m 和单项式−2x|n|y4的和仍是单项式,则m+n=__________.a是不为1的数,我们把11−a称为a的差倒数,如:2的差倒数为11−2=−1;−1的差倒数是11−(−1)=12;已知a1=−13,a2是a1的差倒数,a3是a2的差倒数,a4是a3差倒数,…,依此类推,则a2020=________.三、解答题计算下列各题.(1)2×(−3)3−4×(−3)+15;(2)−(−1)4×(13−12)×6÷2;(3)(−2)3+(−3)×[(−4)2+2]−(−3)2÷(−2);(4)(−36)×997172.先化简,再求值:(1)12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=23;(2)已知a+b=−2,ab=3,求2[ab+(−3a)]−3(2b−ab)的值.已知代数式x4+ax3+3x2+5x3−7x2−bx2+6x−2合并同类项后不含x3,x2项,求2a+3b的值.某村小麦种植面积是a平方米,水稻种植的面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5平方米,列式表示水稻种植面积,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?观察下面三行数:−2,4,−8,16,−32,64⋯⋯0,6,−6,18,−30,66⋯⋯−1,2,−4,8,−16,32⋯⋯(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.有理数a,b在数轴上所对应的点的位置如图所示:(1)用“<”连接:0,−a,−b,−1,1,a,b;(2)化简:|a|−|a+b−1|−|b−a−1|.将正整数1至2018按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4,(1)直接写出a32=________,a55=________;(2)若a ij=2018,那么i=_________,j=________;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.已知数轴上有A,B两点对应的数分别是a,b,且满足:|a+3|+(b−9)2=0.(1)求a,b的值;(2)点C是数轴上A,B之间的一个点,使得AC+OC=BC,求出点C所对应的数;(3)在(2)的条件下,点P,点Q为数轴上的两个动点,点P从A点以1个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,点P运动到点C时,P,Q两点同时停止运动.设它们的运动时间为t秒,当OP+BQ=3PQ时,求t的值.参考答案与试题解析2020-2021学年湖北省某校初一(上)期中联考数学试卷一、选择题1.【答案】B【考点】正数和负数的识别【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵向北走5步记作+5步,∴向南走7步记作−7步.故选B.2.【答案】C【考点】单项式的系数与次数【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式中数字因数叫做单项式的系数,次数是所有字母的指数之和,所以单项式−3x2y系数和次数分别是−3和3.故选C.3.【答案】A【考点】同类项的概念【解析】根据同类项的定义:所含字母相同,相同字母的指数相同即可作出判断.【解答】解:同类项的定义为所含字母相同,相同字母的指数相同.所以观察可得,A,相同字母的指数不同,不是同类项;B,C,D都是同类项.故选A.4.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,所以2180000用科学记数法表示为:2.18×106.故选A.5.【答案】C【考点】近似数和有效数字【解析】A,精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B,精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C,精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D,确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502.【解答】解:A,0.05019≈0.1(精确到0.1),所以此选项正确;B,0.05019≈0.05(精确到百分位),所以此选项正确;C,0.05019≈0.050(精确到千分位),所以此选项错误;D,0.05019≈0.0502(精确到0.0001),所以此选项正确.故选C.6.【答案】B【考点】有理数的乘方正数和负数的识别【解析】先对每个数进行化简,然后再确定负数的个数.【解答】解:|−2|=2,−(−2)2=−4,−(−2)=2,(−2)3=−8,−4,−8是负数,∴负数有2个.故选B.7.【答案】B【考点】去括号与添括号【解析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可.【解答】解:A,a−(b−c)=a−b+c,原式计算错误,故本选项错误;B,x2−[−(−x+y)]=x2−x+y,原式计算正确,故本选项正确;C,m−2(p−q)=m−2p+2q,原式计算错误,故本选项错误;D,a+(b−c−2d)=a+b−c−2d,原式计算错误,故本选项错误.故选B.8.【答案】B【考点】有理数的除法有理数的乘法绝对值相反数【解析】根据有理数的运算法则及绝对值的性质逐一判断可得.【解答】解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确.