[精品]2019学年高二数学上学期开学考试试题 理(含解析)

合集下载

2019学年高二数学上学期开学考试试题(含解析)

2019学年高二数学上学期开学考试试题(含解析)

2019高二开学检测数学(文)试题一、选择题1. 在△ABC中,若a=2b sin A,则B为A. B. C. 或 D. 或【答案】C【解析】,,则或,选C.2. 在△ABC中,,则S△ABC= ()A. B. C. D. 1【答案】C【解析】,选C3. 边长为5、7、8的三角形的最大角与最小角之和的()A. 90°B. 120°C. 135°D. 150°【答案】B解:根据三角形角边关系可得,最大角与最小角所对的边的长分别为8与5,设长为7的边所对的角为θ,则最大角与最小角的和是180°﹣θ,有余弦定理可得,cosθ==,易得θ=60°,则最大角与最小角的和是180°﹣θ=120°,故选B.考点:余弦定理.4. 等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为 ( )A. 1B. 2C. 3D. 4【答案】B...............5. 已知△ABC的周长为9,且,则cosC的值为()A. B. C. D.【答案】A【解析】,不妨设,,则,选A.6. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为()A. 米B. 米C. 200米D. 200米【答案】A【解析】如图,易知,在中,,在中,,由正弦定理,得,即;故选A.7. 已知△ABC中,a=4,b=4,∠A=30°,则∠B等于( )A. 30°B. 30°或150°C. 60°D. 60°或120°【答案】D【解析】试题分析:,;,,或,选D.考点:正弦定理、解三角形8. 已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为( )A. 9B. 18C. 9D. 18【答案】C【解析】试题分析:∠A=30°,∠B=120°所以∠C=30°考点:解三角形9. 某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰好km,那么x的值为()A. B. 2 C. 2或 D. 3【答案】C【解析】试题分析:依题意,由余弦定理得,解得或.考点:余弦定理的应用10. 在中,则=()A. 或B.C. D. 以上都不对【答案】C【解析】试题分析:由得考点:正弦定理11. 在三角形ABC中,已知A,b=1,其面积为,则为( )A. B. C. D.【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B.考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题.12. 在△ABC中,若,则等于()A. 1B.C.D.【答案】C【解析】,则,,,,,,选C.13. 在△ABC中,若,则A等于()A. B. C. D.【答案】D【解析】 ,,则或,选D.14. 在△ABC中,若,则其面积等于()A. 12B.C. 28D.【答案】D【解析】,,,选D.15. 在△ABC中,若,则∠A=()A. B. C. D.【答案】C【解析】即:则,,,选C.16. 在△ABC中,若,则△ABC的形状是()A. 直角三角形B. 等腰或直角三角形C. 不能确定D. 等腰三角形【答案】B【解析】由正弦定理,得,所以,,又因为,所以或,即或,所以是等腰三角形或直角三角形,故选A.【方法点睛】本题主要考查利用正弦定理、二倍角的正弦公式及三角形内角和定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.17. 在△ABC中,若则A=( )A. B. C. D.【答案】B【解析】, , ,,则,选B .18. 在△ABC中,若,则最大角的余弦是()A. B. C. D.【答案】C【解析】,,,最大角为,,选C.19. 在△ABC中,若,则与的大小关系为()A. B. C. ≥ D. 、的大小关系不能确定【答案】A【解析】解:因为在中,,利用正弦定理,则可知a>b,那么再利用大边对大角,因此选A20. 在△ABC中,,则等于A. 1B. 2C.D. 3【答案】B【解析】根据正弦定理,,,,则,则,,选B 。

2019-2020学年高二数学上学期开学考试试题理(含解析)

2019-2020学年高二数学上学期开学考试试题理(含解析)

