初三数学复习卷1

合集下载

初三数学第一章试卷含答案

初三数学第一章试卷含答案

一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. -3.14B. 0C. √2D. 1/22. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -33. 如果a和b是相反数,那么()A. a+b=0B. a-b=0C. ab=0D. a/b=04. 下列各数中,不是正数的是()A. 0.001B. -1/3C. 3.5D. 2.7185. 下列各数中,不是有理数的是()A. 0.333...B. 1/2C. √9D. 2.5二、填空题(每题4分,共20分)6. 有理数-5的相反数是______。

7. 有理数2/3的倒数是______。

8. 0的绝对值是______。

9. 如果|a|=5,那么a可以是______或______。

10. 有理数-7/4的绝对值是______。

三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)-3 + 4 - 2(2)2/5 - 1/10 + 3/2(3)-7 - (-2) + 312. (10分)判断下列各数是否为有理数,并说明理由:(1)π(2)√-1(3)0.1010010001...13. (10分)已知a和b是相反数,且|a|=5,求a和b的值。

四、应用题(每题10分,共20分)14. (10分)小明有5元,小红有8元,他们共同买了一本书,共花费了13元,求这本书的价格。

15. (10分)一个数的3倍与这个数的4倍的和是60,求这个数。

答案:一、选择题1. C2. B3. A4. B5. C二、填空题6. 57. 2/38. 09. -5,510. 7/4三、解答题11.(1)-3 + 4 - 2 = -1(2)2/5 - 1/10 + 3/2 = 1 3/10(3)-7 - (-2) + 3 = -212.(1)π不是有理数,因为它不能表示为两个整数的比。

(2)√-1不是有理数,因为它不能表示为两个整数的比。

初三模拟试卷一数学

初三模拟试卷一数学

一、选择题(每题4分,共40分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. -0.52. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 84. 下列各式中,能被3整除的是()A. 24B. 25C. 26D. 275. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形7. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²8. 下列各式中,表示圆的周长的式子是()A. S = πr²B. C = πdC. A = πr²D. V = πr³9. 若a² + b² = 100,a - b = 6,则ab的值为()A. 14B. 16C. 18D. 2010. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = x²D. y = k/x(k≠0)二、填空题(每题4分,共40分)11. 若a = -3,则a² - 2a + 1的值为__________。

12. 已知x + y = 5,xy = 6,则x² + y²的值为__________。

13. 在直角坐标系中,点A(2,3)到原点O的距离是__________。

14. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的体积是__________cm³。

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 已知函数f(x) = 2x + 3,那么f(3)的值为多少?A. 9B. 11C. 12D. 153. 在直角坐标系中,点A(2, -3)关于x轴的对称点坐标为?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 225. 已知一个圆的半径为5cm,那么这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为补角。

()2. 任何数乘以0都等于0。

()3. 在直角三角形中,斜边是最长的一边。

()4. 若一个等差数列的公差为0,则这个数列的所有项都相等。

()5. 任何数乘以-1都等于这个数的相反数。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。

2. 已知函数f(x) = 3x 5,那么f(4)的值为______。

3. 在直角坐标系中,点B(-3, 4)关于原点的对称点坐标为______。

4. 若一个等差数列的首项为2,公差为3,那么第7项的值为______。

5. 已知一个圆的直径为10cm,那么这个圆的周长为______cm。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等差数列和等比数列的区别。

