线性代数教案第一章行列式

合集下载

考研辅导--线性代数--第1章行列式

考研辅导--线性代数--第1章行列式

第一章 行列式◆ 基础知识概要1.n 阶行列式的定义二阶行列式2112221122211211a a a a a a a a -=.三阶行列式.333231232221131211a a a a a a a a a 112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---.对角线法则:n 阶行列式的定义()1212111212122212,,,121...n nn tnj j nj j j j n n nna a a a a a D aa a a a a ⋅⋅⋅==-∑ ,它是取自不同行不同列的n 个数的乘积1212...n j j nj a a a 的代数和(共!n 项),其中各项的符号为()1t-,t 代表排列12,,,n j j j ⋅⋅⋅的逆序数,简记为()det ij a .n 阶行列式也可定义为()121212,,,1...nnt i i i n i i i D a a a ⋅⋅⋅=-∑,其中t 为行标12,,,n i i i ⋅⋅⋅排列的逆序数.例1.1 计算行列式(1)12n λλλ;(2)12nλλλ.练习:计算下列行列式(1)234134201300400; (2)111212220n nnna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(上三角形行列式);(3)11212212n n nna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅ (下三角形行列式).2. 行列式的性质与计算 2.1行列式的性质(1)行列式与其转置行列式相等;(2)互换行列式的某两行(列)得到新行列式则新行列式应反号;特别地:若行列式中有两行(列)对应元素相等,则行列式等于零; (3)行列式中某一行(列)的所有元素的公因数可以提到行列式的外面; 即以数k 乘以行列式等于用数k 乘以行列式的某一行或某一列; 特别地:若行列式中有一行(列)的元素全为零,则行列式等于零; (4)行列式中如果有某两行(列)对应元素成比例,则行列式的值为零; 特别地:比例系数为1(5)若行列式的某一列(行)的元素是两数之和,例如,第i 列的元素都是两数之和:()()()1112111212222212i i n i i nn n ni ninn a a a a a a a a a a D a a a a a '⋅⋅⋅+⋅⋅⋅'⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅+⋅⋅⋅,则D 等于如下两个行列式之和:1112111112112122222122221212i n i n i n i n n n ninnn n ninn a a a a a a a a a a a a a a a a D a a a a a a a a '⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.(6)把行列式的某一行(列)的各元素的k 倍加到另一行(列)的对应元素上,行列式的值不变.注:(1)交换行列式的第,i j 两行(或列),记作i i r r ↔(或i j c c ↔); (2)第i 行(列)提出公因子k ,记作i r k ÷(或i c k ÷);(3)以数k 乘第j 行(列)加到第i 行(列)上,记作i j r kr +(或i j c kc +).范德蒙(Vandermonde )行列式()3122222123111111231111nn i j nj i nn n n n nx x x x V x x x x x x x x x x ≤<≤----⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅∏注 右边是“大指标减小指标”.例1.2 计算行列式111311212524131122D ---=.(答:332)练习:计算行列式(1)3112513420111533D ---=---;(答:40)(2)3111131111311113D =;(答:48) (3) 1234234134124123D =;(答:160) (4)2324323631063a b c d aa b a b c a b c d D a a b a b c a b c d aa b a b c a b c d++++++=++++++++++++;(答:4a )(5)222111a ab acD ab b bc acbcc +=++;(答:2221a b c +++) (6)1234000000a x a a a x xD x x x x +-=--;(答:431i i x x a =⎛⎫+ ⎪⎝⎭∑) (7)222b c c aa b D ab c a b c +++=; (8)()()()()()()()()()()()()2222222222222222123123123123a a a a b b b b D cc c cd d d d ++++++=++++++.2.2行列式依行(列)展开余子式:ij M ,代数余子式:()1i jij ij A M +=-定理1.1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即()112211,2,,ni i i i in in ik ik k D a A a A a A a A i n ==++⋅⋅⋅+==⋅⋅⋅∑,或()112211,2,,nj j j j nj nj kj kj k D a A a A a A a A j n ==++⋅⋅⋅+==⋅⋅⋅∑.