2021年北京市高考数学压轴题总复习

合集下载

北京市高考数学压轴题汇编51题(含答案)

北京市高考数学压轴题汇编51题(含答案)

1.如图,正方体1111ABCDA B C D 中,E ,F 分别为棱1DD ,AB 上的点. 已知下列判断: ①1AC 平面1B EF ;②1B EF 在侧面11BCC B 上的正投影是面积为定值的三角形;③在平面1111A B C D 内总存在与平面1B EF 平行的直线;④平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关. 其中正确判断的个数有(A )1个 (B )2个(C )3个 (D )4个(B ) 2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是 CA. {}2B. 255⎧⎫⎨⎬⎩⎭ C. {|222}t t ≤≤ D. 2{|52}5t t ≤≤3. 如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是D(A )①② (B )②③ (C )③ (D )③④ 4. 在一个正方体1111ABCD A B C D -中,P 为正方形1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心,,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=的实数λ的值有 CA. 0个B. 1个C. 2个D. 3个5. 空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做ABCDE1A 1D 1B1C OABDCA 1D 1A 1C 1B DCB OPN MQM BA图1 图2 图3这个点到这个平面的距离.平面α,β,γ两两互相垂直,点A∈α,点A到平面β,γ的距离都是3,点P是α上的动点,且满足P到β的距离是P到点A距离的2倍,则点P到平面γ的距离的最大值是C(A)3(B)3(C)3+(D)66.已知函数)(xf的定义域为R,若存在常数0>m,对任意x∈R,有|()|||f x m x<,则称)(xf为F函数.给出下列函数:①2)(xxf=;②xxxf cossin)(+=;③1)(2++=xxxxf;④)(xf是定义在R上的奇函数,且满足对一切实数21,xx均有21212)()(xxxfxf-≤-.其中是F函数的序号为 C(A)②④(B)①③(C)③④(D)①②7.定义区间(,)a b,[,)a b,(,]a b,[,]a b的长度均为db a=-,多个区间并集的长度为各区间长度之和,例如, (1, 2)[3, 5)的长度(21)(53)3d=-+-=. 用[]x表示不超过x的最大整数,记{}[]x x x=-,其中x∈R. 设()[]{}f x x x=⋅,()1g x x=-,若用123,,d d d分别表示不等式()()f xg x>,方程()()f xg x=,不等式()()f xg x<解集区间的长度,则当02011x≤≤时,有 B(A)1231,2,2008d d d===(B)1231,1,2009d d d===(C)1233,5,2003d d d===(D)1232,3,2006d d d===8. 下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M(如图1);将线段AB围成一个圆,使两端点A、B恰好重合(从A到B是逆时针,如图2);再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1)(如图3),图3中直线AM与x轴交于点,0N n,则m的象就是n,记作f m n.则下列命题中正确的是()CA .114f ⎛⎫=⎪⎝⎭B .()f x 是奇函数C .()f x 在其定义域上单调递增D .()f x 的图象关于y 轴对称 9. 用max{}a b ,表示a ,b两个数中的最大数,设2()max{f x x =1()4x ≥,那么由函数()y f x =的图象、x 轴、直线14x =和直线2x =所围成的封闭图形的面积是A A .3512 B .5924 C .578D .911210. 对于定义域和值域均为[0,1]的函数f (x ),定义1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x -=,n =1,2,3,….满足()n f x x =的点x ∈[0,1]称为f 的n 阶周期点.设12,0,2()122,1,2x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩ 则f 的n 阶周期点的个数是C (A) 2n(B) 2(2n -1)(C) 2n(D) 2n 211. 定义在R 上的函数)(x f 满足1)4(=f ,()f x '为)(x f 的导函数,已知)('x f y =的图象如图所示,若两个正数a ,b 满足1)2(<+b a f ,则11++a b 的取值范围是( C )12.对于函数①1()45f x x x =+-,②21()log ()2f x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <.能使命题甲、乙均为真的函数的序号是D(A )① (B )② (C )①③ (D )①②13. 已知函数2()2f x x x =-,()2g x ax =+(a >0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得f (x 1)= g (x 2),则实数a 的取值范围是 DA .)31,51(B .1(,)(5,)3-∞+∞C .)5,31(D .)3,(-∞(A) 1(0,]2(B) 1[,3]2(C) (0,3] (D) [3,)+∞14.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1)]([+=x f f y 的零点个数是 A(A )4 (B )3 (C )2 (D )115. 已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为 A(A )32 (B )12(C ) 1 (D )2 16. 已知抛物线M :24yx ,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是 DA .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈ D .3[,)2r ∈+∞ 17. 设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +(A )(A )最小值为15(B(C )最大值为15(D18. 