线性代数教案设计

合集下载

线性代数教案同济版

线性代数教案同济版

线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。

教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。

教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。

教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。

教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。

教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。

1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。

教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。

教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。

教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。

教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。

线性代数试讲教案

线性代数试讲教案

线性代数试讲教案一、教学目标1. 知识与技能:使学生掌握线性代数的基本概念、理论和方法,能够运用线性代数解决实际问题。

2. 过程与方法:通过试讲,培养学生的逻辑思维能力、表达能力和合作能力。

3. 情感态度与价值观:激发学生对线性代数的兴趣,提高学生对数学学科的认识和尊重。

二、教学内容1. 第一章:矩阵及其运算1.1 矩阵的概念与性质1.2 矩阵的运算规则1.3 矩阵的逆2. 第二章:线性方程组2.1 线性方程组的定义2.2 高斯消元法解线性方程组2.3 克莱姆法则3. 第三章:向量空间与线性变换3.1 向量空间的概念与性质3.2 线性变换的概念与性质3.3 线性变换的矩阵表示4. 第四章:特征值与特征向量4.1 特征值与特征向量的定义4.2 特征值与特征向量的求解方法4.3 矩阵的对角化5. 第五章:二次型5.1 二次型的概念与性质5.2 二次型的标准形5.3 二次型的判定定理三、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。

2. 通过举例、解决问题,引导学生理解和掌握线性代数的基本概念和方法。

3. 利用数学软件或板书,展示线性代数运算过程,提高学生的直观理解能力。

四、教学评价1. 课堂表现:观察学生在试讲过程中的表达、思考和合作能力。

2. 作业与练习:检查学生对线性代数概念、方法和应用的掌握程度。

3. 阶段性测试:评估学生在一段时间内对线性代数的总体掌握情况。

五、教学资源1. 教材:线性代数教材,如《线性代数及其应用》等。

2. 课件:制作与教学内容相关的课件,辅助学生理解和记忆。

3. 数学软件:如MATLAB、Mathematica等,用于展示线性代数运算过程。

4. 板书:用于在课堂上展示线性代数运算步骤和关键公式。

六、第六章:线性空间与线性映射6.1 线性空间的概念与性质6.2 线性映射的概念与性质6.3 线性映射的例子与性质七、第七章:内积与正交性7.1 内积的概念与性质7.2 正交性的概念与性质7.3 施密特正交化与格拉姆-施密特正交化八、第八章:特征值与特征向量的应用8.1 特征值与特征向量的应用概述8.2 矩阵的对角化与应用8.3 二次型与应用九、第九章:线性代数在工程与科学中的应用9.1 线性代数在工程中的应用9.2 线性代数在科学研究中的应用9.3 线性代数在其他领域的应用10.2 线性代数在实际问题中的应用案例分析10.3 线性代数的进一步学习与研究建议六、教学方法1. 采用试讲的形式,让学生自主学习、合作探讨,教师进行指导与点评。

(完整版)线性代数教案(正式打印版)

(完整版)线性代数教案(正式打印版)