注:此定理的主要作用是——降阶.推论 行列式的任一行(列)的各元素与另一行(列)对应的代数余子式乘积之和等于零,即()112210ni j i j in jn ik jk k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑,或()112210ni j i j ni nj ki kj k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑.例1.3 用降阶的方法解例1.2.练习:用降阶的方法求解上面练习第(1)题.例1.4 设1121234134124206A --=-,求(1)12223242234A A A A -+-; (2)3132342A A A ++.解 (1)1222324212122122313241422340A A A A a A a A a A a A -+-=+++=. (2)因为ij A 的大小与元素ij a 无关,因此,313234112111214132341410322121401201120142642064206A A A -----++===-=---.练习:(1)设1234511122321462221143156,则(a )313233A A A ++=?(b )3435?A A +=(c )5152535455?A A A A A ++++=(答:0,0,0)(2)设,ij ij M A 分别为行列式3010222202001201D =--中元素ij a 的余子式和代数余子式,试求(a )31323334A A A A +++; (b )41424344M M M M +++; (c )14244432M M M -++.2.3拉普拉斯(Laplace )展开定理定义 在一个n 阶行列式D 中,任意选定k 行(比如第12,,k i i i ⋅⋅⋅行)和k 列比如12,,k j j j ⋅⋅⋅列)(k n ≤).位于这些行和列的交点上的2k 个元素按照原来的位置组成一个k 阶行列式,称为行列式D 的一个k 阶子式,记作1212k k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭,划去12,,k i i i ⋅⋅⋅行和12,,k j j j ⋅⋅⋅列后余下的元素按照原来的位置组成的n k -阶行列式,称为k 阶子式1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭的余子式,记作1212k c k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭.在余子式前面加上符号()()()12121k k i i i j j j ++⋅⋅⋅++++⋅⋅⋅+-后被称之为的代数余子式.记作()121212121s t k k c c k k i i i i i i A A j j j j j j +⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=- ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,这里1212,k k s i i i t j j j =++⋅⋅⋅+=++⋅⋅⋅+.定理1.2 在n 阶行列式D 中,任意选定k 列121k j j j n ≤<<⋅⋅⋅<≤,则12121211212k k k c i i i nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑. 类似地,任意选定k 行121k i i i n ≤<<⋅⋅⋅<≤,则12121211212k k k c j j j nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑.证 (略)注 这是定理1.2的推广,它仍然是一种——降阶的思想.例1.4 在行列式1214012110130131D -=中取定1,2行,得到6个子式1,21211,201A ⎛⎫==- ⎪-⎝⎭, 1,21121,302A ⎛⎫== ⎪⎝⎭, 1,21411,401A ⎛⎫== ⎪⎝⎭, 1,22152,312A ⎛⎫== ⎪-⎝⎭, 1,22462,411A ⎛⎫== ⎪-⎝⎭, 1,21473,421A ⎛⎫==- ⎪⎝⎭. 对应的代数余子式分别是()()()12121,213181,231c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12131,203131,311c A +++⎛⎫=-= ⎪⎝⎭, ()()()12141,201111,413c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12231,213112,301c A +++⎛⎫=-= ⎪⎝⎭, ()()()12241,211132,403c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12341,210113,401c A +++⎛⎫=-= ⎪⎝⎭. 由Laplace 展开定理可知()()()()()1823115163717D =-⨯-+⨯+⨯-+⨯+⨯-+-⨯=-.例1.5 证明111111111111111111110000k k r k kk k r k kk r rrr rkr rra a a ab b a ac c b b a a b b c c b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅. 