已知数列*{} ()n a nN 满足:*1log (2) ()n n a n n N +=+∈,定义使123......k a a a a ⋅⋅⋅⋅为整数的数*()k k N ∈叫做企盼数,则区间[1, 2011]内所有的企盼数的和为 . 2026 19. 在平面直角坐标系xOy 中,O 为坐标原点.定义11,P x y 、22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y .若点1,3A -,则(,)d A O = ;已知点1,0B ,点M 是直线30(0)kxykk上的动点,(,)d B M 的最小值为 . 4 32 (1)2 3 (01)k kk k ⎧+≥⎪⎨⎪+<<⎩20. 在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则坐标原点O与直线20x y +-=上一点的“折线距离”的最小值是____;圆221x y +=上一点与直线20x y +-=上一点的“折线距离”的最小值是____.,25 21. 已知函数2)1ln()(x x a x f -+=,在区间)1,0(内任取两个实数,p q ,且q p ≠,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围是 .[15,)+∞22. 定义方程()()f x f x '=的实数根x 0叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .γ>α>β23.将全体正奇数排成一个三角形数阵: 1 3 5 7 9 11 13 15 17 19 ……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .24.已知函数399)(+=x x x f ,则(0)(1)f f += ,若112()()k S f f k k-=+31()()(2,k f f k k kk-+++≥∈Z),则1k S -= (用含有k 的代数式表示).1,12k - 25.已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1135,2n n n nn n k k a a a a a a +++⎧⎪=⎨⎪⎩为奇数为偶数.其中为使为奇数的正整数,, 当111a =时,100a =______;若存在*m ∈N ,当n m >且n a 为奇数时,n a 恒为常数p ,则p 的值为______.62;1或526.已知数列{}n a ,满足:123451,2,3,4,5a a a a a =====,且当5n ≥时,1121n n a a a a +=-,若数列{}n b 满足对任意*n ∈N ,有2221212n n n b a a a a a a =----,则5b = ;当5n ≥时,=n b .65 n -7027.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R , 12n =,,.①当0λ=时,20a =_____;②若存在正整数m ,当n m >时总有0n a <,则λ的取值范围是_____.120;(21,2),k k k -∈*N 28.函数)0(2>=x x y 的图象在点2(,)n n a a 处的切线与x 轴交点的横坐标为1n a +,n N *∈,若161=a ,则=+53a a ,数列{}n a 的通项公式为 .5, 52n-29.对任意x ∈R ,函数()f x 满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = .3430. 如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 . (2,4); 331.已知函数sin ()x f x x=(1)判断下列三个命题的真假:①()f x 是偶函数;②()1f x < ;③当32x π=时,()f x 取得极小值. 其中真命题有____________________;(写出所有真命题的序号) (2)满足()()666n n f f πππ<+的正整数n 的最小值为___________.①② , 9 32.如图所示,∠AOB =1rad ,点A l ,A 2,…在OA 上,点B 1,B 2,…在OB 上,其中的每一个实线段和虚线段的长均为1个长度单位,一个动点M 从O 点出发,沿着实线段和以O 为圆心的圆弧匀速运动,速度为l 长度单位/秒,则质点M 到达A 3点处所需要的时间为__ACP BD秒,质点M 到达A n 点处所需要的时间为__秒.6,(1),2(3),2n n n n a n n n +⎧⎪⎪=⎨+⎪⎪⎩为奇数,为偶数.33.已知函数2()(1)1f x ax b x b =+++-,且(0, 3)a ∈,则对于任意 的b ∈R ,函数()()F x f x x =-总有两个不同的零点的概率是 .1334. 对于各数互不相等的整数数组),,,,(321n i i i i (n 是不小于3的正整数),对于任意的,{1,2,3,,}p q n ∈,当q p <时有q p i i >,则称p i ,q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于 ;若数组123(,,,,)n i i i i 中的逆序数为n ,则数组11(,,,)n n i i i -中的逆序数为 .4;232n n -35. 已知集合},,,{21n a a a A =中的元素都是正整数,且n a a a <<< 21,对任意的,,A y x ∈且x y ≠,有25xyy x ≥-. (Ⅰ)求证:251111-≥-n a a n ; (Ⅱ)求证:9≤n ;(Ⅲ)对于9=n ,试给出一个满足条件的集合A . (Ⅰ) 证明:依题意有)1,,2,1(2511-=≥-++n i a a a a i i i i ,又n a a a <<< 21, 因此)1,,2,1(2511-=≥-++n i a a a a i i i i . OA 1A 2 A 3 A 4B 1 B 2 B 3 B 4 AB可得)1,,2,1(251111-=≥-+n i a a i i . 所以12231111111111125i i n n n a a a a a a a a +---+-+-++-≥. 即251111-≥-n a a n . …………………4分 (Ⅱ)证明:由(Ⅰ)可得25111->n a . 又11≥a ,可得2511->n ,因此26<n . 同理2511i n a a n i -≥-,可知251i n a i ->. 又i a i ≥,可得251in i ->, 所以)1,,2,1(25)(-=<-n i i n i 均成立. 