特征值与特征向量的求解方法
注意事项
在求解过程中,需要注意特征多项式f(λ)的根可能为重根,此时需要验证 是否满足定义中的条件。
在求解特征向量时,需要注意齐次线性方程组的基础解系的求法。
特征值与特征向量的应用举例
01
应用一
判断矩阵是否可对角化。若矩阵A有n个线性无关的特征向 量,则A可对角化。
02
图像处理
在图像处理中,经常需要对图像进行旋转、缩放等操作,这些操作可以通过矩阵对角化来实现。例如,将一个图像矩 阵与一个旋转矩阵相乘,就可以实现图像的旋转。
数据分析
在数据分析中,经常需要对数据进行降维处理,以提取数据的主要特征。通过对数据的协方差矩阵进行对角化,可以 得到数据的主成分,从而实现数据的降维。
REPORTING
线性代数课程简介
线性代数是数学的一个重要分支,主 要研究向量空间、线性变换及其性质 。
本课程将系统介绍线性代数的基本概 念、理论和方法,包括向量空间、矩 阵、线性方程组、特征值与特征向量 、线性变换等内容。
它是现代数学、物理、工程等领域的 基础课程,对于培养学生的抽象思维 、逻辑推理和问题解决能力具有重要 作用。
工具。
2023
PART 04
线性方程组与高斯消元法
REPORTING
线性方程组概念及解法
线性方程组定义
由n个未知数和m个线性方程组成的方程组,形如Ax=b,其中A为系数矩阵,x为未知数 列向量,b为常数列向量。
解的存在性与唯一性
当系数矩阵A的秩等于增广矩阵(A,b)的秩,且等于未知数个数n时,方程组有唯一解;当 秩小于n时,方程组有无穷多解;当秩大于n时,方程组无解。
要作用。
向量空间与子空间

《线性代数》教案

《线性代数》教案

《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。

2. 适用对象:本教案适用于大学本科生线性代数课程的教学。

3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。

二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。

2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。

3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。

四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。

2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。

3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。

五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。

2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。

3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。

4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。

《线性代数》教案

《线性代数》教案

《线性代数》教案一、引言1. 课程目标:使学生理解线性代数的基本概念,掌握线性方程组的求解方法,了解矩阵和行列式的基本性质,培养学生的数学思维能力和解决问题的能力。

2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组的求解方法、矩阵和行列式的基本性质。

3. 教学方法:采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动探究、积极思考。

二、线性方程组1. 教学目标:使学生理解线性方程组的含义,掌握线性方程组的求解方法,能够运用线性方程组解决实际问题。

2. 教学内容:(1)线性方程组的概念及其解的含义;(2)线性方程组的求解方法(高斯消元法、矩阵法等);(3)线性方程组在实际问题中的应用。

3. 教学方法:通过具体案例分析,引导学生理解线性方程组的概念,运用高斯消元法和矩阵法求解线性方程组,并讨论线性方程组在实际问题中的应用。

三、矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算方法,了解矩阵在数学和实际中的应用。

2. 教学内容:(1)矩阵的概念及其表示方法;(2)矩阵的运算(加法、数乘、乘法);(3)矩阵的其他相关概念(逆矩阵、转置矩阵等);(4)矩阵在数学和实际中的应用。

3. 教学方法:通过具体的例子,引导学生理解矩阵的概念,掌握矩阵的运算方法,探讨矩阵在其他相关概念中的应用,并了解矩阵在数学和实际中的重要作用。

四、行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,了解行列式在线性方程组求解中的应用。

2. 教学内容:(1)行列式的概念及其表示方法;(2)行列式的计算方法(按行(列)展开、性质的应用等);(3)行列式在线性方程组求解中的应用。

3. 教学方法:通过具体的例子,引导学生理解行列式的概念,掌握行列式的计算方法,并了解行列式在线性方程组求解中的应用。

五、线性空间与线性变换1. 教学目标:使学生了解线性空间的概念,掌握线性变换的定义和性质,了解线性变换在数学和实际中的应用。

《线性代数》教案

《线性代数》教案

《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。

2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。

二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。

2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。

三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。

2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。

四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。

2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。

五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。

2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。

六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。

2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。

线性代数教案

线性代数教案

线性代数教案一、教学目标通过本节课的学习,学生应能够:1. 了解线性代数的基本概念和相关术语;2. 理解线性方程组和矩阵的概念、性质和运算规则;3. 掌握矩阵的基本运算,包括矩阵的加法、数乘和矩阵乘法;4. 能够求解线性方程组,并应用到实际问题中。