3. 请说明圆的面积公式。

4. 请简述函数的概念。

5. 请解释直角坐标系中点的坐标表示。

五、应用题(每题2分,共10分)1. 一个长方形的长为10cm,宽为5cm,求这个长方形的面积。

初三数学总复习试卷附答案

初三数学总复习试卷附答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. 0.1010010001…2. 若a > b,则下列不等式中错误的是()A. a + 2 > b + 2B. a - 3 < b - 3C. 2a > 2bD. -a < -b3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 + 2x + 1D. y = 2x^2 - 4x + 34. 下列各式中,能被4整除的是()A. 32B. 36C. 40D. 425. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°6. 已知一元二次方程x^2 - 4x + 3 = 0,则它的两个根分别是()A. 1和3B. 2和2C. 1和2D. 3和17. 若平行四边形ABCD的对角线AC和BD相交于点O,则下列结论正确的是()A. OA = OCB. OB = ODC. OA = OBD. OC = OD8. 下列图形中,中心对称图形是()A. 等腰三角形B. 平行四边形C. 矩形D. 菱形9. 若x + y = 5,xy = 6,则x^2 + y^2的值为()A. 19B. 21C. 23D. 2510. 下列函数中,是偶函数的是()A. y = x^2 - 1B. y = x^3C. y = |x|D. y = x^2 + x二、填空题(每题5分,共20分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为________。

12. 若等腰三角形底边长为6,腰长为8,则其周长为________。

13. 若x = -2,则代数式x^2 - 4x + 4的值为________。

14. 若a、b、c是等差数列,且a + b + c = 18,则a + c的值为________。

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。

初三数学复习试卷

初三数学复习试卷

初三数学复习试卷一.选择题1. 若两圆的半径分别是4cm 和5cm ,圆心距为9cm ,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离2. 若关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a 的值等于( ) A. -1 B.0 C.1 D. 1或者-13. 某汽车销售公司2007年盈利1500万元,2009年盈利2160万元,从2007年到2009年,每年盈利的年增长率相同,设每年盈利的年增长率为x ,根据题意列方程正确的是( ) A. 2160)1(15002=+x B. 2160150015002=+x x C .216015002=xD. 2160)1(1500)1(15002=+++x x4.从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有( )A、1张 B、2张 C、3张 D、4张5 )ABCD6.如图所示,PA 、PB 切O e 于点A 、B ,70P ∠= , 则ACB ∠=( )A.15 B.40 C.75 D.55 7.式子x 21x -++有意义的条件是( )A 、2x 1≤≤B 、12-≤≤-xC 、2x 1≤≤-D 、1x -≤8、同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是( )A .16B .19C .112D .11369.如图,AB 是⊙O 的直径,以AB 为一边作等边ABC ∆,AC 、BC 边分别交⊙O 于点E 、F ,连接 AF ,若2=AB ,则图中阴影部分的面积为( ) A. 4334-π B. 2332-π C.233-πD.433-π10.一元二次方程( 1 – k )x 2 – 2 x – 1 = 0有两个不相等的实数根,则k 的取值范围是( )A 、k > 2B 、k < 2C 、k < 2且k ≠1 D、k > 2且k ≠1 二.填空题11、16= ,方程x 2=25的根是12、某药品原来售价96元,连续两次降价后的售价为54元,则平均每次降价的百分率是 。

中考数学复习《多边形》专题练习(含答案)(1)

中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。

初三考试数学试卷及答案

一、选择题(每题5分,共30分)1. 下列选项中,不是有理数的是:A. -3B. 0.5C. √2D. -π2. 如果a > b,那么下列不等式中正确的是:A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是:A. 16cmB. 24cmC. 32cmD. 40cm4. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 3/xD. y = x² + 15. 在直角坐标系中,点A(-2,3)关于y轴的对称点是:A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)二、填空题(每题5分,共20分)6. 计算:-3 × (-4) + 5 ÷ (-1) = _______7. 如果x² - 4x + 4 = 0,那么x的值是 _______8. 一个数加上它的倒数等于3,这个数是 _______9. 在等差数列中,首项为2,公差为3,那么第10项是 _______10. 若∠ABC是等腰三角形ABC的底角,且∠ABC = 40°,则∠BAC的度数是_______三、解答题(每题20分,共80分)11. (1)已知一元二次方程x² - 5x + 6 = 0,求该方程的解。

(2)如果上述方程的解为x₁和x₂,那么x₁ + x₂和x₁x₂的值分别是多少?12. (1)已知等腰三角形ABC的底边AB=8cm,腰AC=BC=10cm,求三角形ABC的面积。