当10≥n 时,取5=i ,则25)5(5)(≥-=-n i n i , 可知10<n .又当9≤n 时,25)2()2()(22<=-+≤-ni n i i n i . 所以9≤n . …………………9分(Ⅲ)解:对于任意n j i ≤<≤1,j i i a a a ≤<+1,由)1,,2,1(251111-=≥-+n i a a i i 可知, 25111111≥-≥-+i i j i a a a a ,即25j i j i a a a a ≥-. 因此,只需对n i <≤1,251111≥-+i i a a 成立即可. 因为251211≥-;2513121≥-;2514131≥-;2515141≥-, 因此可设11=a ;22=a ;33=a ;44=a ;55=a . 由2511165≥-a a ,可得4256≥a ,取76=a . 由2511176≥-a a ,可得181757≥a ,取107=a .由2511187≥-a a ,可得3508≥a ,取208=a . 由2511198≥-a a ,可得1009≥a ,取1009=a . 所以满足条件的一个集合{}100,20,10,7,5,4,3,2,1=A .……………14分 36. 已知集合{}1,2,3,,2A n =*()n N ∈.对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对于S 中的任意一对元素12,s s ,都有12s s m -≠,则称S 具有性质P.(Ⅰ)当10n =时,试判断集合{}9B x A x =∈>和{}*31,C x A x k k N =∈=-∈是否具有性质P ?并说明理由.(Ⅱ)若1000n =时① 若集合S 具有性质P ,那么集合{}2001T x x S =-∈是否一定具有性质P ?并说明理由;②若集合S 具有性质P ,求集合S 中元素个数的最大值. 解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =,{}{}910,11,12,,19,20B x A x =∈>=不具有性质P ....................................1分 因为对任意不大于10的正整数m ,都可以找到该集合中两个元素110b =与210b m =+,使得12b b m -=成立................2分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ................................................3分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠. .....................................................................4分 (Ⅱ)当1000n =时,则{}1,2,3,,1999,2000A =①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P ....................5分 首先因为{}2001T x x S =-∈,任取02001,t x T =-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2000}x ∈,从而0120012000x ≤-≤,即,t A ∈所以T A ⊆. ...........................6分 由S 具有性质P ,可知存在不大于1000的正整数m , 使得对S 中的任意一对元素12,s s ,都有12s s m -≠. 对于上述正整数m ,从集合{}2001T x x S =-∈中任取一对元素11222001,2001t x t x =-=-,其中12,x x S ∈, 则有1212t t x x m -=-≠,所以集合{}2001T x x S =-∈具有性质P . .............................8分 ②设集合S 有k 个元素.由第①问知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P .任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000, 所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000,不妨设S 中有t 2k t ⎛⎫≥ ⎪⎝⎭个元素12,,,t b b b 不超过1000.由集合S 具有性质P ,可知存在正整数1000m ≤, 使得对S 中任意两个元素12,s s ,都有12s s m -≠, 所以一定有12,,,t b m b m b m S +++∉.又100010002000i b m +≤+=,故12,,,t b m b m b m A +++∈,即集合A 中至少有t 个元素不在子集S 中, 因此2k k +≤2000k t +≤,所以20002kk +≤,得1333k ≤, 当{}1,2,,665,666,1334,,1999,2000S =时,取667m =,则易知对集合S 中任意两个元素12,y y , 都有12||667y y -≠,即集合S 具有性质P ,而此时集合S中有1333个元素.因此集合S 元素个数的最大值是1333. .....................................14分 37. 已知函数2()1f x x=+,数列{}n a 中,1a a =,1()n n a f a +=*()n ∈N .当a 取不同的值时,得到不同的数列{}n a ,如当1a =时,得到无穷数列1,3,53,115,…;当2a =时,得到常数列2,2,2,…;当2a =-时,得到有穷数列2-,0.(Ⅰ)若30a =,求a 的值;(Ⅱ)设数列{}n b 满足12b =-,1()n n b f b +=*()n ∈N .求证:不论a 取{}n b 中的任何数,都可以得到一个有穷数列{}n a ;(Ⅲ)若当2n ≥时,都有533n a <<,求a 的取值范围. 解:(Ⅰ)因为 30a =,且3221a a =+, 所以22a =-.同理可得123a =-,即23a =-. ………………………3分(Ⅱ)证明:假设a 为数列{}n b 中的第*()i i ∈N 项,即1i a a b ==;则211()()i i a f a f b b -===; 3212()()i i a f a f b b --===;………121()()2i i a f a f b b -====-;12()10i i ia f a a +==+=, 即1()(2)0i i a f a f +==-=。

