计量经济学双变量回归模型估计问题
第二章 双变量模型

概念: 概念:
在给定解释变量Xi条件下被解释变量Yi的期 望轨迹称为总体回归线 总体回归线(population 总体回归线 regression line),或更一般地称为总体回 总体回 归曲线(population regression curve)。 归曲线 相应的函数: E (Y | X i ) = f ( X i ) 称为(双变量)总体回归函数(population 总体回归函数( 总体回归函数 regression function, PRF)。 )
变量间的关系
经济变量之间的关系,大体可分为两类: (1)确定性关系 函数关系:研究的是确定 确定性关系或函数关系 确定性关系 函数关系: 现象非随机变量间的关系。
相关关系: (2)统计依赖 相关关系: 研究的是非确定现 )统计依赖或相关关系 象随机变量间的关系。
回归与相关
相关分析的主要目的在于研究变量之间统计 线性关联的程度,将变量均视为随机变量。 回归分析的主要目的在于研究变量之间统计 关联的形式,目的在于揭示被解释变量如何依赖 解释变量的变化而变化的规律,将解释变量视为 确定性的,而将被解释变量视为随机变量。
二、回归分析的基本概念
回归分析(regression analysis)是研究一个变量关 回归分析 是研究一个变量关 于另一个( 于另一个(些)变量的具体依赖关系的计算方法 和理论。 和理论 其用意:在于通过后者的已知或设定值, 其用意:在于通过后者的已知或设定值,去估计和 预测前者的(总体)均值。 (或)预测前者的(总体)均值 这里:前一个变量被称为被解释变量(Explained 被解释变量( 被解释变量 Variable)或应变量(Dependent Variable), 应变量( ) 应变量 ), 后一个(些)变量被称为解释变量 解释变量 (Explanatory Variable)或自变量 ) 自变量 (Independent Variable)。 )
计量经济学第三章 双变量线性回归模型

双变量线性回归模型的统计假设
(1). E(ut) = 0, t= 1, 2, ...,n 即各期扰动项的均值(期望值)为0.
(5) (6)
其中:Y Yt , X X t
n
n
xt X t X ,
yt Yt Y
样本均值 离差
(5)式和(6)式给出了OLS法计算ˆ 和 ˆ 的 公式,ˆ 和 ˆ称为线性回归模型 Yt = + Xt + ut
的参数 和 的普通最小二乘估计量 (OLS estimators)。
一. 双变量线性回归模型的概念
设 Y = 消费, X = 收入, 我们根据数据画出散点图
Y
*
*
*
*
*
图1
这意味着
Y = + X
(1)
写出计量经济模型
Y = + X + u
(2)
其中 u = 扰动项或 误差项
Y为因变量或被解释变量
X
X为自变量或解释变量
和 为未知参数
设我们有Y和X的n对观测值数据,则根据(2)式, 变量Y的每个观测值应由下式决定:
=β
——假设(4) ——假设(1)
这表明,ˆ 是β的无偏估计量。
在证明 ˆ 无偏性的过程中, 我们仅用到(1)和(4)两
条假设条件。
由 ˆ Y ˆ X ,我们有:
E(ˆ ) E(Y ˆ X ) E( X u ˆ X ) X E(u) X E(ˆ)
计量经济学(庞皓)第二版课后思考题答案3