(2)如果将等腰三角形ABC沿高AD剪开,得到两个直角三角形,求这两个直角三角形的面积。

13. (1)画出函数y = -2x + 3的图像,并找出该直线与x轴和y轴的交点坐标。

(2)如果直线y = -2x + 3与抛物线y = x² - 4x + 3相交,求交点的坐标。

(word完整版)九年级数学总复习试卷及参考答案

九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。

九年级数学苏科版上册第1单元复习《单元测试》01 练习试题试卷 含答案

苏科九年级上单元测试第1单元班级________姓名________一.选择题1.用配方法解方程x2﹣8x+2=0,则方程可变形为()A.(x﹣4)2=5B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=82已知x=1是方程x2+m=0的一个根,则m的值是()A.﹣1B.1C.﹣2D.23.方程x2+ax+7=0和x2﹣7x﹣a=0有一个公共根,则a的值是()A.9B.8C.7D.64.关于x的一元二次方程有两个实数根,那么实数k的取值范围是()A. B.且 C.且 D.5.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.06.若关于x的一元二次方程(a+2)x2﹣3ax+a﹣2=0的常数项为0,则a的值为()A.0B.﹣2C.2D.37.用配方法解方程x2+10x+9=0,变形后的结果正确的是()A.(x+10)2=9B.(x+10)2=16C.(x+5)2=9D.(x+5)2=168.x=是下列哪个一元二次方程的根()A.2x2+3x+1=0B.2x2﹣3x+1=0C.2x2+3x﹣1=0D.2x2﹣3x﹣1=09.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣201910.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=2400二.填空题(共11小题,每小题3分,共计33分)11.已知关于x的一元二次方程x2﹣x+a=0有一个根是x=2,则a=.12.设a ,b 是一个直角三角形两条直角边的长,且2222()(1)6a b a b ++-=,则这个直角三角形的斜边长为_________.13.若一元二次方程220mx x ++=有两个相等的实数根,则m =______.14.如图,在宽为4m 、长为6m 的长方形花坛上铺设两条同样宽的石子路,余下部分种植花卉.若种植花卉的面积215m ,则铺设的石子路的宽应为_________m .15.已知方程221321x xx x ++=+,如果设21x y x =+,那么原方程可以变形为关于y 的整式方程是__________.16.方程x 2﹣4x +4=5的根是.17.关于x 的方程(a ﹣3)x 2+x +10=0是一元二次方程,则a 的取值范围是.18.用公式法解方程2x 2﹣7x +1=0,其中b 2﹣4ac =,x 1=,x 2=.19.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x +8=0的解,则此三角形的周长是.20.已知一周长为11的等腰三角形(非等边三角形)的三边长分别为a 、b 、5,且a 、b 是关于x 的一元二次方程x 2﹣6x +k +2=0的两个根,则k 的值为.21.x =0是关于x 的方程(k ﹣1)x 2+6x +k 2﹣k =0的根,则k 的值是.三.解答题(共8小题,共计57分)22.当m 是何值时,关于x 的方程(m 2+2)x 2+(m ﹣1)x ﹣4=3x 2(1)是一元二次方程;(2)是一元一次方程;(3)若x =﹣2是它的一个根,求m 的值.23.(2y ﹣3)2﹣64=0.24.求4x 2﹣25=0中x 的值.25.(1)(y ﹣1)2﹣4=0(2)(配方法)2x 2﹣5x +2=0.26某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x 元,则x 为多少元时商品每月的利润可达到4000元.27.一块长30cm ,宽12cm 的矩形铁皮,(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm 2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.参考答案一.选择题(共10小题,每小题3分,共计30分)1.C.2.A.3.B4.C5.A.6.C.7.D.8.C.9.C.10.A.二.填空题(共11小题,每小题3分,共计33分)11.20231213.±14.115.12.16.x 1=2+;x2=2﹣.17.a≥﹣3且a≠3.18.41,,.19.13.20.3或7.21.1或0.三.解答题(共8小题,共计57分)22.