2021.1北京高三数学期末分类汇编-新定义压轴题(含参考答案)

2021.1北京高三数学期末分类汇编-新定义压轴题(含参考答案)
均不构成等差数列,求 p 的最大值;
(Ⅲ)设数列{an} 为等比数列,公比为 q ,项数为 N (N ≥3) .判定数列{an} 是否存在长 度为 3 的递增子列:1,16,81?若存在,求出 N 的最小值;若不存在,说明理由穷数列.给出两个性质: ①对于{an} 中任意两项 ai , a j (i > j) ,在{an} 中都存在一项 am ,使得 2ai − a j = am ; ②对于{an} 中任意项 an (n 3) ,在{an} 中都存在两项 ak ,al (k > l) ,使得= an 2ak − al . (Ⅰ)若= an 2= n (n 1, 2,) ,判断数列{an} 是否满足性质①,说明理由; (Ⅱ)若= an n= (n 1, 2,) ,判断数列{an} 是否同时满足性质①和性质②,说明理由; (Ⅲ)若{an} 是递增数列, a1 = 0 ,且同时满足性质①和性质②,证明:{an} 为等差数列.
(Ⅱ)对于任意“ 5 阶非负数表” A ,记 R(s) 为 A 的第 s 行各数之和(1 ≤ s ≤ 5),证明:存
在 {i, j, k}⊆ {1,2,3,4,5},使得 R(i) + R( j) + R(k) ≥ 3 ;
(Ⅲ)当 n = 2k(k ∈ N*) 时,证明:对与任意“ n 阶非负数表” A ,均存在 k 行 k 列,使得 这 k 行 k 列交叉处的 k 2 个数之和不小于 k .
设{an*} 的前 n 项和为 Sn* .
(Ⅰ)设 an
=
n 2n
,写出 a1* , a2* , a3* , a4* ;
(Ⅱ)证明:“对任意 n ∈ N* ,有= Sn* an+1 − a1 ”的充要条件是“对任意 n ∈ N* ,有 | an+1 − an |= 1 ”;

2021年高考数学高考数学压轴题 立体几何多选题分类精编附答案

2021年高考数学高考数学压轴题 立体几何多选题分类精编附答案

2021年高考数学高考数学压轴题 立体几何多选题分类精编附答案一、立体几何多选题1.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 所成角的正弦值的最大值为153015【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:22|||sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α2215301515=, 故D 正确故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.2.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故225OD OG GD =+=,由矩形的性质知:152OB OE OF OB ====,令四棱锥1D BB FE -的外接球半径为R ,则5R =,所以四棱锥1D BB FE -的外接球体积为354356V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.3.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确. 因为在直角三角1BA C 中,122A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱,其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.4.在长方体1111ABCD A B C D -中,AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=,14λ=,此时113313022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误;113AC A R =,则4234,,33R ⎛⎫ ⎪ ⎪⎝⎭,14232,,33D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.5.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则A B '===≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()113f λ⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.6.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为2B .侧棱与底面所成的角为4πC D .侧棱与底面所成的角为3π 【答案】AB 【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a⨯'=- 令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB 【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.7.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D .直线C 1P 与平面A 1C 1D 6 【答案】ABD【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D 6. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1,∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1,∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D ,∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1),设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n ,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为: 11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解;(2)、用空间向量坐标公式求解.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确.对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为62【答案】BCD【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62. 【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E平面11ABB A BE =. 平面1BFD E 平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD【分析】 A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

