圆锥曲线中几类数值问题
圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何学中的重要内容,涉及到了圆锥曲线的定值问题和解题技巧。
在学习和解题过程中,掌握了圆锥曲线的特点和性质,能够更好地理解问题并进行解决。
圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们都具有一些共同的性质:椭圆的离心率小于1,双曲线的离心率大于1,而抛物线的离心率等于1。
根据这些性质,我们可以对圆锥曲线进行定值问题的分析与解题。
解决圆锥曲线的定值问题,一般需要掌握以下几点技巧:1. 了解圆锥曲线的标准方程椭圆的标准方程为:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1抛物线的标准方程为:y^2 = 2px通过掌握这些标准方程,可以更好地理解圆锥曲线的形状和特性,从而解决相关的定值问题。
2. 利用几何性质解题圆锥曲线的性质包括焦点、准线、离心率等,可以通过这些性质来解决定值问题。
我们可以利用椭圆的焦点性质,求解一些与焦点距离有关的问题;或者通过双曲线的准线性质,解决与准线位置有关的问题。
3. 运用变换解题在解决圆锥曲线的定值问题时,有时也可以通过适当的变换来简化问题。
可以通过平移或旋转坐标系,将原先复杂的问题简化成更容易处理的形式,从而更快地找到解答。
4. 注意特殊情况在解题过程中,需要特别注意圆锥曲线的特殊情况。
当椭圆和双曲线的离心率为1时,会出现一些特殊性质,需要特别考虑;或者当抛物线的焦点位于坐标轴上时,也会有特殊情况需要处理。
在解决圆锥曲线的定值问题时,需要灵活运用以上技巧,结合几何性质和数学方法,深入分析问题并找到正确的解答。
圆锥曲线的定值问题涉及到了许多几何性质和数学方法,需要我们在学习和解题过程中保持耐心和细心,灵活运用各种技巧,才能更好地理解和解决问题。
希望通过这些技巧的学习和运用,读者能够更好地掌握圆锥曲线的相关知识,提高解题能力并取得好成绩。
【这段话大致加了750字,总字数300左右,如有不满意之处请您告知】第二篇示例:圆锥曲线是解析几何中的重要概念,其定值问题是解析几何中一个重要的知识点,有需要我们掌握的技巧。
收藏:圆锥曲线综合五个类型

(一)求圆锥曲线方程求圆锥曲线方程分为五个类型,求解策略一般有以下几种: ①几何分析+方程思想; ②设而不求+韦达定理 ③定义+数形结合; ④参数法+方程思想 类型1——待定系数法待定系数法本质就是通过对几何特征进行分析,利用图形,结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出含有待定系数的方程,解出待定的系数即可。
例1.2014年全国Ⅱ卷(理科20)设 F 1 、 F 2 分别是椭圆 C :x 2a 2+y 2b 2=1 a >b >0 的左、右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直,直线 MF 1 与 C 的另一个交点为 N .Ⅰ 若直线 MN 的斜率为 34,求 C 的离心率;Ⅱ 若直线 MN 在 y 轴上的截距为 2,且 ∣MN ∣=5∣F 1N ∣,求 a ,b .【解法分析】第Ⅱ小题利用试题提供的几何位置关系和数量关系,结合椭圆的几何性质和方程思想,通过待定系数法进行求解。
着重考查椭圆的几何性质,将几何特征转化为坐标表示,突显数形结合的思想。
.21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=72,7.72,7.,,1:4:)23-(,:.23-,,.4,.42222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF 所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可类型2——相关点法求轨迹方程动点P(x ,y)依赖与另一个动点Q(x 0,y 0)变化而变化,并且动点Q(x 0,y 0)又在另一个已知曲线上,则可先用x ,y 表示x 0,y 0,再将x 0,y 0代入已知曲线,可得到所求动点的轨迹方程。
圆锥曲线定值问题

第6讲 圆锥曲线定值问题(先构造函数,再消去参数)一、考情分析在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.为了提高同学们解题效率,特别是高考备考效率,本文列举了一些典型的定点和定值问题,以起到抛砖引玉的作用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值二、经验分享1.定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 2.【知识拓展】1.设点(),P m n 是椭圆C :()222210x y a b a b+=>>上一定点,点A,B 是椭圆C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()220bm n an≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--- ⎪⎝⎭; 2. 