证 由Laplace 定理展开,选定第1,2,,k ⋅⋅⋅行,得12112121,2,1,2,,k c j j j nk k k k D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑1,2,1,2,,1,2,,1,2,,c k k A A k k ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭()()()1111111212111k rk k k kk r rra ab b a a b b ++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=⋅-⋅⋅⋅⋅⋅⋅11111111k rk kk r rra ab b a a b b ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅.注 例1.5的结论可以简记为A ABC B=⋅.练习:1.计算(1)123451234512121200000000a a a a ab b b b bc cd de e ; (2)1111111111110000k kk krk kk rr rrc c a a c c a a b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.2. 设A 为n 阶方阵,A a =,B 为m 阶方阵,B b =,则23O AB O为( )(A )6ab -, (B )23n mab -, (C )()123mnn m ab -, (D )()123m nn m ab +-.◆ 行列式的计算举例例1.6 计算n 阶行列式n x a a a a x a aD a a x a a a a x=解法1112,3,2,3,(1)(1)(1)000(1)000(1)000i i C C r r ni ni nx n a a a a x n a aa a x n a x a a x a D x n a a x a x a x n a a a x x a+-==+-+-+--==+--+-- []()1(1)n x n a x a -=+--.解法212,3,11111100010000100001i r r n i n nn n a a a a a a a a xaa axaa ax aa x a aa x a a x a D aa x a a a x a x a a a a x aaa xx a -=+++----===----①如果x a =,则1110000100000100001n n a a a a D +--==--②如果x a ≠,则12,3,11100000000(1)()0000C i x anax aC n nanx ai n n a a a a x a x a D x a x a x a --+-=+++--==+--- .综合①、②有:()()11n n D x n a x a -=+--⎡⎤⎣⎦.例1.7 计算行列式1221100001000000001n nn n xx x xa a a a x a ----∆=-+.解 按第一列展开,12321100001000001n n n n x x x x a a a a xa -----∆=-+110001000(1)01000001n n xa x x +--+---()121n n n n n x a x x a a ---=∆+=∆++221n n n x a x a --=∆++== 12121n n n n x a x a x a ---∆++++又111x a x a ∆=+=+,11n n n n x a x a -∴∆=+++ .例1.8 计算2n a ba bab Dcd c dcd=.解法1 依第一行展开12200(1)00000000n n a ba b ab a b D ab cdc dcdcdd c +=+-2112(1)2(1)2(1)(1)()n n n n adD bc D ad bc D -+---=--=-,222(1)2(2)112()()()()().n n n n n n D ad bc D ad bc D a b ad bc D ad bc ad bc cd----=-=-==-=-=-解法2 利用Laplace 展开定理,选定第1行和第2n 行展开,则1221212121,21,2,,c n j j nn n D A A j j j j ≤<≤⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭∑1,21,21,21,2c n n A A n n ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭ ()()()()1212211n n n a b D c d+++-=⋅-()()21n ad bc D -=-⋅=⋅⋅⋅ 1()n ab ad bc cd-=- ().n ad bc =-练习:计算n 阶行列式(1)122222222232222n D n=;(答:()22!n --)(2)01211111001001n n a a a D a -=,其中110n a a -⋅⋅⋅≠;(答:111011n n i i a a a a --=⎛⎫⋅⋅⋅- ⎪⎝⎭∑)(3)2222212121212naa aa aDaaa a=;(答:()1nn a+)(4)()()()()111111111n nnn nnna a a na a a nDa a a n----⋅⋅⋅--⋅⋅⋅-=-⋅⋅⋅-⋅⋅⋅;(5)1231110000220000011 nn n Dn n⋅⋅⋅--⋅⋅⋅=-⋅⋅⋅⋅⋅⋅--。