解:原方程可化为(m2﹣1)x2+(m﹣1)x﹣4=0,(1)当m2﹣1≠0,即m≠±1时,是一元二次方程;(2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;(3)x=﹣2时,原方程化为:2m2﹣m﹣3=0,解得,m1=,m2=﹣1.23.解:方程整理得:(2y﹣3)2=64,开方得:2y﹣3=8或2y﹣3=﹣8,解得:y=5.5或y=﹣2.524.解:移项,得4x2=25,系数化为1,得x2=,开平方,得x=±.25.解:(1)移项得:(y﹣1)2=4,开方得:y﹣1=±2,解得:y1=3,y2=﹣1.(2),,,,∴,x2=2.26解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.27解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144.(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴盒子的体积=104×2=208(cm3).答:能折出底面积为104cm2的有盖盒子,盒子的体积为208m3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1(2010年上海市初中数学教学质量抽样分析试卷)班级: 姓名: 学号: 成绩: 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中,正确的是( ) (A )562432=+; (B )3327=÷; (C )632333=⨯;(D )3)3(2-=-.2.已知点Q 与点P (3,-2)关于x 轴对称,那么点Q 的坐标为( ) (A )(-3,2);(B )(-3,-2);(C )(3,2); (D )(3,-2).3.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43 那么这组数据的中位数和众数分别为( ) (A )40,40;(B )41,40;(C )40,41; (D )41,41.4.下列事件是必然事件的是( ) (A )明天要下雨;(B )打开电视机,正在直播足球比赛;(C )抛掷一枚正方体骰子,掷得的点数不会小于1; (D )买一张体育彩票,一定会中一等奖.5.正方形具有的性质中,菱形不一定具有的性质是( ) (A )对角线相等;(B )对角线互相垂直; (C )对角线互相平分;(D )对角线平分一组对角.6.在矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,如果设折痕为EF ,那么重叠部分△AEF 的面积等于( ) (A )873; (B )875; (C )1673; (D )1675. 二、填空题:(本大题共12题,每题4分,满分48分)7.计算:3131-⋅aa = .8.已知某种感冒病毒的直径是0.00000012米,那么这个数可用科学记数法表示为 米.9.如果方程02=+-m mx x 有两个相等的实数根,那么m 的值等于 . 10.函数52-=x x y 的定义域是 .A B(第6题图)1.已知点A (m ,2)在双曲线xy 2-=上,那么m = . 12.如果将抛物线y =x 2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是 .13.某地区为了解初中学生数学学习兴趣程度的情况,从全地区20000名初中学生中随机抽取了部分学生进行问卷调查,调查情况如图所示.那么估计全地区初中学生对数学学习感兴趣的学生人数约为 人.14.已知平行四边形ABCD 的面积为4,O 为两条对角线的交点,那么△AOB 的面积是 .15.已知扇形的圆心角为120°,半径为2cm ,那么扇形的面积是 cm 2.16.在△ABC 中,E 、F 分别是边AB 和AC 的中点,a AB =,b AC =,那么向量用向量a 和b 表示为 .17.为了测量楼房BC 的高度,在距离楼房30米的A 处,测得楼顶B 的仰角为α,那么楼房BC 的高为 .18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:的人的年龄是 岁.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122622--++÷----x xx x x x x x ,其中321-=x .20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+<+≤+-,2235,3)3(2x x x x 并在数轴上把解集表示出来.21.(本题满分10分,其中每小题各5分)已知:如图,⊙O 1与⊙O 2相交于点A 和点B ,AC ∥O 1O 2,交⊙O 1于点C ,⊙O 1的半径为5,⊙O 2的半径为13,AB =6.