二、教学重点与难点1. 教学重点:线性方程组和矩阵的概念及其运算规则;2. 教学难点:矩阵乘法的理解和应用。

三、教学过程1. 导入(5分钟)引入线性代数的概念,向学生介绍线性方程组和矩阵的相关背景知识,并激发学生的学习兴趣。

2. 理论讲解(20分钟)2.1 线性方程组的定义和解法- 介绍线性方程组的概念以及线性方程组的解的定义;- 分析线性方程组解的情况:无解、唯一解和无穷解;- 通过实例讲解线性方程组解的求解方法。

2.2 矩阵的定义和性质- 介绍矩阵的基本概念和符号表示方法;- 讲解矩阵的加法、数乘以及矩阵乘法的规则;- 引导学生理解矩阵乘法的几何意义。

3. 实例分析与练习(25分钟)3.1 线性方程组的求解实例- 给出一些线性方程组的实际问题,引导学生运用所学知识解决;- 指导学生使用矩阵运算进行线性方程组的求解。

3.2 矩阵运算实例- 给出一些矩阵的实际运用问题,让学生通过实例进行练习;- 帮助学生熟练掌握矩阵的加法、数乘和矩阵乘法。

4. 拓展延伸(15分钟)通过引导学生思考,结合线性代数在实际问题中的应用,进一步拓展学生的知识面。

5. 归纳总结(10分钟)对本节课所学内容进行总结,强化学生对线性代数的理解和掌握。

四、教学评价1. 在教学过程中,观察学生的学习状态,及时给予指导和帮助;2. 布置相关习题,检验学生对所学知识的掌握情况;3. 根据学生的表现进行评价,及时给予反馈和指导。

五、教学资源准备1. 教材和课件;2. 相关实例分析的教学素材;3. 学生练习题、作业等。

总结:通过本节课的教学,学生能够理解线性代数的基本概念和相关术语,掌握线性方程组和矩阵的运算规则,并能够应用所学知识解决实际问题。

线性代数教案同济版

线性代数教案同济版

线性代数教案同济版第一章绪论1.1 线性代数的起源和发展介绍线性代数的起源和发展历程,理解线性代数在数学和其他领域的重要性。

1.2 向量空间和线性映射定义向量空间和线性映射,理解它们的基本性质和概念。

1.3 矩阵和行列式介绍矩阵和行列式的概念,理解它们在线性代数中的重要性。

1.4 线性方程组理解线性方程组的定义和性质,学习解线性方程组的方法。

第二章矩阵和行列式2.1 矩阵的概念和运算介绍矩阵的概念和基本运算,如加法、减法、乘法和转置。

2.2 行列式的定义和性质定义行列式并学习其基本性质,如行列式的值与矩阵的行(列)向量之间的关系。

2.3 行列式的计算学习计算行列式的不同方法,如按行(列)展开、代数余子式和行列式的逆。

2.4 矩阵的逆定义矩阵的逆并学习其性质,如矩阵的逆与矩阵的行列式之间的关系。

第三章线性方程组3.1 高斯消元法学习高斯消元法解线性方程组的步骤和应用。

3.2 克莱姆法则理解克莱姆法则的原理,学习如何使用克莱姆法则解线性方程组。

3.3 线性方程组的解的性质学习线性方程组的解的性质,如唯一解、无解和有无限多解。

3.4 线性方程组的应用了解线性方程组在实际问题中的应用,如线性规划、电路分析和物理学中的问题。

第四章向量空间和线性映射4.1 向量空间的概念和性质定义向量空间并学习其基本性质,如向量加法和标量乘法的封闭性。

4.2 子空间和线性相关性理解子空间的概念并学习如何判断向量组线性相关性。

4.3 线性映射的概念和性质定义线性映射并学习其基本性质,如线性映射的矩阵表示和图像。

4.4 特征值和特征向量定义特征值和特征向量,学习如何求解线性映射的特征值和特征向量。

第五章特征值和特征向量5.1 特征值和特征向量的概念定义特征值和特征向量,理解它们在线性代数中的重要性。

5.2 特征值和特征向量的计算学习如何计算线性映射的特征值和特征向量,包括利用特征多项式和行列式。

5.3 特征空间和不变子空间理解特征空间和不变子空间的概念,学习它们的性质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。