《线性代数》教案完整版教案整本书全书电子教案

《线性代数》教案完整版教案整本书全书电子教案

《线性代数》 教 案编 号:教学过程:(含复习上节内容、引入新课、中间组织教学以及如何启发思维等) 导入(10分钟)本章主要内容和知识点 新授课内容(75分钟) 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。

设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得 211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和:212221a b a b -,这就是公式(2)中1x 的表达式的分子。

同理将D 中第二列的元素a 12,a 22 换成常数项b 1,b 2 ,可得到另一个行列式,用字母2D 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和:121211b a b a -,这就是公式(2)中2x 的表达式的分子。

于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中 例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得0≠D定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式 243122421----=D .(-14)例3. 解线性方程组 .55730422⎪⎩⎪⎨⎧=+-=++-=++-z y x z y x z y x解 先计算系数行列式573411112--=D 069556371210≠-=----+-=《线性代数》教案编号:n n nna =n n nna =阶行列式的等价定义为:n n nna =1:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:其中行列式mnm m nna a a a a a a a a212222111211D =为按行列式的运算规则所得到的一个数;而n m ⨯矩阵是 n m ⨯个数的整体,不对这些数作运算。

线性代数电子教案

线性代数电子教案

3.三阶行列式定义:式的左边称为三阶行列式(3-th determinant ),通常也记为∆.在∆中,横的称为行(row ),纵的称为列(column ),其中a ij (i ,j =1,2,3)是数,称它为此行列式的第i 行第j 列的元素.式的右边称为三阶行列式的展开式.利用二阶行列式可以把展开式写成:323122211333312321123332232211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a +-= 若记 3332232211a a a a M =, 3331232112a a a a M =, 3231222113a a a a M =, 111111)1(M A +-=, 122112)1(M A +-=, 133113)1(M A +-=则有 131312121111333231232221131211A a A a A a a a a a a a a a a ++==∆ 其中 j A 1称为元素j a 1的代数余子式(algebraic complement minor)(3,2,1=j ),j M 1称为元素j a 1的余子式(complement minor),它是∆中划去元素j a 1所在的行、列后所余下的元素按原位置组成的二阶行列式.4.三元线性方程组的解法:引进了三阶行列式, 对于三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 的解就可写成: ∆∆=11x ∆∆=22x ∆∆=33x .称也为方程组(1—4)的系数行列式,它是由未知数的所有系数组成的行列式, j ∆(j =1,2,3)是将∆的第j 列换成常数列而得到的三阶行列式。

5.三阶行列式对角线法则计算法则:如图1—1.例1 计算三阶行列式312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=。

线性代数教案第一章第一节

线性代数教案第一章第一节
a 11 a 21 a 31 a 12 a 22 a 32

(15 分钟) (3 分钟)
a 13 a 23 a 33
(2)给出一个三元线性方程组,引导学生,让学生自己用行列式的形式写出
其解的形式。
(5 分钟) (7 分钟)
(3)给出计算三阶行列式的方法(对角线法则)
a 11 a 21 a 31
a 12 a 22 a 32
简介本课程的基本情况 ↓ 由引例引出二阶行列式 ↓
教 学 过 程 示 意 图
给出二阶行列式的定义 ↓ 举例、练习 ↓ 给出三阶行列式的定义 ↓ 练习、交流 ↓ 师生总结
1 简介本ቤተ መጻሕፍቲ ባይዱ程的基本情况
(20 分钟)
(1)介绍本课程的知识结构、教学要求及重点难点。 (15 分钟) 目的是让学生对该课程有个大体的认识,学习的时候做到心中有数。 (2)提出本学期对大家的一些基本要求。 分钟) (5 2 二阶行列式的引入 (20 分钟) (1)给出一个引例:用消元法解二元一次线性方程组
山西农业大学信息学院《线性代数》教案
编 号
章 节 教学目的 课 时
第一章 行列式 第一节 二阶、三阶行列式 了解二阶、三阶行列式的定义;掌握对角线法则;掌握运用二、三阶行列式 求解二、三元线性方程组的方法。 2 学时
教学方法
讲授
教具
粉笔
黑板擦
彩色粉笔
重点:二、三阶行列式的定义;对角线法则
重点 难点
难点:对角线法则
a 13 a 23 a 33
7 举例、练习、交流、反馈 给出指导。
(30 分钟)
(1)举例,练习。给学生一定的思考时间,教师随堂检查,与学生进行交流, (2)针对发现的问题,随堂进行讲解。 8 小结 (5 分钟) (1) 用提问互动的方式,和学生共同对本节课的知识进行归纳概括。 (2)布置作业 1 引例 3 三阶行列式 3.1 定义 3.2 计算 4 练习 画图