答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模 型的多重可决系数带来缺陷,所以需要修正。可决系数只涉及变差,没有考虑自由度。如果 用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难。 联系:由方差分析可以看出,F 检验与可决系数有密切联系,二者都建立在对应变量变 差分解的基础上。F 统计量也可通过可决系数计算。对方程联合显著性检验的 F 检验,实际 F 检验有精确的分布, 上也是对可决系数的显著性检验。区别: 它可以在给定显著性水平下, 给出统计意义上严格的结论。可决系数只能提供一个模糊的推测,可决系数越大,模型对数 据的拟合程度就越好。但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准。 3.5 什么是方差分析?对被解释变量的方差分析与对模型拟合优度的度量有什么联系和区 别? 答:被解释变量 Y 观测值的总变差分解式为: TSS = ESS + RSS 。将自由度考虑进去进行 方差分析,即得如下方差分析表: 变差来源 源于回归 源于残差 总变差
Y = b1 + β 2 X 2 + β3 X 3 + β 4 X 4 + u
其中,Y 为汽车销售量,X2 为居民收入, X3 为汽车价格, X4 为汽油价格,像其他费用、 道路状况、政策环境等次要因素包含在随机误差项 u 中。 3.9 说明用 Eviews 完成多元线性回归分析的具体操作步骤。 答:1、建立工作文件,建立一个 Group 对象,输入数据。 2、点击 Quick 下拉菜单中的 Estimate Equation。 3、在对话框 Equation Specification 栏中键入 Y C X2 X3 X4 ,点击 OK,即出现回归结 果。
而当 X 2 和 X 3 相互独立时, X 2 和 X 3 的斜方差等于零,即:
计量经济学第二章经典线性回归模型

Yt = α + βXt + ut 中 α 和 β 的估计值 和
,
使得拟合的直线为“最佳”。
直观上看,也就是要求在X和Y的散点图上
Y
* * Yˆ ˆ ˆX
Yt
* **
Yˆt
et * *
*
*
**
*
**
**
*
Xt
X
图 2.2
残差
拟合的直线 Yˆ ˆ ˆX 称为拟合的回归线.
对于任何数据点 (Xt, Yt), 此直线将Yt 的总值 分成两部分。
β
K
βK
β1 β1
...
βK
βK
Var(β 0 )
Cov(β1 ,β
0
)
Cov(β 0 ,β1 )
Var(β1 )
...
Cov(β
0
,β
K
)
...
Cov(β1
,β
K
)
...
...
...
...
Cov(β
K
,β
0
)
Cov(β K ,β1 )
...
Var(β K )
不难看出,这是 β 的方差-协方差矩阵,它是一 个(K+1)×(K+1)矩阵,其主对角线上元素为各 系数估计量的方差,非主对角线上元素为各系 数估计量的协方差。
ut ~ N (0, 2 ) ,t=1,2,…n
二、最小二乘估计
1. 最小二乘原理
为了便于理解最小二乘法的原理,我们用双
变量线性回归模型作出说明。
对于双变量线性回归模型Y = α+βX + u, 我 们
的任务是,在给定X和Y的一组观测值 (X1 ,
计量经济学 第3章 双变量模型:假设检验

假设检验的前提是什么?
本章框图 一、古典假设
回归结果好坏? 三、高斯马尔科夫定理
二、估计量的分布问题
四、 假设 检验
七、正态性检验
方法 统计量 显著性
结论
五、拟合优度 六、预测
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些
一、OLS估计需要的基本假设有哪些?
十三、案例2股票价格和利率
理论和假说 变量选择 数据6-13 散点图 估计和结果 结论的经济意义
十四、案例3房价和贷款利率
理论和假说 变量选择 数据6-6 散点图 估计和结果 结论的经济意义
十五、案例4古董和拍卖价格
理论和假说 变量选择 数据6-14 散点图 估计和结果 结论的经济意义
第3章 双变量模型:模型检验
引子、样本回归参数的估计问题
引子、样本回归参数的估计问题
结论:
样本回归系数随样本变化。 样本回归系数是随机变量,如何描述? 样本回归系数和总体回归参数是什么关系 基于什么条件下,利用最小二乘估计的得
到的样本回归系数可以用来作为总体回归 参数的估计? 根据什么说明:总体回归函数的模型设定 是正确的。
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
七、判决系数的性质有哪些?
双变量回归