(第13题图)1)弦AC 的长度;(2)四边形ACO 1O 2的面积.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)某市为鼓励市民节约用水和加强对节水的管理,制定了每月每户用水的收费标准:①当用水量不超过8立方米时,每立方米收费0.8元,并加收每立方米0.2元的污水处理费;②当用水量超过8立方米时,则在①的基础上,超过8立方米的部分,每立方米收费1.6元,并加收每立方米0.4元的污水处理费.设某户一个月的用水量为x 立方米,应交水费y 元.(1)当某户一个月的用水量超过8立方米时,求y 关于x 的函数解析式,并写出函数定义域;(2)如果某户今年4月份应交水费为28元,求该户4月份的用水量为多少立方米?23.(本题满分12分,其中每小题各6分)已知:如图,在等边三角形ABC 中,点D 、E 分别在边AB 、BC 的延长线上,且AD =BE ,联结AE 、CD .(1)求证:△CBD ≌△ACE ;(2)如果AB =3cm ,那么△CBD 经过怎样的图形运动后,能与△ACE 重合?请写出你的具体方案(可以选择的图形运动是指:平移、旋转、翻折).24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,已知二次函数212y x b x c =++的图像经过点A (4,0)和点B (3,-2),点C 是函数图像与y 轴的公共点.过点C 作直线CE //AB .(1)求这个二次函数的解析式; (2)求直线CE 的表达式;(3)如果点D 在直线CE 上,且四边形ABCD 是等腰梯形,求点D 的坐标.AB D CE(第23题图)(第24题图)O 1O 2 ABC(第21题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知在△ABC 中,∠A =45°,AB =7,34tanB ,动点P 、D 分别在射线AB 、AC 上,且∠DPA =∠ACB ,设AP =x ,△PCD 的面积为y .(1)求△ABC 的面积;(2)如图,当动点P 、D 分别在边AB 、AC 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果△PCD 是以PD 为腰的等腰三角形,求线段AP 的长.CAPD(第25题第(2)小题图)一、选择题:1.B ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D . 二、填空题:7.1; 8.71.210-⨯; 9.0或4; 10.x >5; 11.-1; 12.2(4)2y x =+-; 13.6000;14.1; 15.43π; 16.a b 2121-; 17.30tan α; 18.72. 三、解答题: 19.解:原式=221)2)(1()3)(2(--++⋅-+-+x xx x x x x x ………………………………………………(3分)=322x xx x ----………………………………………………………………(2分) =32x --.………………………………………………………………………(2分)当2x ==3分) 20.解:⎩⎨⎧+<+≤+-.123102,362x x x x ………………………………………………………………(2分)⎩⎨⎧<-≤.2,93x x …………………………………………………………………………(2分) 得⎩⎨⎧->≤.2,3x x …………………………………………………………………………(2分)∴不等式组的解集是-2<x ≤3.………………………………………………(2分) 数轴表示正确.……………………………………………………………………(2分)21.解:(1)作O 1H ⊥AC ,垂足为点H ,那么可得AH =CH .…………………………(2分)∵⊙O 1与⊙O 2相交于点A 和点B ,∴O 1O 2垂直平分AB ,记垂足为D .……(1分) 由题意,可证得四边形ADO 1H 是矩形.又由AB =6,可得O 1H =AB 21=3.………………………………………………(1分) ∵O 1C =5,∴CH =4.∴AC =8.…………………………………………………(1分) (2)在Rt △ADO 2中,AO 2=13,AD =3,∴DO 2=2.…………………………(1分) 而DO 1=AH =4,∴O 1O 2=6.……………………………………………………(1分)∴梯形ACO 1O 2的面积是213)68(21=⨯+=S .………………………………(3分) 22.解:(1))4.06.1)(8()2.08.0(8+-++⨯=x y ,……………………………………(3分)82-=x y .……………………………………………(2分)定义域为x >8.……………………………………………………………………(1分) (2)当该户今年4月份应交水费为28元时,说明该户用水量已超过8立方米, ∴2882=-x .