线性代数-教案1章

线性代数-教案1章


2014 ~ 2015 学年第一学学 2013 级化学工程本科班 姜翠翠 助教 李振东 李金林 编《线性代数》
教研室 (实验室 ) 授 课 班 级 主 讲 教 师 职 称
使 用 教 材
六盘水师范学院教务处制
二○一五 年 三月

课 名 课 类 任 教 授 对
N ( j1 j2 jn )

a1 j1 a2 j2 anjn
称为行列式的一般项.
当 n=2、3 时,这样定义的二阶、三阶行列式与上面§1.1 中用对 角线法则定义的是一致的.当 n=1 时,一阶行列为|a11|= a11.如
a11 a 21 a31 a12 a 22 a32 a 42 a13 a14 a 23 a 24 a33 a34 a 43 a 44
其中元素 aij 的第一个下标 i 表示这个元素位于第 i 行,称为行 标,第二个下标 j 表示此元素位于第 j 列,称为列标. 我们可以从中发现以下规律: (1) 二阶行列式是 2!项的代数和,三阶行列式是 3!项的代数 和; (2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同 的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也 是取自不同的行和不同的列; (3) 每一项的符号是:当这一项中元素的行标是按自然序排列 时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号. 作为二、三阶行列式的推广我们给出 n 阶行列式的定义. 定义 1 组成的符号
教 学 重 点 及 难 点
重点:要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵的秩的 定义和计算,会利用矩阵的初等变换求解方程组及逆矩阵,向量组的线 性相关性,利用正 交变换化对称矩阵为对角型矩阵等有关知识。
注:课程类别:公共必修课、专业基础课、专业必修课、专业选修课、集中实践环节、实验课、公共选修课

线性代数 吴赣昌 教案--第一章--行列式

线性代数 吴赣昌 教案--第一章--行列式
授课年级
专业层次
授课班级
授课教师
年月日
《线性代数》教案
任课教师
授课班级
1
授课时间
教学时间安排
2学时
授课题目
(章节)
第一章行列式
第一节二阶与三阶行列式
教学目的、要求(教学目标)
⑴了解行列式的概念
⑵掌握二阶、三阶行列式的计算方法
教学重点
与难点
二阶、三阶行列式的计算
教学方式、方法与手段
讲授与练习相结合、板书与多媒体相结合
例1解方程组
例2计算三阶行列式
例3求解方程
例4解三元线性方程组
本学期要求叙述5分钟
课程介绍20分钟
理论讲解35分钟,习题选讲25分钟,练习、答疑5分钟
提问:行列式是什么?是否具有几何意义?
注:沙路法则是对角线发则的变形,仅适用于要条件.
2.求一个二次多项式 ,使
张天德线性代数习题精选精解山东科学技术出版社2009课后小结这节课介绍了行列式的性质知道了当对行列式的行或列进行了某些变换如行与列互换交换两行列位置某行列乘以某个数某行列乘以某数后加到另一行列等后变换前后两个行列式的值仍保持着线性关系们可以利用这些关系大大简化高阶行列式的计算
学年度第学期
线性代数课堂教学方案
P5 2⑵⑶3
课外阅读
资料或自主学习体系安排
1.《经济应用数学基础》编写组编,线性代数与线性规划学习指导,同心出版社,1995
2.张天德,线性代数习题精选精解,山东科学技术出版社,2009
3./special/opencourse/daishu.html,麻省理工公开课:线性代数
内容要点
一、行列式按一行(列)展开
定义1在 阶行列式 中,去掉元素 所在的第 行和第 列后,余下的 阶行列式,称为 中元素 的余子式,记为 ,再记 称 为元素 的代数余子式.