故选B.9.【答案】A【考点】绝对值【解析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:当a,b,c都大于0时,则a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;当a,b,c中有两个大于0,一个小于0时,①设a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1−1−1=0;②设a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1−1+1−1=0;③设a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=−1−1−1+1=−2;当a,b,c中有一个大于0,两个小于0时,①设a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1−1−1+1=0;②设a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=−1−1+1−1=−2;③设a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=−1+1−1−1=−2;当a,b,c都小于0时,则ab>0,ac>0,bc>0,原式=−1+1+1+1=2.综上所述,a|a|+ab|ab|+ac|ac|+bc|bc|的可能值为4,0,2,−2,个数为4. 故选A.10.【答案】B【考点】整式的加减列代数式【解析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a−b+(a−3b)]=4a−8b.故选B.二、填空题【答案】10【考点】有理数的减法【解析】掌握有理数的减法是解答本题的根本,需要知道有理数减法法则:减去一个数,等于加上这个数的相反数;即a−b=a+(−b).【解答】解:根据题意可得,当天的温差为6−(−4)=6+4=10∘C.故答案为:10.【答案】7或3【考点】绝对值有理数的加法【解析】利用绝对值的定义得a=±5,b=±2,再利用a>b,利用有理数的运算可得解.【解答】解:由|a|=5,解得a=±5,|b|=2,解得b=±2.因为a>b,所以a=5,b=±2,所以a+b=5+2=7或a+b=5+(−2)=3.故答案为:7或3.【答案】512【考点】有理数的乘方【解析】根据乘方的意义,可得答案.【解答】解:由题意,得3小时等于9个20分钟,经过3小时后这种大肠杆菌由1个分裂成29=512个.故答案为:512.【答案】7【考点】整式的加减——化简求值【解析】根据“2m2+m−1=0”,得到2m2+m=1,代入4m2+2m+5即可得到答案.【解答】解:∵2m2+m−1=0,∴2m2+m=1,∴4m2+2m+5=2(2m2+m)+5=2×1+5=7.故答案为:7.【答案】5【考点】同类项的概念【解析】由题意得到:单项式(n+3)x3y2m和单项式−2x|n|y4是同类项,所以|n|=3,且n+3≠0,2m=4,求解即可.【解答】解:∵单项式(n+3)x3y2m 和单项式−2x|n|y4的和仍是单项式,∴单项式(n+3)x3y2m 和单项式−2x|n|y4是同类项,∴|n|=3,且n+3≠0,2m=4,解得n=3,m=2,∴m+n=5.故答案为:5.【答案】−13【考点】倒数规律型:数字的变化类【解析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2020除以3,根据余数的情况确定出与a2020相同的数即可得解.【解答】解:∵a1=−13,∴a2=11−(−13)=34,a3=11−34=4,a4=11−4=−13,…数字−13,34,4,依次不断循环出现,2020÷3=673⋯1.∴a2020与a1相同,为−13.故答案为:−13.三、解答题【答案】解:(1)原式=2×(−27)−4×(−3)+15=−54+12+15=−27.(2)原式=−1×(−16)×6×12=12.(3)原式=−8+(−3)×18−9×(−12) =−8−54+4.5 =−57.5.(4)原式=(−36)×(100−172) =−36×100+12=−3600+12=−359912.【考点】有理数的混合运算 【解析】 此题暂无解析 【解答】解:(1)原式=2×(−27)−4×(−3)+15 =−54+12+15 =−27.(2)原式=−1×(−16)×6×12 =12.(3)原式=−8+(−3)×18−9×(−12)=−8−54+4.5 =−57.5.(4)原式=(−36)×(100−172)=−36×100+12=−3600+12=−359912. 【答案】解:(1) 原式=12x −2x +23y 2−32x +13y 2=(12−2−32)x +(13+23)y 2=−3x +y 2,把x =−2,y =23代入, 原式=−3×(−2)+(23)2=6+49=649.(2)原式=2ab −6a −6b +3ab =5ab −6(a +b),把a +b =−2,ab =3代入,原式=5×3−6×(−2)=15+12=27. 【考点】整式的混合运算——化简求值 【解析】(1)将原式展开,合并同类项化简,把x =−2,y =23代入即可得到答案;(2)原式去括号合并得到最简结果,把a +b =−2,ab =3代入原式计算即可求出值. 【解答】解:(1) 原式=12x −2x +23y 2−32x +13y 2=(12−2−32)x +(13+23)y 2=−3x +y 2,把x =−2,y =23代入,原式=−3×(−2)+(23)2=6+49=649.