2021-2023北京高考真题数学汇编:压轴选择(第10题)

2021-2023北京高考真题数学汇编:压轴选择(第10题)

证明:当 n = 1 时, a1 − 6 =−3 ≤ −3 ,此时不等关系 an ≤ 3 成立;
设当 n = k 时, ak − 6 ≤ −3 成立,

ak +1

6
=
1 4
( ak

6)3

−54, −
27 4
,故
ak +1

6

−3
成立,
由数学归纳法可得 an ≤ 3 成立.
而 an+1 − a=n
2021-2023 北京高考真题数学汇编
压轴选择(第 10 题)
一、单选题
1.(2023·北京·统考高考真题)已知数列{an} 满足 an+1=
1 4
(
an

6)3
+
6(n=
1, 2,3,) ,则(

A.当 a1 = 3时,{an} 为递减数列,且存在常数 M ≤ 0 ,使得 an > M 恒成立
B.当 a1 = 5 时,{an} 为递增数列,且存在常数 M ≤ 6 ,使得 an < M 恒成立
1 4
x3

9 2
x2
+
26x

47 (
x

3)
,判断得
an+1
<
an
−1,
进而取 m = −[M ] + 4 推得 an > M 不恒成立;对于 B,证明 an 所在区间同时证得后续结论;对于 C,记
m0
log3
2 log1
(M
− 6)
+ 1
,取=m
[m0 ] +1推得 an > M 不恒成立;对于 D,构造

2021年北京市高考数学总复习:数列

2021年北京市高考数学总复习:数列
a7﹣a2=10,即5d=10,即d=2,
a1,a6,a21依次成等比数列,可得
a62=a1a21,即(a1+10)2=a1(a1+40),
解得a1=5,
则an=5+2(n﹣1)=2n+3;
(2) ( ),
即有前n项和为Sn ( )
( ) ,
数列{bn}的前n项和Sn .
3.已知等比数列{an}的前n项和为Sn,且a1=m,an+1=Sn+1(n∈N*).
(1)求{an}和{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
【解答】解:(1)设公差为d的等差数列{bn}满足b1=1,b2+b5=b8,
则b1+d+b1+4d=b1+7d,解得d ,
所以 .
数列{an}前n项和为Sn且2a1=a2=2,且b2Sn+1+b5Sn﹣1=b8Sn,
整理得 ,
6.已知正项等比数列{an}中,a1,2a2,a3+6成等差数列,且a42=4a1a5.
(1)求数列{an}的通项公式;
(2)若Sn是数列{an}的前n项和,设bn ,求数列{bn}的前n项和Tn.
【解答】解:(1)设公比为q的正项等比数列{an}中,a1,2a2,a3+6成等差数列,且a42=4a1a5.
=(101+102+…+10n)+2×(1+2+…+n)﹣1×n
2 n
(10n﹣1)+n2.
2.已知数列{an}为等差数列,a7﹣a2=10,且a1,a6,a21依次成等比数列.
(1)求数列{an}的通项公式;

北京高考数学压轴题试题集锦(含详细解析)

北京高考数学压轴题试题集锦(含详细解析)

