线性代数第一章教案.pdf
线性代数教案同济版

线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。
教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。
教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。
1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。
教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。
教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
线性代数教案(正式打印版)

第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式,则如果将D中第一列的元素11a,21a换成常数项1b,2b,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式243122421----=D.(-14)例3. 求解方程094321112=xx(32==xx或)例4. 解线性方程组.5573422⎪⎩⎪⎨⎧=+-=++-=++-zyxzyxzyx解先计算系数行列式573411112--=D069556371210≠-=----+-=第( 2 )次课授课时间()第( 3 )次课授课时间()基本内容备注第六节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ija的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaD11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaD212222111=再证一般情形:定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211按列:()jiAaAaAanjnijiji≠=+++02211证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaD2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaa211121121211211211112110+++=).,2,1(2211niAaAaAaininiiii=+++=例1:335111243152113------=D.解:例2:21122112----=nD解: 21122112----=n D 211221100121---=+++nr r1+=n D n .从而解得 1+=n D n .例3.证明范德蒙行列式112112222121111---=n nn n nnn x x x x x x x x x D()1i j n i j x x ≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证 用归纳法因为 =-==1221211x x x x D ()21i j i j x x ≥>≥-∏ 所以,当2=n n=2时,(4)式成立.现设(4)式对1-n 时成立,要证对n 时也成立.为此,设法把nD 降阶;从第n 行开始,后行减去前行的1x 倍,有()()()()()()213112213311222221331111110000n n n n n n n n n x x x x x x x x x x x x x x x D x x x x x x x x x ---------=---(按第一列展开,并提出因子1x x i -)行列式一行(列)的各元素与另一行(列)对应第( 4 )次课授课时间()第(5)次课授课时间()基本内容备注第一节矩阵一、矩阵的定义称m行、n列的数表mnmmnnaaaaaaaaa212222111211为nm⨯矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
金迎迎线性代数电子教案first

两式相减x消 2,去 得
( a 1 a 2 1 a 2 1 a 2 ) 2 x 1 b 1 a 2 a 2 1 b 2 ; 2
类似地,消 x1,去得 ( a 1 a 2 1 a 2 1 a 2 ) 2 x 1 2 a 1 b 2 1 b 1 a 2 ,1
当 a1a 1 22 a1a 2 21 0时方, 程组的解为 x1 ab111aa2222aa1122ba221,x2aa 11a 1b 1 222 a b1 1aa 2 2211.
2 当 n4 k,4 k1时为偶排列;
当 n 4 k 2 ,4 k 3 时为奇排列.
3 2 k 1 2 k 1 2 2 k 2 3 2 k 3 k 1 k
解 2 k 1 2 k 1 2 2 k 2 3 2 k 3 k 1 k
01 1
主对角线 a11 副对角线 a21
a12 a11a22a12a21.
a 22
对于二元线性方程组 a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,.
若记
Da11 a12,
系数行列式
a21 a22
a a1 2x x 1 11 1 a a1 2x 2 x 22 2 b b1 2,. Da11 a12, a21 a22
二、全排列及其逆序数
问题 把n个不同的元素, 排共 成有 一几 列种 同的排法?
定义 把 n个不同的元素排成一列,叫做这 n个
元素的全排列(或排列).
n个不同的元素的所有排列的种数,通常
用 Pn 表示. 由引例 P33216. 同理 Pn n (n1)(n2) 321n!.
排列的逆序数
我们规定各元素之间有一个标准次序, n 个 不同的自然数,规定由小到大为标准次序.
《线性代数》教案

《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。
2. 适用对象:本教案适用于大学本科生线性代数课程的教学。
3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。
二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。
2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。
3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。
2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。
3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。
五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。
2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。
3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。
4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。
《线性代数》教案