双变量回归模型:估计问题
简单的线性回归模型
Yi = 1 + 2 X i + ui
Yi = 每周家庭支出 X i = 每周家庭收入
对于给定的 xi的水平, 预期的食物支 出将是: E(Yi|X i) = 1 + 2 X i
参数
1和 2是未知常数.
^ ^ ) 的公 产生样本估计量 b1 (或 1)和 b2(或 2 式就是 1 和 2的估计。
b1 和b2的预期值
简单线性回归下的估计量的公式:
b2 =
nXiYi - XiYi nX2 -(Xi)2 i
xiyi = xi2
b1 = Y - b2X
这里
Y = Yi / n 和 X = Xi / n
将 Yi = 1 + 2xi + 替代到 b2 公式中并得:
ui
nxi ui - xi ui b2 = 2 + 2 2 nxi -(xi)
)2
=
yi
i
2
=
^
xi2 yi2
Sx2 Sy2
xiyi)2 xiyi 2 xi2 = = 2 2 xi2yi2 xi yi
Y
当R2 = 0 SRF
哪个是SRF ?Leabharlann X Y当 R2 = 1
SRF
SRF 通过所有点
X
高斯马尔可夫定理
在经典的线性回归模型条件下, 最小二乘 (OLS) 估计量 b1 和 b2 是1和 2 的最优线 性无偏估计量 (BLUE). 这意味着 b1和 b2 在1 和2所有线性无偏估计量中拥有 最小 方差.
错误的模型设定 先前的无偏结果假定使用了正确 的设定形式
第二章 双变量回归分析(计量经济学,南开大学)