2. 知道n 阶行列式的定义。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。

先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++。

2. n 阶行列式1212111212122212()12(1)n n n n t p p np p p p n n nna a a a a a D a a a a a a ==-∑其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p 求和。

n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。

3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。

由排列知识可知,D 中这样的乘积共有!n 项。

(2) 和式中的任一项都带有符号(1)t-,t 为排列12()n p p p 的逆序数,即当12n p p p 是偶排列时,对应的项取正号;当12n p p p 是奇排列时,对应的项取负号。

综上所述,n 阶行列式D 恰是D 中所有不同行、不同列的n 个元素的乘积的代数和,其中一半带正号,一半带负号。

例:写出4阶行列式中含有1123a a 的项。

解:11233244a a a a -和11233442a a a a 。

例:试判断142331425665a a a a a a 和324314512566a a a a a a -是否都是6阶行列式中的项。

解:142331425665a a a a a a 下标的逆序数为()4312650122016τ=+++++=,所以142331425665a a a a a a 是6阶行列式中的项。

324314512566a a a a a a -下标的逆序数为(341526)(234156)538ττ+=+=,所以324314512566a a a a a a -不是6阶行列式中的项。

例:计算行列式0001002003004000D =解:0123(1)123424D +++=-⋅⋅⋅=本授课单元教学手段与方法:讲授与练习相结合首先通过二(三)元线性方程组的解的表达式引出二(三)阶行列式的定义。

然后介绍有关全排列及其逆序数的知识,引出n 阶行列式的定义。

通过讨论对换以及它与排列的奇偶性的关系,引导学生了解行列式的三种等价定义。

本授课单元思考题、讨论题、作业: §1 P.26 1(1)(3) §2 2(5)(6)本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)线性代数 课程教案授课类型 理论课 授课时间 2 节授课题目(教学章节或主题):第一章 行列式§5 行列式的性质§6 行列式按行(列)展开 §7 克拉默法则本授课单元教学目标或要求: 1. 知道n 阶行列式的性质。

2. 知道代数余子式的定义和性质。

3. 会利用行列式的性质及按行(列)展开计算简单的n 阶行列式。

4. 知道克拉默法则。

本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:1. 行列式的性质(1) 行列式D 与它的转置行列式T D 相等。

(2) 互换行列式的两行(列),行列式变号。

(3) 行列式的某一行(列)中所有元素都乘以同一数k ,等于用数k 乘此行列式;或者行列式的某一行(列)的各元素有公因子k ,则k 可提到行列式记号之外。

(4) 行列式中如果有两行(列)元素完全相同或成比例,则此行列式为零。

(5) 若行列式的某一列(行)中各元素均为两项之和,则此行列式等于两个行列式之和。

(6) 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)的对应元素上去,行列式的值不变。

2. 行列式的按行(列)展开(1) 把n 阶行列式中(,)i j 元ij a 所在的第i 行和第j 列划去后所成的1n -阶行列式称为(,)i j 元ij a 的余子式,记作ij M ;记(1)i jij ij A M +=-,则称ij A 为(,)i j 元ij a 的代数余子式。

(2) n 阶行列式等于它的任一行(列)的各元素与对应于它们的代数余子式的乘积的和。

即可以按第i 行展开:1122(1,2,,)i i i i in in D a A a A a A i n =+++=; 或可以按第j 列展开:1122(1,2,,)j j j j nj nj D a A a A a A j n =+++=.(3) 行列式中任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

即11220,i j i j in jn a A a A a A i j +++=≠, 或11220,i j i j ni nj a A a A a A i j +++=≠.3. 克拉默法则含有n 个未知元12,,n x x x 的n 个线性方程的方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩当12,,,n b b b 全为零时,称为齐次线性方程组;否则,称为非齐次线性方程组。