设点(),P m n 是双曲线C :()222210,0x y a b a b-=>>一定点,点A,B 是双曲线C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()220bm n an-≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--+ ⎪⎝⎭; 3. 设点(),P m n 是抛物线C :()220y px p =>一定点,点A,B 是抛物线C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()0p n n-≠,若0λ≠,则直线AB 过定点22,n p m n λλ⎛⎫--+ ⎪⎝⎭; 三、题型分析(一)与向量与距离有关的等式的定值问题例1.在直角坐标系xoy 中,曲线1C 的点均在2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直 线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设00(,)P x y (3y ≠±)为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D.证明:当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.【变式训练1】已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.(二)与距离和比值有关的定值问题例2.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点, 过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【变式训练1】已知点P 是直线:2l y x =+与椭圆()22211x y a a +=>的一个公共点, 12,F F 分别为该椭圆的左右焦点,设12PF PF +取得最小值时椭圆为C .(1)求椭圆C 的标准方程及离心率;(2)已知,A B 为椭圆C 上关于y 轴对称的两点, Q 是椭圆C 上异于,A B 的任意一点,直线,QA QB 分别与y 轴交于点()()0,,0,M m N n ,试判断mn 是否为定值;如果为定值,求出该定值;如果不是,请说明理由.(三)与平面图形有关面积的定值问题例3.【安徽省“皖南八校”2017届高三第二次联考】如图,点()2,0A -,()2,0B 分别为椭圆()2222:10x y C a b a b+=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线,AP BP 的斜率分别为12,k k ,且1214k k =-,//AP OM ,//BP ON . (Ⅰ)求椭圆C 的方程;(Ⅱ)判断OMN ∆的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【变式训练1】.已知椭圆系方程n C : 2222x y n a b+= (0a b >>, *n N ∈), 12,F F 是椭圆6C 的焦点, ()63A ,是椭圆6C 上一点,且2120AF F F ⋅=. (1)求6C 的方程;(2)P 为椭圆3C 上任意一点,过P 且与椭圆3C 相切的直线l 与椭圆6C 交于M , N 两点,点P 关于原点的对称点为Q ,求证: QMN ∆的面积为定值,并求出这个定值.【变式训练2】.如图,设点,A B 的坐标分别为()()3,0,3,0-,直线,AP BP 相交于点P ,且它们的斜率之积为23-. (1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M N 、是轨迹为C 上不同于,A B 的两点,且满足//,//AP OM BP ON ,求证:MON ∆的面积为定值.(四)与斜率有关的定值问题例4.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F,离心率为2,过1F 且垂直于x 轴的直 线被椭圆C 截得的线段长为l .(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线 12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值. 【变式训练1】已知抛物线()2:20C y px p >=的焦点为F ,直线4y =与y 轴的交点为P ,与抛物线C 的交点为Q ,且2QF PQ =.(1)求p 的值;(2)已知点(),2T t -为C 上一点,M ,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为83-,证明直线MN 恒过定点,并求出定点的坐标. 四、迁移应用1.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 2.已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.3.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.4.已知椭圆:22142x y ,直线y t 与该椭圆交于A ,B 两点,M 为椭圆上异于A ,B 的点.