北京高考数学压轴题试题集锦第1讲 真题分析【例1】 (2007北京理)已知集合{}12(2)k A a a a k =,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ; (II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.(I )解:集合{}0123,,,不具有性质P . 集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,, {}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个.因为0A ∉,所以()(12)i i a a T i k ∉=,,,,; 又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12)j i a a T i j k ∉=,,,,,. 从而,集合T 中元素的个数最多为21(1)()22k k k k --=,即(1)2k k n -≤. (III )解:m n =,证明如下:(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从()a b b T +∈,.如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤, 由(1)(2)可知,m n =.【例2】 (2009北京文)设数列{}n a 的通项公式为(,0)n a pn q n N p *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(Ⅰ)若11,23p q ==-,求3b ; (Ⅰ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅰ)是否存在,p q 使得32()m b m m N *=+∈?如果存在,求,p q 的取值范围;如果不存在,请说明理由.本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、分类讨论等数学思想方法.本题是数列与不等式综合的较难层次题.(Ⅰ)由题意,得1123n a n =-, 解11323n -≥,得203n ≥. Ⅰ11323n -≥成立的所有n 中的最小正整数为7,即37b =. (Ⅰ)由题意,得21n a n =-, 对于正整数m ,由n a m ≥,得12m n +≥. 根据m b 的定义可知当21m k =-时,()*m b k k N =∈; 当2m k =时,()*1m b k k N =+∈.Ⅰ()()1221321242m m m b b b b b b b b b -+++=+++++++()()1232341m m =++++++++++⎡⎤⎣⎦()()213222m m m m m m ++=+=+. (Ⅰ)假设存在p 和q 满足条件,由不等式pn q m +≥及0p >得m qn p-≥. Ⅰ32()m b m m N *=+∈,根据m b 的定义可知,对于任意的正整数m 都有3132m qm m p-+<≤+, 即()231p q p m p q --≤-<--对任意的正整数m 都成立. 当310p ->(或310p -<)时,得31p q m p +<--(或231p qm p +≤--),这与上述结论矛盾!当310p -=,即13p =时,得21033q q --≤<--,解得2133q -≤<-.(经检验符合题意) Ⅰ 存在p 和q ,使得32()m b m m N *=+∈;p 和q 的取值范围分别是13p =,2133q -≤<-. 【例3】 (2009北京理)已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅰ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅰ)证明:当5n =时,12345,,,,a a a a a 成等比数列.本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分类讨论等数学思想方法.本题是数列与不等式的综合题,属于较难层次题.(Ⅰ)由于34⨯与43均不属于数集{}1,3,4,Ⅰ该数集不具有性质P. 由于66123612,13,16,23,,,,,,231236⨯⨯⨯⨯都属于数集{}1,2,3,6,Ⅰ该数集具有性质P. (Ⅰ)Ⅰ{}12,,n A a a a =具有性质P ,Ⅰn n a a 与nna a 中至少有一个属于A , 由于121n a a a ≤<<<,Ⅰn n n a a a >,故n n a a A ∉.从而1nna A a =∈,Ⅰ11a = Ⅰ121n a a a =<<<, Ⅰk n n a a a >,故()2,3,,k n a a A k n ∉=.由A 具有性质P 可知()1,2,3,,nka A k n a ∈=.又Ⅰ121n nn nn n a a a a a a a a -<<<<, Ⅰ121121,,,n nn n n n n n a a a aa a a a a a a a --====, 从而121121n nn nn n n n a a a a a a a a a a a a --++++=++++,Ⅰ1211112nn na a a a a a a ---+++=+++. (Ⅰ)由(Ⅰ)知,当5n =时,有552343,a a a a a a ==,即25243a a a a ==,Ⅰ1251a a a =<<<,Ⅰ34245a a a a a >=,Ⅰ34a a A ∉,由A 具有性质P 可知43a A a ∈. 由2243a a a =,得3423a a A a a =∈,且3321a a a <<,Ⅰ34232a aa a a ==, Ⅰ534224321a a a a a a a a a ====, 即12345,,,,a a a a a 是首项为1,公比为2a 成等比数列.【例4】 (2010北京理)已知集合12{|(,,),{0,1},1,2,,}(2)n n i S X X x x x x i n n ==∈=≥…,…对于12(,,,)n A a a a =…,12(,,,)n n B b b b S =∈…,定义A 与B 的差为 1122(||,||,||);n n A B a b a b a b -=---…A 与B 之间的距离为=1(,)||i i i d A B a b =-∑(Ⅰ)证明:,,,n n A B C S A B S ∀∈-∈有,且(,)(,)d A C B C d A B --=; (Ⅰ)证明:,,,(,),(,),(,)n A B C S d A B d A C d B C ∀∈三个数中至少有一个是偶数 (Ⅰ) 设P n S ⊆,P 中有m (m ≥2)个元素,记P 中所有两元素间距离的平均值为()P d,证明:()P d≤2(1)mnm -.证明:(I )设12(,,...,)n A a a a =,12(,,...,)n B b b b =,12(,,...,)n C c c c =n S ∈因为i a ,{}0,1i b ∈,所以{}0,1i i a b -∈,(1,2,...,)i n = 从而1122(||,||,...,||)n n n A B a b a b a b S -=---∈ 又1(,)||||||niiiii d A C B C a c b c =--=---∑由题意知i a ,i b ,i c {}0,1∈(1,2,...,)i n =. 当0i c =时,|||||||||i i i i i i a c b c a b ---=-;当1i c =时,|||||||(1)(1)|||i i i i i i i i a c b c a b a b ---=---=- 所以1(,)||(,)niii d A C B C a b d A B =--=-=∑(II)设12(,,...,)n A a a a =,12(,,...,)n B b b b =,12(,,...,)n C c c c =n S ∈(,)d A B k =,(,)d A C l =,(,)d B C h =.记(0,0,...,0)n O S =∈,由(I )可知(,)(,)(,)d A B d A A B A d O B A k =--=-= (,)(,)(,)d A C d A A C A d O C A l =--=-=(,)(,)d B C d B A C A h =--=所以||(1,2,...,)i i b a i n -=中1的个数为k ,||(1,2,...,)i i c a i n -=的1的个数为l 。