(1) 如果方程组的系数行列式0D ≠,那么它有唯一解:(1,2,,)i i Dx i n D==,其中(1,2,,)i D i n =是把D 中第i 列元素用方程组的右端的自由项替代后所得到的n 阶行列式。

(2) 如果线性方程组无解或有两个不同的解,那么它的系数行列式0D =。

(3) 如果齐次线性方程组的系数行列式0D ≠,那么它只有零解;如果齐次线性方程组有非零解,那么它的系数行列式必定等于零。

用克拉默法则解线性方程组的两个条件:(1) 方程个数等于未知元个数;(2) 系数行列式不等于零。

克拉默法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导.4. 一些常用的行列式(1) 上、下三角形行列式等于主对角线上的元素的乘积。

即11121112222122112212n n nn nnn n nna a a a a a a a D a a a a a a a ===特别地,对角行列式等于对角线元素的乘积,即11221122nn nna a D a a a a ==.类似地,1(1)2,1212,111(1)nn n n n n n n a a D a a a a ---==-.(2) 设11111kk kk a a D a a =,11121nn nnb b D b b =,则11111211111111kk kk k n n nkn nna a a a D D D c cb bc c b b ==.(3) 范德蒙(Vandermonde )行列式122221212111112111(,,)()n n n n i j n i j n n n nx x x V x x x x x x x x x x x ≥>≥---==-∏计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值。

重点和难点:行列式的计算,要注重学会利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。

例:课本P.12例7—例9例:课本P.21例13例:课本P.25例16本授课单元教学手段与方法:讲授与练习相结合以从行列式的定义为切入口,引导学生探讨行列式的各种性质。

通过大量的例题引导学生掌握如何利用行列式性质及按行(列)展开等基本方法来简化行列式的计算。

本授课单元思考题、讨论题、作业: 思考题问:当线性方程组的系数行列式为零时,能否用克拉默法则解方程组?为什么?此时方程组的解为何?答:当线性方程组的系数行列式为零时,不能否用克拉默法则解方程组,因为此时方程组的解为无解或有无穷多解。