2019-2020学年高二数学上学期开学考试试题理(含解析)一、选择题(在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.=( )A. B. C. D.【答案】C【解析】【分析】利用诱导公式即可得到结果.【详解】,故选:C【点睛】本题主要考查三角函数中的诱导公式的应用,考查特殊角的三角函数值.2.在中,,则这个三角形的最大内角为()A. B. C. D.【答案】C【解析】试题分析:设三角形三边为3.5.7,所以最大角满足考点:余弦定理解三角形3.已知数列{}的前n项和满足:,且=1,那么=( )A. 1B. 9C. 10D. 55【答案】A【解析】a10=S10-S9=(S1+S9)-S9=S1=a1=1,故选A.4.在等比数列中,,,则公比q是A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据题意,由等比数列的通项公式可得,计算即可得答案.【详解】解:根据题意,等比数列中,,,则,则;故选:A.【点睛】本题考查等比数列通项公式,关键是掌握等比数列通项公式的形式.5.张丘建算经卷上有“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同已知第一天织布6尺,30天共织布540尺,则该女子织布每天增加A. 尺B. 尺C. 尺D. 尺【答案】C【解析】【分析】利用数学文化知识,首先判定数列为等差数列,进一步利用等差数列的通项公式的前n项和公式求出结果.【详解】由于某女子善于织布,一天比一天织得快,而且每天增加数量相同.所以织布的数据构成等差数列,设公差为d,第一天织的数据为,第30天织的数据为,则:,解得:,则:,解得:,故选:C.【点睛】本题考查的知识要点:数学文化知识的应用,等差数列的通项公式的应用和前n项和公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.函数的图象大致为A. B.C. D.【答案】C【解析】【分析】根据函数是奇函数,且函数过点,从而得出结论.【详解】由于函数是奇函数,故它的图象关于原点轴对称,可以排除B和D;又函数过点,可以排除A,所以只有C符合.故选:C.【点睛】本题主要考查奇函数的图象和性质,正弦函数与x轴的交点,属于基础题.7.集合则实数a的取值范围是()A. B.C. D.【答案】C【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=.∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.8.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A. 点P在内部B. 点P在外部C. 点P在线段AC上D. 点P在直线AB上【答案】C【解析】【分析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解.【详解】因为:,所以:,所以:,即点P在线段AC上,故选:C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.9.如图,为测得河对岸塔的高,先在河岸上选一点,使在塔底的正东方向上,此时测得点的仰角为再由点沿北偏东方向走到位置,测得,则塔的高是A. 10B. 10C. 10D. 10【答案】B【解析】分析:设塔高为米,根据题意可知在中,,,,从而有,在中,,,,,由正弦定理可求,从而可求得x的值即塔高.详解:设塔高为米,根据题意可知在中,,,,从而有,在中,,,,,由正弦定理可得,可以求得,所以塔AB的高为米,故选B.点睛:该题考查的是有关利用正余弦定理解决空中高度测量的问题,在解题的过程中,涉及到的知识点有直角三角形中边角的关系,方位角,正弦定理,注意特殊角的三角函数值的大小.10.如图是某几何体的三视图,图中方格的单位长度为1,则该几何体的表面积为()A. 16B. 8+4C. 8+4D. 12+4【答案】C【解析】【分析】由三视图先还原几何体,然后计算出几何体的表面积【详解】由三视图还原几何体如图:可得三棱锥计算可得,,,为等腰三角形,高为,,则几何体表面积为故选C【点睛】本题考查了由三视图还原几何体并求出几何体的表面积,解题关键是还原几何体,属于中档题11.已知函数的最小值为则实数m的取值范围是A. B. C. D.【答案】B【解析】【分析】利用分段函数的表达式转化求解函数的最小值,求解m的范围即可.【详解】函数的最小值为.可知:时,由,解得,因为是增函数,所以只需,恒成立即可.,所以,可得.故选:B.【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.12.三棱锥,,,则该三棱锥外接球的表面积为()A. B. C. D.【答案】C【解析】将三棱锥补成一个长方体,长宽高为2,2,,则该三棱锥外接球的直径为长方体对角线长,即,选C.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.二、填空题.13.不等式的解集是__________.【答案】【解析】【分析】根据对数不等式的解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集.【详解】原不等式等价于,所以,解得,所以原不等式的解集为.故答案为.【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题.14.已知,则________.【答案】【解析】【详解】由于,所以,,故答案为.考点:二倍角的正弦公式15.已知数列为等差数列且,则______.【答案】【解析】【分析】由已知结合等差数列的性质求得,代入正弦函数即可.【详解】在等差数列中,由,得,.故答案为:.【点睛】本题考查等差数列的性质,求特殊三角函数值,属于基础题,题目意在考查对等差数列性质和特殊三角函数的掌握情况.16.若函数f(x)=(1-x2)(x2+bx+c)的图象关于直线x=-2对称,则b+c的值是______.【答案】23【解析】【分析】根据函数f(x)=0,即(1-x2)(x2+bx+c)=0,其中两个零点为1,-1,图象关于直线x=-2对称,可得另外两个零点,即可求出b,c的值。