(2)原式=2ab −6a −6b +3ab =5ab −6(a +b),把a +b =−2,ab =3代入,原式=5×3−6×(−2)=15+12=27.【答案】解:原代数式整理得:x 4+(a +5)x 3+(3−7−b)x 2+6x −2,因为代数式x 4+ax 3+3x 2+5x 3−7x 2−bx 2+6x −2合并同类项后不含x 3,x 2项, 所以a +5=0,3−7−b =0,解得:a=−5,b=−4.∴2a+3b=−10−12=−22.【考点】整式的加减【解析】此题暂无解析【解答】解:原代数式整理得:x4+(a+5)x3+(3−7−b)x2+6x−2,因为代数式x4+ax3+3x2+5x3−7x2−bx2+6x−2合并同类项后不含x3,x2项,所以a+5=0,3−7−b=0,解得:a=−5,b=−4.∴2a+3b=−10−12=−22.【答案】解:由题意,得小麦种植面积为a平方米,水稻种植面积为3a平方米,玉米种植面积为(a−5)平方米,3a−(a−5)=3a−a+5=2a+5(平方米),所以水稻种植面积比玉米种植面积大(2a+5)平方米.【考点】整式的加减【解析】(1)根据题意表述可得水稻种植的面积是3a,玉米种植面积为a−5.【解答】解:由题意,得小麦种植面积为a平方米,水稻种植面积为3a平方米,玉米种植面积为(a−5)平方米,3a−(a−5)=3a−a+5=2a+5(平方米),所以水稻种植面积比玉米种植面积大(2a+5)平方米.【答案】解:(1)观察可看出第①行的数分别是−2的一次方,二次方,三次方,四次方⋯⋯用式子表示规律为:(−2)n.(2)第②③行数与第①行数的关系为:第②行数比第①行相对应的数大2;第③行数是第①行相对应的数的12.(3)第①行的第十个数为:(−2)10=1024;第②行的第十个数为:1024+2=1026;第③行的第十个数为:1024×12=512;1024+1026+512=2562.故这三个数的和为:2562.【考点】规律型:数字的变化类有理数的加法有理数的乘法有理数的乘方【解析】(1)观察可看出第一行的数分别是−2的一次方,二次方,三次方,四次方…且奇数项是负数,偶数项是正数,用式子表示规律为:(−2)n;(2)观察可知,第②行数比第①行相对应的数大2;第③行数是第①行相对应的数的12;(3)根据规律分别求得第10个数的值,再求其和即可.【解答】解:(1)观察可看出第①行的数分别是−2的一次方,二次方,三次方,四次方⋯⋯用式子表示规律为:(−2)n.(2)第②③行数与第①行数的关系为:第②行数比第①行相对应的数大2;第③行数是第①行相对应的数的12.(3)第①行的第十个数为:(−2)10=1024;第②行的第十个数为:1024+2=1026;第③行的第十个数为:1024×12=512;1024+1026+512=2562.故这三个数的和为:2562.【答案】解:(1)由题意可得:a<−1<−b<0<b<1<−a.(2)∵ a<0,a+b−1<0,b−a−1>0,∴|a|−|a+b−1|−|b−a−1|=(−a)−(−a−b+1)−(b−a−1)=−a+a+b−1−b+a+1=a.【考点】数轴有理数大小比较绝对值【解析】(1)根据数轴上点的坐标特征解答即可:原点左边的数为负数、右边的数为正数,原点坐标为0.(2)结合数轴来去掉绝对值,即可进行化简.【解答】解:(1)由题意可得:a<−1<−b<0<b<1<−a.(2)∵ a<0,a+b−1<0,b−a−1>0,∴|a|−|a+b−1|−|b−a−1|=(−a)−(−a−b+1)−(b−a−1)=−a+a+b−1−b+a+1=a.【答案】18,37253,2(3)设这5个数中最小的数为x,则其余四个数为x+4,x+9,x+11,x+18,根据题意,得x+(x+4)+(x+9)+(x+11)+(x+18)=2027,5x+42=2027,5x=1985,解得:x=397.∵397÷8=49⋯⋯5,49+1=50,∴397是第50行的第5个数,此时x+4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027.【考点】规律型:数字的变化类有理数的混合运算【解析】(1)根据表格直接得出a32=18;根据a ij表示第i行第j个数,以及每一行从左往右由小到大排列8个数即可求出a55;(2)根据每一行由小到大排列8个数,用2018除以8,根据除数与余数即可求出i与j的值;(3)设这5个数中的最小数为x,用含x的代数式分别表示其余4个数,根据5个数之和等于2027列出方程,求出x,再根据5个阴影格子的排列规律结合表格求解即可.【解答】解:(1)由表格数据可得a32=18,∵前面4行共有8×4=32个数,∴第5行的第1个数为33,则第5行的第5个数为37,即a55=37.故答案为:18;37.(2)∵2018÷8=252⋯⋯2,252+1=253,∴2018是第253行的第2个数,∴i=253,j=2.故答案为:253;2.(3)设这5个数中最小的数为x,则其余四个数为x+4,x+9,x+11,x+18,根据题意,得x+(x+4)+(x+9)+(x+11)+(x+18)=2027,5x+42=2027,5x=1985,解得:x=397.∵397÷8=49⋯⋯5,49+1=50,∴397是第50行的第5个数,此时x+4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027. 【答案】解:(1)|a+3|+(b−9)2=0,所以a+3=0,b−9=0,解得a=−3,b=9.(2)设C对应的点为x,①当C在AO之间时,x<0,AC=|−x−3|=x+3,OC=|x|=−x,BC=9−x,所以x+3+(−x)=9−x,x=6(不合题意,舍去);②当C在BO之间时,x>0,AC=x+3,OC=x,BC=9−x,∴ x+3+x=9−x,x=2.