本授课单元思考题、讨论题、作业:§5 P.26 4(1)(2)(3),5(1)(2),7(1)(2) (5) §6 P.26 5 (4),7 (3) (6) §7 P.28 8(1),9本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)线性代数 课程教案授课类型 理论课 授课时间 2 节授课题目(教学章节或主题):第二章 矩阵及其运算 §1 矩阵 §2 矩阵运算 §3 逆矩阵 §4 矩阵分块法 本授课单元教学目标或要求:掌握矩阵的定义,矩阵的加减法\数乘\转置\矩阵求逆\矩阵的行列式\分块矩阵等运算,了解矩阵 多项式运算本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):本章拟分3次课完成,第一讲: §1矩阵,§2矩阵的运算;第二讲: §3逆矩阵;第三讲: §4矩阵分块法 第一讲: §1矩阵,§2矩阵的运算; 基本内容:§1 矩阵:一 矩阵的定义,定义1 由M ×N 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的数表mnm m nn a a a a a a a a a212222111211称为m 行n 列矩阵,简称M ×N 矩阵,为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211这M ×N 个数称为菊阵A 的元素,简称为元,数ij a 位于矩阵A 的第i 行j 列,称为矩阵A 的(I,J)元,以数ij a 为(I,J)元的矩阵可简记为)(ij a 或n m ij a ⨯)(,M ×N 矩阵A 也记着n m A ⨯.元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵行数和列数都等于n 的矩阵称为n 阶矩阵或n 阶方阵, n 阶矩阵A 也记作n A . 只有一行的矩阵 )(21n a a a A =称为行矩阵,又称为行向量, 行矩阵也记作),,,(21n a a a A =只有一列的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n b b b A 21称为列矩阵,又称为列向量.两个矩阵的行数相等,列数也相等,称它们是同型矩阵,如果A=)(ij a ,B=)(ij b 是同型矩阵,,并且它们的对应元素相等,即n j m i b a ij ij ,2,1,,,2,1(===),那么就称矩阵A 与矩阵B 相等,级作A=B元素都是零的矩阵称为零矩阵,记作O,不同型的零矩阵是不同的.§2 矩阵的运算一 矩阵的加法定义2 设有两个n m ⨯矩阵A=)(ij a 和B=)(ij b ,那么矩阵A 与B 的和记着A+B,规定为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a221122222221211112121111两个矩阵是同型矩阵时才能进行加法运算.矩阵加法满足下列运算规律(设A,B,C 都是n m ⨯矩阵): (i ) A+B=B+A;(ii )(A+B)+C=A+(B+C)A=)(ij a 的负矩阵记为 -A=)(ij a -A+(-A)=O 规定矩阵的减法为A-B=A+(-B)二 矩阵的数乘定义3 数λ与矩阵A 的乘积记作A λ或λA ,规定为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A λλλλλλλλλλ 212222111211矩阵数乘满足下列运算规律(设A,B 为n m ⨯矩阵,μλ,为数): (1) )()(A A μλλμ=; (2) A A A μλμλ+=+)( (3) B A B A λλλ+=+)(重点,难点:矩阵乘矩阵:让学生充分理解矩阵乘矩阵的定义,特别强调前面矩阵的列等于后面矩阵的行的原因.说明矩阵乘法常态下不满足消去率,通过练习提高学生的计算准确率.三 矩阵乘矩阵定义4 设A=(ij a )是一个s m ⨯矩阵,B=(ij b )是一个n s ⨯矩阵,那么矩阵A 与矩阵B 的乘积是一个n m ⨯矩阵C=(ij c ),其中),,2,1;,,2,1(12211n j m i b a b a b a b a c sk kjik sj is j i j i ij ===+++=∑=把此乘积记为 C=AB 且有=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛sj j j is i i b b b a a a 2121),,,(ij sk kj ik sj is j i j i c b a b a b a b a ==+++∑=12211例4 求矩阵A=⎪⎪⎭⎫ ⎝⎛-20121301与⎪⎪⎪⎪⎪⎭⎫⎝⎛-=4311102311014B的乘积解 C=AB=⎪⎪⎭⎫⎝⎛-20121301⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-4311102311014=⎪⎪⎭⎫⎝⎛--1199129例5 求矩阵A=⎪⎪⎭⎫⎝⎛--2142与B=⎪⎪⎭⎫ ⎝⎛--6342的乘积AB 与BA 解 AB=⎪⎪⎭⎫⎝⎛--2142⎪⎪⎭⎫ ⎝⎛--6342=⎪⎪⎭⎫ ⎝⎛--1683216 BA=⎪⎪⎭⎫⎝⎛--6342⎪⎪⎭⎫ ⎝⎛--2142=⎪⎪⎭⎫ ⎝⎛0000AB ≠ 对于两个n 阶方阵A,B,若AB=BA,称方阵A 与B 可交换从上面等式可以得出结论:若O A ≠而0)(=-Y X A 也不能得出X=Y 的结论 矩阵的乘法虽不满足交换律,满足结合律和分配律(1) (AB)C=A(BC)(2) λλλλ)()()(B A B A AB ==为数(3) A(B+C)=AB+AC(B+C)A=BA+CA对于单位矩阵E,有n m n n m n m n m m A E A A A E ⨯⨯⨯⨯==, 即:EA=AE=A特殊矩阵: 1 单位矩阵;E=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000100012 