ˆ 和 ˆ 1 2
i
为Yi的线性函数
i 2 i
ˆ
2
xY x
(
xi )Yi 2 x i
k Y
i
i
其中k i
xi xi2 1 xi2
ki k i2
x
2
i
0
2 xi
1 xi2 1 xi2
i
1 xi2
6、样本回归函数(SRF) 由于在大多数情况下,我们只知道变量值得一个样本,要用样本信息的基础 上估计PRF。(表) 样本1
X(收入) Y(支出) 80 55 100 65 120 79 140 80 160 102 180 110 200 120 220 135 240 137 260 150
样本2
ˆ ) VAR( 2
x
2 i
2
2 i
x
ˆ: 对于 1
ˆ Y ˆ X 1 ˆ X Yi 1 2 2 n 1 ˆ X ( 1 2 X i ui ) 2 n u 1 i X k i ui n ˆ ) E[( ui X 方差:VAR( k i ui ) 2 ] 1 n
ˆ ) E( ki E (ui ) 2 2 2 ˆ Y ˆ X 1 2 ( 1 2 X i ui ) ( 1 k i u i ) X 1 u i X k i u i ˆ ) E( 1 1
1 1 2 21
估计量(Estimator):一个估计量又称统计量(statistic),是指一个规则、公式 或方法,以用来根据已知的样本所提供的信息去估计总体参数。在应用中,由估 计量算出的数值称为估计(值)(estimate)。 样本回归函数SRF的随机形式为:
计量经济学(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.83272.下列样本模型中,哪一个模型通常是无效的() A. i C (消费)=500+0.8i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. s i Q (商品供给)=20+0.75i P (价格)D. i Y (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数与多重判定系数 之间有如下关系( ) A.2211n R R n k −=−− B. 22111n R R n k −=−−− C. 2211(1)1n R R n k −=−+−− D. 2211(1)1n R R n k −=−−−− 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双变量回归分析:
估计问题
基本内容
普通最小二乘法(OLS) 经典线性回归模型:OLS的基本假定 OLS估计的性质 判定系数r2:“拟合优度”的一个度量
2
普通最小二乘法
(Ordinary Least Squares ,OLS)
最小二乘准则
ui2 (Yi Yi )2最小化
3
最小二乘准则
27
r2与r
r2
r
就模型而言
就两个变量而言
说明解释变量对因变量 的解释程度 度量不对称的因果关系
取值:[0,1]
度量两个变量线性依存 程度。
度量不含因果关系的对 称相关关系
取值:[-1,1]
28
运用r2时应注意
● 判定系数只是说明列入模型的所有解释变量对 因变量的联合的影响程度,不说明模型中每个 解释变量的影响程度(在多元中)
X
2 i
(
Xi )2
5
用离差表现的OLS估计式
为表达得更简洁,或者用离差形式OLS估计式:
__
__(Yi
__
Y
)
(Xi X )2
xi yi xi2
^
1
__
Y
ˆ2 X
注意其中: xi X i X
yi Yi Y
6
OLS估计量的良好性质
容易计算(由可观测的样本表达) 是点估计量 容易画出SRF,且SRF: (1)通过样本均值点
● 回归的主要目的如果是经济结构分析,不能只 追求高的判定系数,而是要得到总体回归系数 可信的估计量,判定系数高并不表示每个回归 系数都可信任。
29
Cov(Yi ,Yj ) 0(i j)
13
OLS估计的标准误(精度)
se(2 )
xi2
2
ui 2
n2
14
OLS估计的性质:
高斯-马尔可夫定理
在给定经典线性回归模型的假定下, OLS估计量在所有线性无偏估计量中具 有最小方差,也就是说,它们是最优线 性无偏估计量(BLUE)。
15
无偏性
23
r2=?
r 2 ESS TSS
r 2 1 RSS TSS
24
r2=?
r2测度了在Y的总变异中由回归模型解释 的那个部分所占的比例或百分比。
25
r2的作用
r2越大,模型拟合优度越好。反之说明模型对样本观 测值的拟合程度越差。
26
r2的特点
0 r2 1
随抽样波动,样本判定系数r2是随抽样 而变动的随机变量
(Yi - Y)2 (Yi -Y )2 (Yi Yi )2
即:
yi 2
2
yi
ui2
22
定义
总离差(TSS):
Y的值与其均值的离差平方和(总平方和)
解释了的离差(ESS):
Y的估计值与其均值的离差平方和(解释平方和)
未解释的离差 (RSS):
Y的值与其估计值的离差平方和(残差平方和)
Var(ui Xi ) E[ui E(ui Xi )]2 2
11
假定3 无自相关假定 Cov(ui,uj|Xi,Xj)=0 Cov(ui,uj)=E[ui-E(ui)][uj-E(uj)] =E(uiuj) =0
12
Yi的分布性质
E(Yi | X i ) 1 2 X i Var(Yi | X i ) 2
如 Yi 1 2 Xi ui
假定解释变量 X是非随机的,或者虽然是随机的,但与扰动
项 u是不相关的
假定解释变量 X 在重复抽样中为固定值
假定变量和模型无设定误差
9
(2)对随机扰动项的假定 假定1,零均值
E(ui|Xi)=0
10
假定2:同方差假定 在给定X的条件下,ui的条件方差为某个常 数
X
19
总离差的分解
Y的观测值围绕其均值的总变异分为两部分:一 部分来自样本回归线,另一部分来自随机扰动项。
Yi - Y (Yi -Y ) (Yi Yi )
20
图示
Y
Yi
•
ei来自残差
^
SRF
(Y i- Y ) 总变差
^
(Y i- Y ) 来自回归
Y
Xi
X
21
将上式平方加总可整理得:
概
率 密
f (ˆ)
度
f (*)
偏倚 E( *)
估计值
16
最小方差性
概
率
密
度
f (ˆ)
f (*)
估计值
17
第三节 拟合优度的度量
本节基本内容: ●什么是拟合优度 ●总离差的分解 ●判定系数
18
拟合优度
定义:
Y
样本回归线对样本观测数据 拟合的优劣程度
拟合优度的度量建立在对 总离差分解的基础上
Yi Yi
i 0
(2)残差与Yi的预测值不相关 (3)残差与Xi不相关
7
经典线性回归模型
OLS的基本假定
线性回归模型 X值是固定的或独立于误差项 干扰项ui的均值为0 干扰项ui的同方差性 各干扰项之间无自相关 观测次数n必须大于待估计的参数个数 X的取值不只一个
8
小结
(1)对模型和变量的假定
ui2 f(1,2)
4
正规方程和估计式
取偏导数为0,得正规方程
Yi nˆ1 ˆ2 Xi XiYi ˆ1 Xi ˆ2 Xi2
用克莱姆法则求解得观测值形式的OLS估计量:
^ n
2
n
X iYi
X
2 i
(
X i Yi Xi )2
^
1
X
2 i
Yi
Xi
X iYi
n