综上可得点C在BO之间,其所对应的数为2.(3)由(2)知:AC=5,运动时间为:0<t≤5,t秒后:P对应的数为−3+t,Q对应的数为9−2t,所以OP=|−3+t|,BQ=2t,PQ=|12−3t|,由OP+BQ=3PQ知:|−3+t|+2t=3|12−3t|,①当0<t≤3时,t=3310(舍),②当3<t≤4时,t=134,③当4<t≤5时,t=112(舍),综上所述:t=134.【考点】非负数的性质:绝对值非负数的性质:偶次方数轴动点问题【解析】此题暂无解析【解答】解:(1)|a+3|+(b−9)2=0,所以a+3=0,b−9=0,解得a=−3,b=9.(2)设C对应的点为x,①当C在AO之间时,x<0,AC=|−x−3|=x+3,OC=|x|=−x,BC=9−x,所以x+3+(−x)=9−x,x=6(不合题意,舍去);②当C在BO之间时,x>0,AC=x+3,OC=x,BC=9−x,∴ x+3+x=9−x,x=2.综上可得点C在BO之间,其所对应的数为2.(3)由(2)知:AC=5,运动时间为:0<t≤5,t秒后:P对应的数为−3+t,Q对应的数为9−2t,所以OP=|−3+t|,BQ=2t,PQ=|12−3t|,由OP+BQ=3PQ知:|−3+t|+2t=3|12−3t|,(舍),①当0<t≤3时,t=3310②当3<t≤4时,t=13,4③当4<t≤5时,t=11(舍),2综上所述:t=13.4。
【试卷】2020-2021学年度七年级上数学9月月考卷及答案

试卷第1页,总6页2020-2021学年度七年级上数学9月月考卷总分100分;考试时间:120分钟一、单选题(共20分)1.在数1,5,0,4,0.33---中,负数有() A .1个B .2个C .3个D .4个2.一种面粉的质量标识为“25±0.25千克”,则任取一袋这种面粉,质量可能是( )A .26千克B .24千克C .24.9千克D .25.6千克3.2020-的绝对值是( ) A .2020- B .2020 C .12020-D .120204.如图所示的图形为四位同学画的数轴,其中正确的是( ) A .B .C .D .5.下列各式的化简,正确的是( ) A .-(-3)=-3 B .-[-(-10)]=-10C .-(+5)=5D .-[-(+8)]=-86.比﹣1小2的数是( )A .3B .1C .﹣2D .﹣3 7.把(-8)-(-4)+(-5)-(-2)写成省略加号的形式是( ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2D .-8-4-5+2试卷第2页,总6页8.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .49.计算123456782017201820192020+--++--+++--值为( )A .0B .﹣1C .2020D .-202010.代数式()522+-a 取最小值时,a 值为( ) . A .a=0B .a=2C .a=-2D .无法确定二、填空题(共16分)11.如果向南走10米记为-10米,那么向北走5米记为 _______. 12.2-的相反数是________;32的倒数是________. 13.用“>”或“<”符号填空:7-______9-. 14.绝对值小于4的所有整数的和是___________. 15.若|1||2|0x y ++-=,则x y +=__________.16.有理数a ,b 在数轴上的位置如图所示,则a _____ b , ︱a ︱_____ ︱b ︱.17.在数轴上有5个点A ,B ,C ,D ,E ,每两个相邻点之间的距离如图所示,若点C 表示的数是1-,则点E 表示的数是______.18.用[]x 表示不大于x 的整数中的最大整数,如[2.4]2=,[ 3.3]4-=-,请计算[5.8][ 4.4]+- =______.试卷第3页,总6页三、解答题(共64分)19.(本题4分)请把下列各数填人相应的集合中:215,2,, 3.6,0,9,98%73----正数集合{ ...} 整数集合{ ... } 负分数集合{ ... }20.(本题6分)在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)21.(本题24分)计算(1)12-(-18)+(-7)-15 (2)()127.5222.5633⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭试卷第4页,总6页(3)(-8)-(-15)+(-9)-(-12) (4)12112323⎛⎫⎛⎫⎛⎫+-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)()31282-+⨯ (6)1102(2)3+÷⨯-.22.(本题15分)运用运算律进行简便运算: (1)(-10)×13×(-0.1)×6; (2)36×3574912⎛⎫--+ ⎪⎝⎭;(3)(-5)×173⎛⎫+ ⎪⎝⎭+7×173⎛⎫- ⎪⎝⎭-(+12)×173⎛⎫- ⎪⎝⎭.23.(本题9分)出租车司机小王某天下午营运全是在东西走向的公路上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午共需要多少油费?(3)根据(2)小题条件,若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的部分每千米另收2元钱.那么小王这天下午收到乘客所给车费共多少元?小王这天下午的出租车运营是盈利还是亏损?盈利(或亏损)多少?24.(本题6分)求若干个相同的不为零的有理数的除法运算叫做除方.