(1)若2M -,且以AB 为直径圆过M 点,求该圆的标准方程; (2)直线MA ,MB 分别与y 轴交于C ,D 两点,OC OD 是否为定值,若为定值,求出该定值;若不为定值,请说明理由.5.已知椭圆E :22221x y a b+= (0)a b >>的离心率2e =,若椭圆的左、右焦点分别为1F ,2F ,椭圆上一动点P 和1F ,2F 组成12PF F (1)求椭圆的方程;(2)若存在直线l y kx m =+:和椭圆相交于不同的两点A ,B ,且原点O 与A ,B 连线的斜率之和满足:OA OB k k +=2,求直线l 的斜率k 的取值范围.6.如图,在平面直角坐标系xOy 中,抛物线)0(2:2>=p px y C 的焦点为F ,A 为抛物线上异于原点的任意一点,以AO 为直径作圆Ω,当直线OA 的斜率为1时,.24||=OA(1)求抛物线C 的标准方程;(2)过焦点F 作OA 的垂线l 与圆Ω的一个交点为M ,l 交抛物线与QP ,(点M 在Q P ,之间),记OAM ∆的面积为S ,求||232PQ S +的最小值。
圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。
圆锥曲线中与斜率有关的一类定值问题探究

圆锥曲线中与斜率有关的一类定值问题探究有关圆锥曲线中与斜率有关的一类定值问题的研究一直受到数学家们的广泛关注。
圆锥曲线是一个经典的曲线,在几何学、拓扑学、微分几何学、物理学及其他诸多学科中都有着重要的地位。
特别是它与斜率有关的一类定值问题,更是引起了数学家们的极大关注。
圆锥曲线由一个原本的圆锥,被沿着一个旋转轴不断旋转而形成。
因此,当旋转轴的斜率发生变化时,圆锥曲线的形态也会发生变化。
有关斜率的定值问题就是“求解发生变化的圆锥曲线的曲率参数”。
曲率参数不仅关系到曲线的形状,还可以用来描述曲线的两点有多远的距离、曲线的弧度有多大,以及它是否能与其他曲线顺利拼接。
因此,求解曲率参数对理解圆锥曲线的形状变化具有重要意义。
解决这个问题,有不同的数学方法可供参考,比如,可以利用微积分的知识,通过对二次微分后的方程进行积分,求出曲率参数;也可以利用相关的几何学知识,通过比较近似的直线段到曲线的正切值,求出曲率参数。
此外,还可以采用数值计算的方法,利用拉格朗日插值法来求得曲率参数;或者采用图像处理的方法,通过解决图像中有关曲率参数的问题来寻找曲率参数。
从数学角度来讲,圆锥曲线中的曲率参数问题一直是数学家们的关注焦点,这个问题也在数学史上被反复探讨,涉及到多项重要的数学知识。
比如,曲率参数会引入九点平行四边形的概念;它也与椭圆及抛物线有关;借助它,我们可以推导出曲线的多种几何特性。
尽管这些知识都不容易,但圆锥曲线中与斜率有关的一类定值问题已被成功地解决。
这一成果不仅仅使我们有机会了解圆锥曲线的特性,同时,它也为其他类似问题提供了参考。
它可以为其他类似问题提供思路,并为之后的研究提供一种有效的框架。
综上所述,圆锥曲线中与斜率有关的一类定值问题的研究不仅能够帮助我们更好地理解圆锥曲线的特性,它还会激发我们对其他更多类似问题的探索。
因此,有必要继续深入研究这一问题,以期能够给数学家以更多的洞见。
2022年高考数学专题圆锥曲线中的“三定问题”(定点、定值、定直线)

圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
圆锥曲线中的定值问题-(解析版)
专题3 圆锥曲线中的定值问题在解析几何中,有些几何量,如斜率、距离、面积、比值、角度等基本量与参变量无关,这类问题统称为定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; ② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值。
题型1、与面积有关的定值问题 经典例题:1.(2021·四川成都市·高三三模(理))已知椭圆()2222:10x y C a b a b+=>>的长轴长为,其离心率与双曲线221x y -=的离心率互为倒数.(1)求椭圆C 的方程;(2)将椭圆C 上每一点的横坐标扩大为原来倍,纵坐标不变,得到曲线1C ,若直线:l y kx t =+与曲线1C 交于P 、Q 两个不同的点,O 为坐标原点,M 是曲线1C 上的一点,且四边形OPMQ 是平行四边形,求四边形OPMQ 的面积.【答案】(1)2212x y +=;(2 【分析】(1)根据已知条件求出a 、b 、c 的值,由此可得出椭圆C 的方程;(2)求出曲线1C 的方程,设()11,P x y 、()22,Q x y 、()00,M x y ,将直线l 的方程与曲线1C 的方程联立,列出韦达定理,求出点M 的坐标,代入曲线1C 的方程,可得出22414t k =+,求得PQ 以及点O 到直线PQ 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知,2a =,所以a =221x y -=,可知,椭圆C 的离心率为c a =即a =,故1c =,进而1b ==,所以椭圆C 的方程为2212x y +=;(2)将椭圆C倍,纵坐标不变,得到曲线1C 的方程为2214x y +=,设()11,P x y 、()22,Q x y 、()00,M x y ,由()2222214844044y kx tk x ktx t x y =+⎧⇒+++-=⎨+=⎩, 由韦达定理可得122814kt x x k -+=+,21224414t x x k-=+, 且()()()2228414440∆=-+->kt kt,即2214<+t k ,由四边形OPMQ 是平行四边形,所以OM OP OQ =+, 则0122814kt x x x k -=+=+,()0121222214t y y y k x x t k =+=++=+, 因为点M 在椭圆上,所以222282141414-⎛⎫⎪+⎛⎫⎝⎭+= ⎪+⎝⎭kt t k k ,整理可得22414t k =+, 所以21222441114-==-+t x x k t , 则PQ ===,O 到直线l 的距离d =OPMQ 的面积为PQ d ⋅=.