线性代数教案_第一章_行列式

线性代数教案_第一章_行列式

授课章节行列式§1.1 n阶行列式目的要求理解二阶与三阶行列式,了解全排列及其逆序数。

重点二阶与三阶行列式计算,行列式的性质,克拉默法则难点n阶行列式的计算,克拉默法则行列式的理论是人们从解线性方程组的需要中建立和发展起来的,是线性代数中的一个基本概念,它在线性代数、其他数学分支以及在自然科学的许多领域中上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件.§1 n阶行列式一、二元线性方程组与二阶行列式解方程是代数中一个基本的问题,行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.下面考察二元一次方程组(1.1)当时,由消元法知此方程组有唯一解,即(1.2)可见,方程组的解完全可由方程组中的未知数系数以及常数项表示出来,这就是一般二元线性方程组的解公式。

但这个公式很不好记忆,应用时十分不方便。

由此可想而知,多元线性方程组的解公式肯定更为复杂。

因此,我们引进新的符号来表示上述解公式,这就是行列式的起源。

1、二阶行列式:由4个数及双竖线组成的符号称为二阶行列式。

注:(1)构成:二阶行列式含有两行,两列。

横排的数构成行,纵排的数构成列。

行列式中的数()称为行列式的元素。

线性代数-行列式(完整版)

线性代数-行列式(完整版)

a11a22 a12a21
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,横 排称为行, 竖排称为列 ,
aij中i称为行标, j称为列标, aij 表示第i行第j列元素, 左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线, 例1
5 1 3 2
5 2 (1) 3 13
a21 a22 a31 a32
可以用对角线法则来记忆如下.
8
主对角线法
a11
a12
a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
a21 a22 a31 a32
9
例4 计算三阶行列式
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19

对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成 …kj… (2) 此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未 发生变化;而j与k两数构成逆序的情形有变化: 若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1) 若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
n!个) 称为一个n级排列(总数为 . 如:由1,2,3可组成的三级排列有3!=6个: 123 132 213 231 312 321 注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相
反)——构成逆序.
15
(2)排列的逆序数

定义: 在一个n 级排列i1i2…in中,若某两数的前 后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为列标,表明该元素位于第j列。

相等的行数和列数
1
2
32
12002
2
1】当λ为何值时,行列式23
D λλ
=
1222a a 12122
12222
b b a a b b ,1112212
a D a a
b D D
12
22
a a ;列标只能取1,2或2,1。

所以二阶行列式中有两项
容易看出,
1
2
n n
n n nn
a a a 阶行列式。

它是取自不同行和不同列的n 个元素的乘积
1
2
n n n n nn
a a a a a a a =
级排列求和。

行列式D 通常注:(1)行列式是一种特定的算式,最终的结果是一个数;,不要与绝对值的概念相混淆;
1
2
n n nn
a a a =的值也成立同样的结论:
111210
n nn
a a a 1,11(1)2,12
11
0(1)
n n n n n n n a a a a a ---=-)对角行列式:
00
n
λ=00
0n
λ
级排列。

由于每交换两个元素对应的行标列标都
因此为了确定每一项的符号,同样可以1
2
n n n n nn
a a a =
表明,在行列式中行与列的地位是对称的,因此凡是有关行的性质,对列也同12121
2
n k k kn l l ln n n nn
a a a a a a a a a ,122121
2
n l l ln k k kn n n nn
a a a D a a a a a a =
(1)l
k
n lj kj nj -∑
1
1(k
l
n j kj lj nj a a a =∑
行列式中有两行(或两列)元素对应相同,则此行列式为零。