试卷第5页,总6页试卷第6页,总6页如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.一般地,把a ÷a ÷a ÷…÷a⏟ n 个a(a≠0)记作a ○n ,记作“a 的圈 n 次方”. (1)直接写出计算结果:2③= ,(-3)⑤ = , (−12)⑤= (2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于 . (3)计算 24÷23+ (-8)×2③.参考答案1.C【解析】【分析】根据正负数的定义便可直接解答,即大于0的数为正数,小于0的数为负数,0既不是正数也不是负数.【详解】解:根据负数的定义可知,在这一组数中为负数的有:-13,-4,-0.3.故选C.【点睛】此题考查的知识点是正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前2.C【解析】【分析】根据一种面粉的质量标识为“25±0.25千克”,可以求出合格面粉的质量的取值范围,从而可以解答本题.【详解】解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25-0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选:C.【点睛】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.3.B【解析】【分析】根据绝对值的定义直接解答.【详解】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2020-2021武汉市七年级数学上期末试题(附答案)

2020-2021武汉市七年级数学上期末试题(附答案)一、选择题1.下列图形中,能用ABC ∠,B ,α∠表示同一个角的是( )A .B .C .D .2.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯3.下列四个角中,最有可能与70°角互补的角是( )A .B .C .D .4.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个5.8×(1+40%)x ﹣x =15故选:B .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.6.下列方程变形中,正确的是( )A .由3x =﹣4,系数化为1得x =34-B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=5 7.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折8.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有()A.1个B.2个C.3个D.4个9.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A和点C B.点B和点DC.点A和点D D.点B和点C10.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个 B.1个 C.2个 D.3个11.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×107 12.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.已知﹣5a2m b和3a4b3﹣n是同类项,则12m﹣n的值是_____.14.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.15.一个角的余角比这个角的12多30,则这个角的补角度数是__________.16.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.17.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x -,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______. 18.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是______. 19.用科学记数法表示24万____________. 20.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.三、解答题21.如图,数轴上A B 、两点对应的数分别为30-、16,点P 为数轴上一动点,点P 对应的数为x .(1)填空:若34x =-时,点P 到点A 、点B 的距离之和为_____________. (2)填空:若点P 到点A 、点B 的距离相等,则x =_______.(3)填空:若10BP =,则AP =_______.(4)若动点P 以每秒2个单位长度的速度从点A 向点B 运动,动点Q 以每秒3个单位长度的速度从点B 向点A 运动两动点同时运动且一动点到达终点时另一动点也停止运动,经过t 秒14PQ =,求t 的值.22.如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =18cm ,AC =4CD . (1)图中共有 条线段;(2)求AC 的长;(3)若点E 在直线AB 上,且EA =2cm ,求BE 的长.23.已知∠a =42°,求∠a 的余角和补角.24.如图,已知∠AOC =90°,∠COD 比∠DOA 大28°,OB 是∠AOC 的平分线,求∠BOD 的度数.25.