2019学年云南省高二上学期开学考试理科数学试卷【含答案及解析】(1)

2019学年云南省高二上学期开学考试理科数学试卷【含答案及解析】(1)

2019学年云南省高二上学期开学考试理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合 , 则A .______________B .______________C .____________________ D .2. 已知函数,那么 f ( 1 )等于A . log 3 10______________B . 2________________________C . 1______________________________D . 03. 已知向量则____________________________A . 2 或 3____________________________B .- 1 或 6______________C . 6____________________________D . 24. 如果两条直线 l 1 &#xad; : 与 l 2 : 平行,那么 a 等于A . 1______________________________B .______________________________C . 2___________________________________D .5. sin20°cos10° cos160°sin10°=A ._________B . ________________________C .____________________ D .6. 以下命题正确的有① ;② ;③ ;④.A .①②_________________B .①②③_________________C .②③④___________D .①②④7. 如图,一个空间几何体的正视图(或称主视图)、侧视图(或称左视图)、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为,那么这个几何体的体积为A . 1______________B .___________C .___________D .8. 已知函数 , 那么函数是A .奇函数 , 且在上是增函数_________B .偶函数 , 且在上是减函数C .奇函数 , 且在上是增函数_________D .偶函数 , 且在上是减函数9. 已知是公差为 1 的等差数列,为的前项和,若,则A .____________________B .________________________C .________________________ D .10. 要得到函数 y = sin 的图象,只要将函数 y = sin2x 的图象A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位11. 正四棱锥的顶点都在同一球面上,若该棱锥的高为 4 ,底面边长为 2 ,则该球的表面积是A . 9 ________________________B . 16 ____________________C .____________________ D .12. 设偶函数满足,则A .B .C .D .二、填空题13. 圆的圆心到直线的距离为____________________________ .14. 的夹角为,,则______________________________ .15. 已知,,则的值为____________________________ .16. 已知函数,若关于的方程有两个不同的实根,则实数的取值范围是____________________________ .三、解答题17. 已知数列是等差数列,且,.(Ⅰ )求的通项;(Ⅱ )求前 n 项和的最大值.18. 设锐角三角形 ABC 的内角 A , B , C 的对边分别为 a , b , c ,.(Ⅰ )求 B 的大小;(Ⅱ )若,,求 b .19. 已知函数.(Ⅰ )求最小正周期;(Ⅱ )求在区间上的最大值和最小值.20. 如图,三棱柱中,平面 ABC , AB BC , 点M , N 分别为 A 1 C 1 与 A 1 B 的中点.(Ⅰ )求证: MN 平面 BCC 1 B 1 ;(Ⅱ )求证:平面 A 1 BC 平面 A 1 ABB 1 .21. 已知圆 C 过点 A ( 1,3 ) ,B ( 2,2 ),并且直线 m: 平分圆 C 的面积.(Ⅰ )求圆 C 的方程;(Ⅱ )若过点 D ( 0,1 )且斜率为 k 的直线与圆 C 有两个不同的公共点 M 、N, 若( O 为原点),求 k 的值.22. 已知函数的定义域为.(Ⅰ )若,求实数的值;(Ⅱ )若的最小值为 5 ,求实数的值;(Ⅲ)是否存在实数,使得恒成立?若存在求出的值,若不存在请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