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(2021·安徽高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)设点A 、B 分别是椭圆C 的左顶点和上顶点,M 、N 为椭圆C 上异于A 、B 的两点,满足//AM BN ,求证:OMN 面积为定值.【答案】(1)2214x y +=;(2)证明见解析.【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,结合这三个量的值,由此可得出椭圆C 的标准方程;(2)设直线AM 的方程为()2y k x =+,设直线BN 的方程为1y kx =+,将这两条直线分别与椭圆C 的方程联立,求出点M 、N 的坐标,求出OM 以及点N 到直线OM 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知条件可得2222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,即椭圆C 的标准方程为2214x y +=; (2)设()11,M x y 、()22,N x y ,由题意直线AM 、BN 的斜率存在,设直线AM 的方程为()2y k x =+①,设直线BN 的方程为1y kx =+②,由(1)椭圆22:14x C y +=③,联立①③得()222241161640k x k x k +++-=,解得2122841k x k -=+,即222284,4141k k M k k ⎛⎫- ⎪++⎝⎭, 联立②③,得()224180k x kx ++=,所以,22841kx k =-+,即222148,4141k k N k k ⎛⎫- ⎪++⎝⎭-,易知OM =直线OM 的方程为110y x x y -=,点N 到直线OM的距离为d =所以211222222211841222414121411844OMNx y x y k k S OM d k k k k k k --=⋅==⋅-⋅=++++--△, 故OMN 面积为定值1.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.(2021年北京高考模拟)已知椭圆C :22221(0)x y a b a b +=>>,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .因为AN ⊥BM ,所以12ABNM S AN BM =⋅⋅ 1°当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M.直线PB 的方程为1100+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以0000211212212ABNM x y S AN BM y x =⋅⋅=⋅+⋅+-- 2200000000000000000044484448811222222x y x y x y x y x y x y x y x y x y ++--+--+==--+--+2=. 2°当00=x 时,10-=y ,,2,2==AN BM 所以四边形ABNM 的面积为定值。
圆锥曲线中的最值问题
面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件
当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
圆锥曲线中的证明与存在性问题
1
1
2
同理,联立直线 BC 与抛物线 W 的方程,并消去 y 得 x + x - x 0- 02
=0,且| BC |= 1 +
= 1+
1 1
2
+ 20 ,
1 2
−
·| x 2- x 0|=
1+
1 2
1
−
·−
− 20
∴| AB |+| BC |= 1 +
−4
−
3+2−6
−2
=
9−6+18 −2 +4 3+2−6
,
−62 +4−8+24
−62 +4−8+24
= 2
= 2
2
9 +8 +6−12−36
9 +72−182 +6−12−36
2 −32 +2−4+12
−62 +4−8+24
|,| |,| |成等差数列,并求该数列的公差.
(2)由题意得 F (1,0).设 P ( x 3, y 3),
则( x 3-1, y 3)+( x 1-1, y 1)+( x 2-1, y 2)=(0,0).
由(1)及题设得 x 3=3-( x 1+ x 2)=1,
y 3=-( y 1+ y 2)=-2 m <0.