数量矩阵=E λ⎪⎪⎪⎪⎪⎭⎫⎝⎛λλλ0000003 对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nn a a a0000002211 4 ;三角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a 000022211211或⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a21222111000可以得到:)()(n n n n n E A A A E λλλ==表明纯量矩阵跟任何矩阵可交换 定义矩阵的幂为kl l k l k lk A A A A A A A A A A ====+)(,,,1121其中k 为正整数例6 证明⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-ϕϕϕϕϕϕϕϕn n n n ncos sin sin cos cos sin sin cos 证 用数学归纳法,1=n 时显然成立,设n =k 时成立,即 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-ϕϕϕϕϕϕϕϕk k k k kcos sin sin cos cos sin sin cos当1+=k n 时,有⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+ϕϕϕϕϕϕϕϕk k k k k cos sin sin cos cos sin sin cos 1⎪⎪⎭⎫⎝⎛-ϕϕϕϕcos sin sin cos =⎪⎪⎭⎫⎝⎛-+---ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕsin sin cos cos sin cos cos sin sin cos cos sin sin sin cos cos k k k k k k k k=⎪⎪⎭⎫⎝⎛+++-+ϕϕϕϕ)1cos()1sin()1sin()1cos(k k k k等式得证.四 矩阵的转置定义5 把矩阵A 的行换成同序数的列得到一个新矩阵,叫做A 的转置矩阵,记作T AA=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211.则=T A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n m m a a a a a a a a a 212221212111A 的转置也是一种运算,满足 (1) A A TT=)((2) TTTB A B A +=+)( (3) T TA A λλ=)((4) (AB)TTTA B =证明(4) 设s m ij a A ⨯=)(,B=n s ij b ⨯)(,记m n ij T T n m ij d D A B c C AB ⨯⨯====)(,)(,有∑==sk ki jkji b ac 1而TB 的第i 行为),,,(21si i i b b b ,TA 的第j 列为Tjs j a a ),,(1 ,因此∑∑====sk ki jk sk jk ki ij b a a b d 11),,2,1;,,2,1(m j n i c d jiij ===有TTTAB A B )(=例7 已知⎪⎪⎭⎫⎝⎛-=231102A ,B=⎪⎪⎪⎭⎫ ⎝⎛-102324171 求TAB )(解 因为=AB ⎪⎪⎭⎫ ⎝⎛-231102⎪⎪⎪⎭⎫⎝⎛-102324171=⎪⎪⎭⎫ ⎝⎛-1013173140所以⎪⎪⎪⎭⎫⎝⎛-=1031314170)(TAB若A 是n 阶方阵,如果满足A A T=,即),,2,1,(n j i a a ji ij ==那么A 称为对称矩阵.例 设列矩阵X=Tn x x x ),,,(21 满足1=X X T ,E 是n 阶单位阵,T XX E H 2-=,证明H 是对称矩阵,且E HH T= 证 T T TXX E H )2(-=HXX E XX E TT T =-=-=22所以H 是对称矩阵.T HH ==2H 2)2(TXX E - =TXX E 4-+))((4TTXX XX =TXX E 4-+))(4TTX X X X=T XX E 4-+TXX 4=E 五 方阵的行列式定义6 由n 阶方阵A 的元素所构成的行列式(各元素位置不变),称为方阵A 的行列式,记作A 或 A det. A 满足下列运算规律(A,B 为n 阶方阵,λ为数) (1) A A T = (2)A A n λλ=(3) B A AB =,且BA AB =例9 行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n A A A A A A A A A 212221212111 称为A 的伴随矩阵,试证E A A A AA ==**证明 设)(ij a A =,记)(ij b AA =*,则ij jn in j i j i ij A A a A a A a b δ=+++= 2211 故 )()(E A A A AA ij ij ===*δδ 类似有)())((1E A A A a AA A ij ij nk kj ki===∑=*δδ本授课单元教学手段与方法:讲授为主,练习为辅,主要让学生充分理解矩阵运算的定义,原则,从而掌握矩阵运算,并通过练习 提高学生运算的准确率.本授课单元思考题、讨论题、作业: P53:3.4(1),(2);(3),(4)本授课单元参考资料(含参考书、文献等,必要时可列出) 线性代数附册 学习辅导与习题选讲(同济第四版)注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段与方法”部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

相关文档
最新文档