2019-2019学年高二数学上学期开学考试试题(新版)新人教版

2019-2019学年高二数学上学期开学考试试题(新版)新人教版

2019学年度第一学高二开学考试数学试题本试卷分第I 卷和第Ⅱ卷两部分,考试时间120分钟,满分150分第Ⅰ卷(60分)一、选择题(本大题共12小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4,5},A ={1,3},则U A C =( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.下列函数中,既是奇函数又在(0,+∞)单调递增的是( )A .x xy e e -=+ B .()ln 1y x =+ C .sin x y x =D .1y x x=- 3.若3412a ⎛⎫=⎪⎝⎭,1234b ⎛⎫= ⎪⎝⎭,c =log 23,则a ,b ,c 大小关系是( )A .a <b <cB .b <a <cC .b <c <aD .c <b <a4.已知α为第二象限的角,且3tan 4α=-,则sin α+cos α=( ) A .75- B .34- C .15- D .155.已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( ) A .23AD AB AC =-+ B .3144AD AB AC =+ C .1344AD AB AC =+ D .2133AD AB AC =+ 6.一个几何体的三视图如图,其左视图是一个等边三角形,则这个几何体的体积为( )A .(43π+ B .(86π+ C .(83π+D .(4π+7.设n S 为等差数列{}n a 的前n 项和,已知a 1=S 3=3,则S 4的值为( ) A .﹣3 B .0 C .3 D .6 8.设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( )A .B .(C .)2 D .()0,29.已知变量x ,y 满足约束条件206010x y x y x -+≤⎧⎪+-≤⎨⎪-≥⎩,则2x ﹣y 的最小值是( )A .2B .﹣2C .﹣3D .﹣1 10.若直线220mx ny --=(m >0,n >0)过点(1,﹣2),则12m n+最小值( ) A .2 B .6C .12D .3+211.已知函数()11x x f x e e +-=+,则满足()221f x e -<+的x 的取值范围是( )A .x <3B .0<x <3C .1<x <eD .1<x <312.设等差数列{}n a 满足22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差()1,0d ∈-,若当且仅当n =11时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .9,10ππ⎛⎫⎪⎝⎭ B .11,10ππ⎡⎤⎢⎥⎣⎦ C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫⎪⎝⎭第Ⅱ卷(90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量()1,0a =,()1,b m =-.若()a mab ⊥-,则m = . 14.已知1cos 123πθ⎛⎫-=⎪⎝⎭,则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 . 15.函数f (x )=Asin (ωx+φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2018)的值为 .16.已知直线l:30mx y m ++=与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D两点,若AB =,则|CD |= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)如图,在四棱锥P ﹣ABCD 中,∠ADB =90°,CB =CD ,点E 为棱PB 的中点. (Ⅰ)若PB =PD ,求证:PC ⊥BD ;(Ⅱ)求证:CE ∥平面PAD .18.(12分)已知{}n a 的前n 项和24n S n n =-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列72n na -⎧⎫⎨⎬⎩⎭的前n 项和T n .19.在平行四边形ABCD 中,设边AB 、BC 、CD 的中点分别为E 、F 、G ,设DF 与AG 、EG 的交点分别为H 、K ,设AB a =,BC b =,试用a 、b 表示GK 、AH .20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin (2A ﹣B )的值.21.已知方程x 2+y 2﹣2x ﹣4y +m =0.(Ⅰ)若此方程表示圆,求实数m 的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线x +2y ﹣4=0相交于M ,N 两点,且坐标原点O 在以MN 为直径的圆的外部,求实数m 的取值范围.22.