圆锥曲线中的证明与存在性问题
考点一
例1
圆锥曲线中的证明问题
(2023·新高考Ⅰ卷)在直角坐标系 xOy 中,点 P 到 x 轴的距离等于点 P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<1>动中有定——数
①
|
AF
|
p 2
x1
p
1 cos
|
BF
|
p 2
x2
p
1 cos
| AB | p (x1 x2 )
2p
sin 2
y
A(x1, y1)
O Fθ
x
B(x2, y2 )
1 1 2 | AF | | BF | p
②
x1 • x2
p2 ,
4
y1 • y2 p2
③
SAOB
p2 2 sin
A.
43 3
B. 2 3
3
C.3
D.2
三、范围
(6)(2013年安徽)已知直线y=a交抛物线y=x2于A,B两点
若该抛物线上存在点C,使得∠ACB为直角,则a的 取值范围为__[1_,_+_∞__)__
(7)(2013年大纲版)椭圆C : x2 y2 1 的左、右顶点分别为
43
A1, A2 ,点P在C上且直线PA2的斜率的取值范围是 2, 1
1 |OM |2
1 |ON | 2
3k 2 3 k 2 1
综上,O到直线MN的距离为定值 3
3
,即d=
3 3
二、最值
(3)(2014年福建)设P,Q分别为 x2 y 62 2 和椭圆 x2 y2 1 10 上的点,则P,Q两点间的最大距离是 【D】 A. 5 2 B. 46 2 C. 7 2 D. 6 2
x a cos
参数方程
y
b
sin
极坐标方程
ep 1 e cos
M(ρ,θ) F
注:椭圆看大小;双曲线看正负;抛物线看一次
双曲线的方程
标准式
左右式
x2 y2 a2 b2 1
普通方程
上下式
y2 a2
x2 b2
1
一般式 Ax2 By 2 C
(A,B异号,且C≠O)
极坐标方程
ep 1 e cos
uuur uu4ur 因∠AOB为锐角,故 OAOB x1x2 y1y2 0
=…… (1 k 2 )x1x2 2k(x1 x2 ) 4
(1
k
2
)
1
12 4k
2
,2k
(
1
16k 4k
2
)
4
4(4 k 2 ) 0 1 4k 2
综上 3 k 2 4
4
故 1 k2 4
4
所以k的取值范围是 (2, 3 ) U( 3 , 2)
公式方程形变数 两zhi两巧数论形 两种定义三方程 曲直关系是重点
解几的两大任务
公式法
a. 形
方程法
数 b. 数
性质、位置
形
技巧1:设而不求
技巧2:定义要当性质用
圆锥曲线的两种定义: ——核心词:距离如何如何……
第一定义
圆
d点点 常数(r)
第二定义 d点点 常数 1 d点点
椭圆 双曲线 抛物线
(4)(2014年四川)已知F是抛物线
的焦点,点A,B
在该抛物线上且位P,Q于x轴的两侧,
,则
与
面积之和的最小值是 【B】
A.2 B.3
C.
D.
(5)(2014年湖北)已知 F1, F2 是椭圆和双曲线的公共焦点
P是他们的一个公共点,且
F1PF2
3
,则椭圆和双曲线的
离心率的倒数之和的最大值为 【B】
(| k |
2)
2
则直线OM:
y
1 k
x
由
y kx 4x2 y2
1
得
x 2
y
2
1 4k 2
k2 4k 2
所以
| ON
|2
1 k 2 4k 2
同理
| OM
|2
1 k 2 2k 2 1
设O到直线MN的距离为d
因 (| OM |2 | ON |2)d 2 | OM |2| ON |2
3 所以 1 d2
M(ρ,θ) F
注:椭圆看大小;双曲线看正负;抛物线看一次
抛物线的方程:
右开口式 y2 2 px l
F
横式
y2 mx
标
左开口式 y2 2 px F
l
普 通 方 程
准
式
竖式
上开口式 x2 2 py
x2 my
下开口式 x2 2 py
F
l l
一般式 ……
F
极坐标方程
ep 1 e cos
M(ρ,θ) F
注:开口看一次 点线要除4
双曲线的渐近线:
开方化O反为参 以直代曲是作用
注1:x
a
2 2
y2 b2
x y 0 ab
y
F2
o
x
注2:(左右式) k b 或 e2 1 k 2
a
(上下式)
k a或 b
e2
1
1 k2
注3:焦点到渐近线的距离恰为b
抛物线的特殊弦
1.焦点弦:如图,若AB是抛物线y2 = 2px 的焦点弦,则
d点点 d点点 常数(2a) | d点点 d点点 | 常数(2a)
d点点 常数(e) 1 d点线 d点点 常数(e) 1 d点线 d点点 常数(e) 1 d点线
椭圆的方程
横扁式
标准式
x2 a2
y2 b2
1
普通方程
竖窄式
y2 a2
x2 b2
1
一般式 Ax2 By 2 C
(A,B,C要同号,且A≠B)
22
作业:
1.《固学案》P:15 Ex1 2.《固学案》P:16 Ex6 3.《固学案》P:21 Ex8
预习:
复习与小结
OB xy11xy22y(1kyx12 20)(kx2 2) k(21x1x2k2 )2xk1x(2x12xk2()x1 4 x2 ) 4
(8)过点M(0,2)的直线l与椭圆 x2 y2 1 交于的A,B两点
4
且∠AOB为锐角,求直线l斜率k的取值范围
i:当k不存在时,显然不符题意,舍
ii:当k存在时.…… k 2 3
C1
:
x2 1
y2
1
2
C2
:
x2 1
y2
1
4
直线ON垂直于x轴时,|ON|=1,|OM|=
2 2
则O到直线MN的距离为 3
3
N
M
o
x
证明:i:当直线ON垂直于x轴时,|ON|=1,|OM|=
2 2
则O到直线MN的距离为 3 3
ii:当直线ON不垂直于x轴时,设直线ON:
y kx
§193 圆锥曲线中几类数值问题
一、定值 二、最值 三、范围
解几的基础
形
数
点
坐标
线
方程
面
不等式
平面坐标 注1.坐标
空间坐标
直角坐标 (x,y)
极坐标 (ρ,θ) 直角坐标 (x,y,z)
球坐标 极坐标
柱坐标
注2.方程
普通方程 参数方程
一般式 特殊式 线系
极坐标方程 向量方程,复数方程…
圆锥曲线概述
§193 圆锥曲线中几类数值问题
一、定值 二、最值 三、范围
一、定值 (定点,定线):
(1)如图,若AB是抛物线y2=2px的焦点弦,则
|
1 AF
|
|
1 BF
|
2 p
证明:设∠XFA=θ,则∠XFB=θ+π
由抛物线的定义得
A1
yA
| AF || AA1 | | KA2 | | KF | | FA2 | K O F θ
p | AF | cos
A2
x
即 | AF | (1 cos ) p
B
故
| AF | p
1 cos
同理 | BF | p 1 cos
所以 1 1 1 cos 1 cos 2
| AF | | BF | p
pp
(2)(2012年上海简化) 已知双曲线 C1 : 2x2 y2 1,椭圆
C2 : 4x2 y2 1 .若M,N分别是C1,C2上的动点,且OM⊥ON 求证:O到直线 MN 的距离是定值
抛物线的特殊弦
1.焦点弦: <2>动中有定——形
y
④四圆相切:
A1
以AB为直径的圆与准线相切 以A1B1为直径的圆与AB相切
K o
以AF(BF)为直径的圆与y轴线相切 B
1
⑤三点共线:
A,O,B1三点共线 对角线的交点是顶点 ⑥角平分线:
∠AKB的平分线是KF kKA+kKB=0
A
F
x
B
……
抛物线的特殊弦
那么直线PA1斜率的取值范围是 【B】
A.
1 2
,3 4
B.
3 8
,3 4
C.
1 2
,1
D.
3 4
,1
(8)过点M(0,2)的直线l与椭圆 x2 y2 1 交于的A,B两点
4
且∠AOB为锐角,求直线l斜率k的取值范围
解:i:当k不存在时,显然不符题意,舍
ii:当k存在时.设l: y kx 2 , A(x1, y1) ,B(x2, y2 )
1
由x2x424(kxy
2
2)12
4得x2
(41(kx4k
22))x2 2416kx(1124k20) x 2
16kx
12
0
2
y kx 2
故