化简求值:求代数式7a 2b+2(2a 2b ﹣3ab 2)﹣3(4a 2b-ab 2)的值,其中a ,b 满足|a+2|+(b﹣12)2=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,α∠表示,故本选项正确;C、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A 、B 、C 都是锐角,答案D 是钝角;∴答案D 正确.故选D .4.C解析:C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.无6.D解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】解:3x =﹣4,系数化为1,得x =﹣43,故选项A 错误; 5=2﹣x ,移项,得x =2﹣5,故选项B 错误; 由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=24,故选项C 错误; 由 3x ﹣(2﹣4x )=5,去括号得,3x ﹣2+4x =5,故选项D 正确,故选:D .【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.7.A解析:A【解析】【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉六中位育中学2020年七年级数学九月质量检测
满分120分 时间:120分钟
一、选择题(共10小题,每小题3分,共30分)
1.四个有理数﹣1,2,0,,3,其中最小的是, , A. ,1
B. 2
C. 0
D. ,3
2.武汉市某一天最高气温是12℃,最低气温是-3℃,那么这一天的最高气温比最低气温高( ) A. 9℃
B. 15℃
C. -9℃
D. -15℃
3.下列各组量中具有相反意义的量是( ) A. 蚂蚁向上爬30 cm 与向左爬30 cm B. 向东走与向北走
C. 收入2元与借书2本
D. 弹簧伸长3 cm 与缩短1 cm
4.写成省略加号和的形式后为-8-4-5+6的式子是( ) A. (-8)-(+4)-(-5)+(+6) B. -(+8)-(-4)-(+5)-(+6) C. (-8)+(-4)-(+5)+(-6)
D. (-8)-(+4)+(-5)-(-6)
5.符号语言“()0a a a =-≤”所表达的意思是( ) A. 正数的绝对值等于它本身 B. 负数的绝对值等于它的相反数 C. 非正数的绝对值等于它的相反数 D. 负数的绝对值是正数
6.下列运算正确的是( ) A. 11(3)()422
---=
B. 11()(2)12
÷-⨯-=
C. 0-(-6)=6
D. (-3)÷(-6)=2
7.设a 是最小的自然数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( ) A. 1-
B. 0
C. 1
D. 2
8.下列说法中:① -a 一定是负数;② |a |一定是正数;③ 倒数等于它本身的数是0和±1;④ 绝对值等于
它本身的数是0和1,其中正确的个数是( ) A. 0个
B. 1个
C. 2个
D. 3个
9. 下图数轴上A 、B 、C 、D 、E 、S 、T 七点对应的数分别为-2、-1、0、1、2、s 、t .若数轴上有一点R ,其对应的数为|s -t +1|,则R 会落在下列哪一线段上?( )
A .AB
B .BC
C .CD
D .DE
10.已知abc <0,a +b +c >0,且a b c ab ac bc x a b c ab ac bc
=
+++++,则x 值为( )
A. 0
B. 0或1
C. 0或-2或1
D. 0或1或-2或-6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.1
13
-的相反数是______,倒数是______,绝对值是______.
12.比较大小(填写“>”或“<”): -2________-3 ; 78-
________8
9- ; 3()4--________4[()]5
-+-
13.已知m 、n 互为相反数,p 、q 互为倒数,则
20192020
m n
pq ++=___________ 14.数轴上点A 在原点左边距离原点3个单位长度,点B 在原点右边距离原点2个单位长度,那么点A 表示的数与点B 表示的数的积是___________
15.已知|x |=1,|y |=3,若||x y x y +=+,则x -y =___________ 16.在有理数范围内,我们定义三个数之间
新运算“⊗”法则:a ⊗b ⊗c =|a +b +c |-a +b -c ,例如:
1⊗2⊗(-3)=|1+2+(-3)|-1+2-(-3)=4.在5
4678099999
--、
、、、、这6个数中,任意取三个数作为a 、b 、c 的值,则a ⊗b ⊗c 的最大值为___________
的
三、解答题(共8小题,共72分)
17. (本题4分)把下列各数填到相应的括号内: +203、0、+6.4、-9、5
7
-、3.14、-0.1
整数: { … } 正有理数:{ … } 负分数: { … } 非负整数:{ … } 18. (本题16分)计算:
(1) -3+8-15-6 (2)
(3) 31112424⎛⎫⎛⎫⎛⎫
-
⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4) (-3)×[-5+(1-2×2
3
)÷(-2)];
19.(本题6分)若|a |=4,|b |=6,且ab<0,求2a -b 的值.