已知函数()•,xxf x e a e x R -=+∈.(Ⅰ)当1a =时,证明: ()f x 为偶函数;(Ⅱ)若()f x 在[)0,+∞上单调递增,求实数a 的取值范围;(Ⅲ)若1a =,求实数m 的取值范围,使()()221m f x f x ⎡⎤+≥+⎣⎦在R 上恒成立.参考答案与试题解析一.选择题(共12小题)8.【解答】解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<,∵a=1,B=2A,∴由正弦定理可得:=b==2cosA,∴<2cosA<,则b的取值范围为(,).故选:A.11.【解答】解:∵f(x)=e1+x+e1﹣x =,令t=e x,可得y=e(t+),内函数t=e x为增函数,而外函数y=e(t+)在(0,1)上为减函数,在(1,+∞)上为增函数,∴函数f(x)=e1+x+e1﹣x 的减区间为(﹣∞,0),增区间为(0,+∞).又f(x)=e1+x+e1﹣x为偶函数,∴由f(x﹣2)<e2+1,得f(|x﹣2|)<f(1),得|x﹣2|<1,解得1<x<3.故选:D.12.【解答】解:∵等差数列{a n}满足=1,∴精品===sin(a2﹣a7)=sin(﹣5d)=1,∴sin(5d)=﹣1,∵d∈(﹣1,0),∴5d∈(﹣5,0),∴5d=﹣,d=﹣.由S n=na1+d=na1﹣=﹣π+(a1+)n.对称轴方程为n=(a1+),由题意当且仅当n=11时,数列{a n}的前n项和S n取得最大值,∴<(a1+)<,解得:π<a1<.∴首项a1的取值范围是(π,).故选:D.二.填空题(共4小题)13.﹣1. 14. 1315. 2 16. 415.【解答】解:由函数f(x)=Asin(ωx+φ)的部分图象知,=11﹣2=9,解得T=12,ω==;又f(0)=Asinφ=1,∴sinφ=;f(2)=Asin(×2+φ)=A,∴φ=,∴=sin=,∴A=2,∴f(2018)=f(168×12+2)=f(2)=A=2.故答案为:2.16.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.三.解答题(共6小题,满分22分)17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】(Ⅰ)解:已知{a n}的前n项和,则:当n≥2时,a n=S n﹣S n﹣1=4n﹣n2﹣4(n﹣1)+(n﹣1)2=5﹣2n.当n=1时,a1=S1=3,适合上式∴a n=5﹣2n.(Ⅱ)解:令=,+…+①,所以:+…+②,①﹣②得:﹣,=,=.整理得:.19.【解答】解:如图所示,因为AB、BC、CD的中点分别为E、F、G,所以=+=+(﹣)=﹣+(﹣+)=.因为A、H、G三点共线,所以存在实数m,使=m=m(+)=m+m;又D、H、F三点共线,所以存在实数n,使=n=n(﹣)=n﹣n.因为+=,所以+n=m+因为a、b不共线,∴解得m=,即=(+)=+.20.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.21.【解答】解:(1)∵程x2+y2﹣2x﹣4y+m=0表示圆,∴△=(﹣2)2+(﹣4)2﹣4m>0,解得m<5,∴实数m的取值范围是(﹣∞,5).(2)直线x+2y﹣4=0代入圆的方程,消去x可得:5y2﹣16y+8+m=0∵△>0,∴m<,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=,∴x1x2=(4﹣2y1)(4﹣2y2)=16﹣8(y1+y2)+4y1y2=,∵坐标原点O在以MN为径的圆的外部,精 品∴>0,∴x 1x 2+y 1y 2>0, ∴+>0解得m >. 22. 【解答】:(1)当1a =时, ()xxf x e e -=+,定义域(),-∞+∞关于原点对称,而()()xx f x ee f x --=+=,说明()f x 为偶函数;(2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e eaf x f x e aee aee +--+---=+-+=,因为12x x <,函数x y e =为增函数,得12x x e e <, 120x xe e -<,而()f x 在[)0,+∞上单调递增,得()()12f x f x <, ()()120f x f x -<, 于是必须120x x e a +->恒成立,即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x xf x e e e e --=+=+-,设x xt e e -=+,则[)2,t ∈+∞, 110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⎡⎤⋅+≥+⎣⎦恒成立,等价于21m t t ⋅≥+,即21t m t +≥恒成立, 而22211111124t t t t t +⎛⎫=+=+- ⎪⎝⎭,仅当112t =,即2t =时取最大值34,精 品- 11 - 故34m。