12121
2
1
2
i i in i i in n n nn
n n nn
ka ka ka k a a a a a a a a a = .
1221212
1
2
1
2
12
n n n n n n n mm
n n nn
n n nn
a a c
b
c b c b b b c c c a a a a a a a a a +++=+ (强调:只拆一行,其余行不变)。

)c a
行列式中某行(或列)的元素k倍地加到另一行对应元素上,此行列式的值
【解】将第一、二行互换,第三、五行互换,得
将第一、五列互换,得
【例5】计算行列式
201
141
183
【例6】计算行列式
3
3
5
1
1
1
2
4
3
1
5
2
1
1
3
-
-
-
-
-
-
=
D
【解】
3112
5134
2011
1533
D
-
--
=
-
--
12
1312
1534
0211
5133
c c
-
--
↔-
-
--
21
41
1312
0846
50211
01627
r r
r r
-
---
-
+-
-
23
1312
0211
0846
01627
r r
-
-

--
-
32
42
1312
40211
00810
8
001015
r r
r r
-
+-
-
-
-
43
1312
0211
40
1000810
820
000
8
r r
-
-
=
-
+
当今大部分用于计算一般行列式的计算机都是按上述方法设计的. 可以证明,利用行变 换计算行列式需要进行大约32/3n 次算数运算. 任何一台现代微型计算机都可以在几分之一 秒内计算出50阶行列式的值,运算量大约为83 300次.
【例7】计算D=
3111
131111311113
【解】 方法一
原式= 14211113
111
313110202
1131113131113111
r r r r -↔-
--
3141
1
11302020
02
230228r r r r ---
-----
42
11
13
020200
2200210r r --
+---43
1113020248002
2
00012
r r --=+--
方法二:
原式=1234
16666
1111131113116
6113111311113
1113
r r r r r +++÷⨯
1
1111
0200
6480020
2,3,40002
i r r i -⨯==
【例8】 证明
【证明】把2,3列同时加到第4列上去,则得
【例9】 计算行列式
1
122330000001
1
1
1
a a a a D a a --=
-
【解】 根据行列式的特点,可将第一列加至第二列,然后将第二列加至第三列,再将第三列加至第四列,目的是使D 中的零元素增多.
1122330000001
1
1
1
a a a a D a a --=
-===1
22330
000
00
012
1
1
a a a a a -- ===1
233000
0000
01
2
3
1
a a a a -===1
212330000
0040
001
2
3
4
a a a a a a =
三、复习思考
1.x
a a a x a a
a x D n
=
答案1
[(1)]()
n x n a x a -+--
2.2n a b
a
b
a b D b a
b a b
a
=
21c c + 32c c +
43c c +
11
n i ij in n nj
nn
a a a a a a
j 列,剩下的2(1)n -个元素按原来的排法构成一个1,11,11,11,1,11,11,11,1
,1
,1
i i j i j i n i i j i j i n n n j n j nn
a a a a a a a a a a ----+-++-+++-+
cofactor )。


1
2
n
n n nn
a a a
1
0n ij n nj
nn
a a a a ,2,1行交换后换到第一行,再把D 11,1,11,,1
(1)(i j
i j i n nj
n j nn
a a a a a ------=-⋅-
21
2
000
00i in n n nn
a a a a a +
+++
++
++ 1211112111121
21
2
1
2
1
2
000000n n n i i in n n nn
n n nn
n n nn
a a a a a a a a a a a a a a a a a a a +++ 1122i i i i in in a A a A a A ++
+
1
2121
2
n i i in
i i in
n n nn
a a a a a a a a a
行的对应元素相同,可知10D =。

而1D 与D 仅第i

j 行
1
1112
n n n n n
x x x -
--=
表示全体同类因子的乘积。

即n 阶范德蒙德行列式等于
⎪⎨
+x a 121
法则,
为何值时,方程组有非零解。

相关文档
最新文档