20. (本题6分)武汉市质量技术监督局从面粉厂生产
袋装面粉中抽出20袋,检测每袋的质量是否符合
标准,把超过或不足的部分分别用正、负数来表示,记录如下表:
(1) 若标准质量为450克,则抽出的20袋面粉的总质量为多少克?
)5
32(4
35)5
28(4
13-++-+
(2) 若该包装面粉的合格标准为450±3 克,求此次检测的合格率21. (本题7分)有理数a、b在数轴上的对应点如图所示
(1) 填空:(填“<”、“>”或“=”)
a_________0;b_________0;|a+b|_________|a|+|b|
(2) 用“<”将a、b、-b、1
b
、0连接起来______________
(3) 化简:|a+b|-|b+1|-|a-1|
22. (本题7分)对于有理数a、b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a-b|.
(1)计算2⊙(-3)的值;
(2)当a,b在数轴上的位置如图所示时,化简a,b.
(3)已知(a⊙a)⊙a=8+a,求a的值.
23. (本题8分)快递配送员在一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(单位:千米):
+10、-3、-5、+4、+6、+5、-3、-6、-4、+10
(1) 在送快递过程中最远距出发点___________千米
(2) 这天送完最后一个快递时,在出发点的什么方向,距离出发点是多少千米?
(3) 如果送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?
24. (本题8分)观察下面三行数:
-1、2、-4、8、-16、32、-64、……,
0、3、-3、9、-15、33、-63、……,
1、-5、7、-17、31、-65、127、……,
(1) 第,行的第8个数是___________,设第①行第n个数为x,则第②行第n个数为,第③行第n个数为
(2) 取第,、,、,行的第10个数分别记为a、b、c,求a-b+c的值
(3) 取每行数的第n个数,这三个数中任意两数之差的最大值为6146,求n的值.
25. (本题10分)在数轴上,点A、B分别表示数a、b,且|a+6|+|b-10|=0,记AB=|a-b|
(1) 求AB值
(2) 如图,点P、Q分别从点A、B出发沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度.经过多少秒,点C与点P、Q的距离相等?
(3) 在(2)的条件下,点M从对应-8的点出发沿数轴向左运动,速度是每秒4个单位长度,在运动过程中,
MP+MC-3MQ的值是否为定值?若是,求出其值,若不是,请说明理由
武汉六中位育中学2019年七年级数学九月质量检测答题卡
一、选择题(每小题3分,共30分)
1
2 3 4 5 6 7 8 9 10
二、填空题(每小题3分,共18分)
11. 12. 13.
14. 15. 16.
三、解答题(共8小题,共72分) 17. (本题4分)
整数: { … } 正有理数:{ …
}
负分数: { … } 非负整数:{ … } 18. (本题16分)计算:
(1) -3+8-15-6 (2)
)5
32(4
35)5
28(4
13-++-+姓名
班级
考号
(3)
311
12
424
⎛⎫⎛⎫⎛⎫
-⨯-÷-
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
(4) (-3)×[-5+(1-2×
2
3
)÷(-2)];
19.(本题6分)
20. (本题6分)(1)(4分)
(2)(2分)
21. (本题7分)
(1) (3分)a_________0;b_________0;|a+b|_________|a|+|b|
(2) (2分)
(3) (2分)
22. (本题7分)
(1)(2分)
(2)(2分)
(3)(3分)
23.(本题8分)
,1,(2分)___________
(2)(3分)
(3)(3分)
24. (本题8分)
(1) (3分)___________,___________,___________
(2) (2分)
(3) (3分)
25. (本题10分)(1) (3分)
(2)(3分)
(3) (4分)。