2019~2020学年度高二年级第一学期数学开学测试(附答案解析)

2019~2020学年度高二年级第一学期数学开学测试(附答案解析)

2019~2020学年度高二年级第一学期开学测试数学试卷考试范围:必修二必修五难度区间:A(难度大)考试时间:120分钟分值:150分注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题共50分)一、选择题(本大题共10小题,共50.0分)1.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AP=,,M是线段BC上一动点,线段PM长度最小值为,则三棱锥P-ABC的外接球的表面积是()A. B. C. D.2.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为()A. 2B. 3C. 4D. 53.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A. 1B.C. 1或D.4.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.B. 3,C. 4,D.5.已知平面上点,其中,当,变化时,则满足条件的点P在平面上所组成图形的面积是A. B. C. D.6.已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.7.在锐角三角形ABC中,已知,则的取值范围为A. B. C. D.8.在锐角三角形ABC中,cos(A+)=-,AB=7,AC=2,则=()A. B. 40 C. D. 349.已知三棱锥A—BCD的所有顶点都在球O的球面上,AD⊥平面ABC,∠BAC=90°,AD=2,若球O的表面积为29π,则三棱锥A—BCD的侧面积的最大值为( )A. B. C. D.10.如图,正方体ABCD-A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′和侧面CDD′C′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是()A. 两段圆弧B. 两段椭圆弧C. 两段双曲线弧D. 两段抛物线弧第II卷(非选择题共60分)二、填空题(本大题共4小题,共20.0分)11.已知在体积为4π的圆柱中,AB,CD分别是上、下底面直径,且AB⊥CD,则三棱锥A-BCD的体积为______.12.底面边长为2m,高为1m的正三棱锥的全面积为______ m2.13.在锐角△ABC中,角A,B,C的对边分别为a,b,c ,已知=,b=4a,a+c=5,则△ABC的面积为______.14.已知数列{a n}中,a1=1,a n-a n-1=n(n≥2,n N),设b n=+++…+,若对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则实数t的取值范围是______.三、解答题(本大题共8小题,共80.0分)15.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b M时,|a+b|<|1+ab|.17.已知数列的前n项和为,且.Ⅰ求数列的通项公式;Ⅱ若,设数列的前n项和为,证明.18.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.(Ⅰ)求证:平面PBD⊥平面BFDE;(Ⅱ)求四棱锥P-BFDE的体积.19.已知圆M的方程为,直线l的方程为,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.(1)若,试求点P的坐标;(2)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.20.如图,在四棱锥P-ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F是棱PA上的一个动点,E为PD的中点.(Ⅰ)若AF=1,求证:CE∥平面BDF;(Ⅱ)若AF=2,求平面BDF与平面PCD所成的锐二面角的余弦值.21.已知圆C:,直线l:,.求证:对,直线l与圆C总有两个不同的交点A、B;求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;是否存在实数m,使得圆C上有四点到直线l的距离为?若存在,求出m的范围;若不存在,说明理由.22.如图,在平面直角坐标系中,已知圆:,圆:.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆的周长、圆的周长.①证明:动圆圆心C在一条定直线上运动;②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用.首先确定三角形ABC为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【解答】解:如图所示:三棱锥P-ABC中,PA⊥平面ABC,AP=,M是线段BC上一动点,线段PM长度最小值为,则当AM⊥BC时,线段PM达到最小值,由于PA⊥平面ABC,AM平面ABC,所以PA AM所以在中,PA2+AM2=PM2,解得AM=1,因为PA⊥平面ABC,BM平面ABC,则由,,平面PAM,故有BM平面PAM,AM平面PAM,BM,所以在中,BM==,则tan∠BAM==,则∠BAM=60°,由于∠BAC=120°,所以∠MAC=∠BAC-∠BAM=60°则△ABC为等腰三角形.所以BC=2,在△ABC中,设外接圆的直径为2r=,则r=2,设球心距离平面ABC的的高度为h,则,解得,所以外接球的半径R═,则S=,故选:C.2.【答案】C【解析】解:如图:正方体ABCD-A1B1C1D1,E、F分别是BC和A1D1的中点,连接AF和FC1,根据正方体的性质知,BB1⊥AB,C1C⊥B1C1,故B1到异面直线AB,CC1的距离相等,同理可得,D到异面直线AB,CC1的距离相等,又有AB⊥BC,C1C⊥BC,故E到异面直线AB,CC1的距离相等,F为A1D1的中点,易计算FA=FC1,故F到异面直线AB,CC1的距离相等,共有4个点.