《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数教案-线性方程组与矩阵

第一章线性方程组与矩阵
授课序号 01
教学基本指标
教学课题 教学方法 教学重点
参考教材
第一章 第一节 矩阵的概念及运算 讲授、课堂提问、讨论、启发、自学 矩阵的定义、矩阵的线性运算、矩阵的乘法、矩 阵的转置 同济版《线性代数》
课的类型 教学手段 教学难点
作业布置
新知识课 黑板多媒体结合 矩阵的乘法、矩阵的转置
kaij
.
mn
4. 矩阵的数乘运算满足的运算规律:
(1) k A B kA kB ;
(2) (k l) A kA lA ;
(3) (kl) A k(lA) l(kA) ;
(4) 1A A ;
(5) 1 A A ;
(6) 0 A Omn .
三、矩阵乘法:
1. 矩阵乘法的定义:设矩阵 A (aij ) 是一个 m p 矩阵,矩阵 B (bij ) 是一个 p n 矩阵,定义矩阵 A 与 B
的乘积是一个 m n 矩阵 C (cij ) ,其中矩阵 C (cij ) 的第 i 行第 j 列元素 cij 是由矩阵 A 的第 i 行元素
ai1, ai2, , aip 与矩阵 B 的第 j 列相应元素 b1j , b2 j , , bpj 乘积之和,即
p
cij = aikbkj ai1b1 j ai2b2 j aipbpj . k 1
a12 a22
a1n a2n
x1 x2
a11x1 a12 x2 a1n xn a21x1 a22 x2 a2n xn
.
am1
am2
amn xn
am1 x1
am2
x2
amn xn
再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示: Ax .
线性代数电子教案

3.三阶行列式定义:式的左边称为三阶行列式(3-th determinant ),通常也记为∆.在∆中,横的称为行(row ),纵的称为列(column ),其中a ij (i ,j =1,2,3)是数,称它为此行列式的第i 行第j 列的元素.式的右边称为三阶行列式的展开式.利用二阶行列式可以把展开式写成:323122211333312321123332232211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a +-= 若记 3332232211a a a a M =, 3331232112a a a a M =, 3231222113a a a a M =, 111111)1(M A +-=, 122112)1(M A +-=, 133113)1(M A +-=则有 131312121111333231232221131211A a A a A a a a a a a a a a a ++==∆ 其中 j A 1称为元素j a 1的代数余子式(algebraic complement minor)(3,2,1=j ),j M 1称为元素j a 1的余子式(complement minor),它是∆中划去元素j a 1所在的行、列后所余下的元素按原位置组成的二阶行列式.4.三元线性方程组的解法:引进了三阶行列式, 对于三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 的解就可写成: ∆∆=11x ∆∆=22x ∆∆=33x .称也为方程组(1—4)的系数行列式,它是由未知数的所有系数组成的行列式, j ∆(j =1,2,3)是将∆的第j 列换成常数列而得到的三阶行列式。
5.三阶行列式对角线法则计算法则:如图1—1.例1 计算三阶行列式312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=。
线性代数教案第一章第一节

计
(15 分钟) (3 分钟)
a 13 a 23 a 33
(2)给出一个三元线性方程组,引导学生,让学生自己用行列式的形式写出
其解的形式。
(5 分钟) (7 分钟)
(3)给出计算三阶行列式的方法(对角线法则)
a 11 a 21 a 31
a 12 a 22 a 32
简介本课程的基本情况 ↓ 由引例引出二阶行列式 ↓
教 学 过 程 示 意 图
给出二阶行列式的定义 ↓ 举例、练习 ↓ 给出三阶行列式的定义 ↓ 练习、交流 ↓ 师生总结
1 简介本ቤተ መጻሕፍቲ ባይዱ程的基本情况
(20 分钟)
(1)介绍本课程的知识结构、教学要求及重点难点。 (15 分钟) 目的是让学生对该课程有个大体的认识,学习的时候做到心中有数。 (2)提出本学期对大家的一些基本要求。 分钟) (5 2 二阶行列式的引入 (20 分钟) (1)给出一个引例:用消元法解二元一次线性方程组
山西农业大学信息学院《线性代数》教案
编 号
章 节 教学目的 课 时
第一章 行列式 第一节 二阶、三阶行列式 了解二阶、三阶行列式的定义;掌握对角线法则;掌握运用二、三阶行列式 求解二、三元线性方程组的方法。 2 学时
教学方法
讲授
教具
粉笔
黑板擦
彩色粉笔
重点:二、三阶行列式的定义;对角线法则
重点 难点
难点:对角线法则
a 13 a 23 a 33
7 举例、练习、交流、反馈 给出指导。
(30 分钟)
(1)举例,练习。给学生一定的思考时间,教师随堂检查,与学生进行交流, (2)针对发现的问题,随堂进行讲解。 8 小结 (5 分钟) (1) 用提问互动的方式,和学生共同对本节课的知识进行归纳概括。 (2)布置作业 1 引例 3 三阶行列式 3.1 定义 3.2 计算 4 练习 画图