北京高考数学压轴题

北京高考数学压轴题

【例1】如果存在常数a使得数列{}n a满足:若x是数列{}n a中的一项,则a x-也是数列{}n a中的一项,称数列{}n a为“兑换数列”,常数a是它的“兑换系数”.(1)若数列:1,2,4,(4)m m>是“兑换系数”为a的“兑换数列”,求m和a的值;(2)已知有穷..等差数列{}nb的项数是00(3)n n≥,所有项之和是B,求证:数列{}n b是“兑换数列”,并用n和B表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列{}n c,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.压轴题【例2】 已知集合121{|(,,),{0,1},1,2,,}(2)n n S X X x x x x i n n ==∈=≥…,…对于12(,,,)n A a a a =…,12(,,,)n n B b b b S =∈…,定义A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---…; A 与B 之间的距离为111(,)||i d A B a b -=-∑(Ⅰ)证明:,,,n n A B C S A B S ∀∈-∈有,且(,)(,)d A C B C d A B --=;(Ⅱ)证明:,,(,)(,)(,)n A B C S d A B d A C d B C ∀∈,,,三个数中至少有一个是偶数(Ⅲ) 设n P S ⊆,P 中有(2)m m …个元素,记P 中所有两元素间距离的平均值为()d P .【例3】 已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ; (II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.【例4】 设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到 的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.1 2 3 7-2-1122221212a a a a a a a a ------【例5】 若12(0n n i A a a a a == 或1,1,2,,)i n = ,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a - 记为1()n R A ;将排列112n n n a a a a -- 记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =- ,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=- ,则称n A 为最佳排列. (Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.【例6】 设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由; (Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.。

高考数学压轴题精选精编附详细解答试题

高考数学压轴题精选精编附详细解答试题

2021年高考数学压轴题精选精编附详细解答1、〔本小题满分是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点,过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF 是1OA 和2OA 的等比中项;〔5分〕(Ⅲ) 对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。