……………………………………………………………………(2分) 解得x =18.………………………………………………………………………(1分) 答:该户4月份的用水量为18立方米.………………………………………(1分) 23.(1)证明:在等边三角形ABC 中,∵AD =BE ,AB =BC ,∴BD =CE .………………………………………………(2分) 又∵∠ABC =∠ACB =60°,∴∠CBD =∠ACE .………………………………(2分) ∵CB =AC ,∴△ACE ≌△CBD .…………………………………………………(2分)(2)方法一:绕正三角形的中心逆时针旋转120°.………………………………(6分) (注:如果运用此种方法,那么讲清旋转中心“正三角形的中心”,得3分;讲清“逆时针旋转120°”,得3分)方法二:绕点C 逆时针旋转120°,再沿CA 方向平移3cm .………………(6分) 方法三:绕点B 逆时针旋转120°,再沿BC 方向平移3cm .………………(6分) 方法四:绕点A 逆时针旋转60°,再绕点C 逆时针旋转60°.……………(6分)(注:不管经过几次运动,只要正确都可得分.如果分两次运动得到,那么讲清每一种运动均可得3分:如果讲出旋转,那么得1分,如果讲清方向和旋转角的大小,那么得2分;如果讲出平移,那么得1分,如果讲清平移的方向和距离,那么得2分)24.解:(1)∵二次函数212y x b x c =++的图像经过点A (4,0)和点B (3,-2),∴⎪⎩⎪⎨⎧++=-++=.3292,480c b c b ………………………………………………………………(1分) 解得⎪⎩⎪⎨⎧-=-=.2,23c b ……………………………………………………………………(1分)∴所求二次函数的解析式为223212--=x x y .………………………………(1分) (2)直线AB 的表达式为82-=x y .…………………………………………(2分) ∵CE //AB ,∴设直线CE 的表达式为m x y +=2.……………………………(1分) 又∵直线CE 经过点C (0,-2),∴直线CE 的表达式为22-=x y .………(1分)(3)设点D 的坐标为(x ,2x -2).………………………………………………(1分) ∵四边形ABCD 是等腰梯形,∴AD =BC ,即3)22()4(22=-+-x x .…(1分)解得5111=x ,12=x (不符合题意,舍去).…………………………………(2分) ∴点D 的坐标为(511,512).…………………………………………………(1分)25.解:(1)作CH ⊥AB ,垂足为点H .设CH =m .∵34tan =B ,∴m BH 43=.……………………………………………………(1分) ∵∠A =45°,∴AH =CH =m .743=+m m .…………………………………………………………………(1分) ∴m =4.……………………………………………………………………………(1分) ∴△ABC 的面积等于144721=⨯⨯.……………………………………………(1分) (2)∵AH =CH =4,∴24=AC .∵∠DPA =∠ACB ,∠A =∠A ,∴△ADP ∽△ABC .……………………………(1分) ∴AC APAB AD =,即24724x CD =-. ∴24732x CD -=.………………………………………………………………(1分)作PE ⊥AC ,垂足为点E . ∵∠A =45°,AP =x ,∴2x PE =.……………………………………………(1分)∴所求的函数解析式为22473221x x y ⋅-⋅=,即x x y 21672+-=.…………(1分) 定义域为7320<<x .……………………………………………………………(1分) (3)由△ADP ∽△ABC ,得AC APBC PD =,即245x PD =. ∴245x PD =.…………………………………………………………………(1分)∵△PCD 是以PD 为腰的等腰三角形,∴有PD =CD 或PD =PC .(i )当点D 在边AC 上时, ∵∠PDC 是钝角,只有PD =CD . ∴24732245x x -=.解得38=x .………………………………………………………………………(1分) (ii )当点D 在边AC 的延长线上时,24327-=x CD ,224)4(+-=x PC .………………………………………(1分)如果PD =CD ,那么24327245-=x x .x =16.………………………………………………………………………(1分) 如果PD =PC ,那么224)4(245+-=x x .解得321=x ,7322=x (不符合题意,舍去).………………………………(1分) 综上所述,AP 的长为38,或16,或32.。

相关文档
最新文档