〔5分〕2、〔本小题满分是14分〕设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+ 〔Ⅰ〕求)0(f ;〔2分〕(Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n an a a a a a a T b b b S b n ,试比拟S n 与 n T 的大小.〔7分〕3、〔此题满分是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P 在第一象限),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下图). 〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S =-⋅∠求直线l 的方程.4、〔此题满分是14分〕数列{}n a 的前n项和nS 满足11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比拟n a 与n b 的大小,并加以证明;〔III 〕是否存在圆心在x 轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?说明理由.5、(本小题满分是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕.6、(本小题满分是14分)数列{}n a 的前n 项和为S n *()n N ∈,点〔a n ,S n 〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 合适条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++ (4分)8、〔本小题满分是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. 〔Ⅰ〕假设b =2,且h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(7分) 〔Ⅱ〕设函数f (x )的图象C 1与函数g (x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. (7分)9、〔本小题满分是14分〕设抛物线214C y mx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P . 〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假如弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题满分是14分〕〔Ⅰ〕函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;〔Ⅱ〕证明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,ka a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明: 当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、本小题满分是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程;〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题满分是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式; 〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假如存在,求出实数a 的值;假如不存在,请说明理由.13、〔小题满分是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年北京市高考数学压轴题总复习
1.若方程f (x )=x 有实数根x 0,则称x 0为函数f (x )的一个不动点.已知函数f (x )=
e x ﹣lnx +(a +1)x ﹣alnx (e 为自然对数的底数)a ∈R .
(1)当a ≥0时f (x )是否存在不动点?并证明你的结论;
(2)若a =﹣e ,求证f (x )有唯一不动点.
【解答】解:(1)当a ≥0时f (x )不存在不动点,
证明:由f (x )=x 可得,
e x x +ax −alnx =0, 令F (x )=e x x +ax −alnx ,x >0,
则F ′(x )=xe x −e x x 2+a −a x =(x−1)(e x +ax)x 2
, 当x ∈(0,1)时,F ′(x )<0,函数单调递减,当x ∈(1,+∞)时,F ′(x )>0,函数单调递增,
故当x =1时,函数取得最小值F (1)=a +e >0
故方程,e x x +ax −alnx =0没有实数根,即f (x )不存在不动点;
(2)当a =﹣e 时,F (x )=e x x
−ex +elnx , 则F′(x)=(x−1)(e x −ex)x 2
, 令g (x )=e x ﹣ex 则g ′(x )=e x ﹣e ,
当x ∈(0,1)时,g ′(x )<0,函数单调递减,当x ∈(1,+∞)时,g ′(x )>0,函数单调递增,
故g (x )≥g (1)=0,
当x ∈(0,1)时,F ′(x )<0,函数单调递减,当x ∈(1,+∞)时,F ′(x )>0,函数单调递增,
故当x =1时,函数取得最小值F (1)=a +e =0,
所以e x x −ex +elnx =0有唯一的实数根1,
故f (x )有唯一的不动点.
2.已知抛物线y 2=2px (p >0)经过点(3,2√3),点A ,B ,C 为抛物线上不同的三点,F
为抛物线的焦点,且满足FA →+FB →+FC →=0→
,过点C 作y 轴的垂线且垂足为M . (Ⅰ)若直线AB ,FM 的斜率都存在,求证:k AB •k FM 为定值;
(Ⅱ)已知直线AB 过点(﹣1,0),抛物线上任意一点N (异于点A ,B ),直线NA ,NB 分别交直线x =1交于P ,Q 两点,O 为坐标原点,求证:OP →•OQ →
为定值.
【解答】解:(Ⅰ)依题意有(2√3)2=6p ,解得p =2,
所以抛物线的方程为y 2=4x ,
所以焦点F (1,0),
设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),M (0,y 3),
由FA →+FB →+FC →=0→,得x 1+x 2=3﹣x 3,y 1+y 2=﹣y 3,
又因为{y 12=4x 1y 22=4x 2
, 两式相减得,(y 1+y 2)(y 1+y 2)=4(x 1﹣x 2),
k AB =
y 1−y 2x 1−x 2=4y 1+y 2=−4y 3, k FM =0−y 31−0=−y 3, 所以k AB •k FM =4,
即k AB •k FM 为定值.
(Ⅱ)证明:设点N (x 0,y 0),A (x 1,y 1),B (x 2,y 2),
由{y 02=4x 0y 12=4x 1
,得y 0−y 1x 0−x 1=4y 0+y 1, 则直线l NA :y ﹣y 0=4y 0+y 1
(x ﹣x 0), 即(y 0+y 1)y =4x +y 0y 1,
其与x =1的交点P (1,y 0y 1+4
y 0+y 1),
同理直线l NB 与直线x =1的交点Q (1,
y 0y 2+4
y 0+y 2), 所以OP →⋅OQ →=1+y 0y 1+4y 0+y 1+y 0y 2+4y 0+y 2
=1+y 02y 1y 2+4y 0(y 1+y 2)+16y 02+y 0(y 1+y 2)+y 1y 2① 设直线AB 的方程为y =k (x +1),
联立{y 2=4x y =k(x +1)
,消y 整理得k 2x 2+(2k 2﹣4)x +k 2=0, 则x 1x 2=1,y 1y 2=√16x 1x 2=4,
代入①得1+4y 02+4y 0(y 1+y 2)+16y 02+y 0(y 1+y 2)+4
=1+4=5, 所以OP →•OQ →为定值.。

相关文档
最新文档