故选C.画出正方体,结合正方体中线面、线线垂直,先找定点、再找棱的中点,找出符合条件的所有的点.本题考查了正方体体的结构特征,考查了线面、线线垂直定理的应用,利用异面直线之间距离的定义进行判断,考查了观察能力和空间想象能力.3.【答案】A【解析】【分析】本题主要考查两直线的位置关系,由两直线平行的充要条件,列出方程求解即可.【解答】解:直线x+(1+m)y-2=0和直线mx+2y+4=0平行,可得,得:m=1.故选A.4.【答案】B【解析】解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选:B.由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键.5.【答案】C【解析】解:由题意可得,点;而且圆心(x0,y0)在以原点为圆心,以2为半径的圆上.满足条件的点P在平面内所组成的图形的面积是以6为半径的圆的面积减去以2为半径的圆的面积,即36π-4π=32π,故选:C.先根据圆的标准方程求出圆心和半径,然后研究圆心的轨迹,根据点P在平面内所组成的图形是一个环面进行求解即可.本题主要考查了圆的参数方程,题目比较新颖,正确理解题意是解题的关键,属于中档题.6.【答案】C【解析】【分析】本题主要考查数列的求和、一元二次不等式,根据题中等式变形得,构造,从而解出本题.【解答】根据题意,,所以,所以,所以,因为对于任意的,,不等式恒成立,所以在时恒成立,即在时恒成立,设,,则,即,解得或,即实数的取值范围为.故选C.7.【答案】A【解析】【分析】本题考查了锐角三角形内角和定理及其性质、余弦函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.在锐角三角形ABC中,A>B>C,A+B+C=π,可得,于是>,即可得出.【解答】解:∵在锐角三角形ABC中,A>B>C,A+B+C=π,∴,∴,又∵,∴,∴.故选A.8.【答案】A【解析】【分析】本题考查了平面向量数量积的性质及其运算,属中档题.由cos(A+)=解得cosA=,再由余弦定理得BC=,cosB=,再根据向量数量积可得结果.【解答】解:由cos(A+)=-得:cosAcos -sinAsin =-,得cosA=sinA-,两边平方得:cos2A=sin2A-sinA+,整理得sin2A-sinA+-=0,解得sinA=或sinA=-(舍去),又A为锐角,∴cosA=,∴BC2=AB2+AC2-2AB•AC•cosA=72+(2)2-2××=43,∴BC=,∴cosB===,∴•=AB•BC•cos(π-B)=7××(-)=-40.故选A.9.【答案】A【解析】【分析】本题考查三棱锥的内接球的问题,找到球心所在是解题的关键.【解答】解析:因为球O的表面积为29π,所以球的半径为,设AB=a,AC=b,则底面直角三角形ABC的斜边为其外接圆的半径为因为AD⊥平面ABC,所以外接球的半径为=,则,由题意可知,所求三棱锥的侧面积为,运用基本不等式,,当且仅当时,等号成立,即侧面积的最大值为.故选A.10.【答案】C【解析】【分析】本题考查正圆锥曲线被与中心轴成θ的平面所截曲线的轨迹,考查分析运算能力,属于难题.以A点为坐标原点建立空间直角坐标系,可求得A,C′,M等点的坐标,从而可求得cos∠MAC′,设设AC′与底面A′B′C′D′所成的角为θ,继而可求得cosθ,比较θ与∠MAC′的大小,利用正圆锥曲线被与中心轴成θ的平面所截曲线,即可得到答案.【解答】解:P点的轨迹实际是一个正圆锥面和两个平面的交线;这个正圆锥面的中心轴即为AC′,顶点为A,顶角的一半即为∠MAC′;以A点为坐标原点建立空间直角坐标系,则A(0,0,1),C′(1,1,0),M (,1,1),∴=(1,1,-1),=(,1,0),∵cos∠MAC′====,设AC′与底面A′B′C′D′所成的角为θ,则cosθ====>,∴θ<∠MAC′,∴该正圆锥面和底面A′B′C′D′的交线是双曲线弧;同理可知,P点在平面CDD′C′的交线是双曲线弧,故选C.11.【答案】【解析】解:取AB的中点O,连接OC,OD,则AD=BD,∴OD⊥AB,又AB⊥CD,CD∩OD=D,∴AB⊥平面OCD,设圆柱的底面半径为R,高为h,则V圆柱=πR2h=4π,即R2h=4,∴三棱锥A-BCD的体积为V A-OCD+V B-OCD=S△OCD•AB===.故答案为:.将三棱锥分解成两个小棱锥计算.本题考查了圆柱、圆锥的体积计算,属于中档题.12.【答案】【解析】解:如图所示,正三棱锥S-ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO 中,.于是,,.所以.故答案为由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.本题主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.13.【答案】【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由已知及正弦定理可求= ,又b = 4a,可求sinC,利用同角三角函数基本关系式可求cosC,利用余弦定理解得a,b,c的值,进而利用三角形面积公式即可计算得解.【解答】解:由正弦定理及= ,得= ,又b=4a,∴sinC= ,∵△ABC为锐角三角形,∴cosC= ,∴cosC= == =,解得a = 1,b = 4 ,c = 4,∴S△ABC=absinC == .故答案为.14.【答案】(-∞,1)【解析】【分析】本题考查数列的通项及前n项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题.通过并项相加可知当n≥2时a n-a1=n+(n-1)+…+3+2,进而可得数列{a n}的通项公式a n =n(n+1),裂项、并项相加可知b n=2(-)==,通过求导可知f(x)=2x+(x≥1)是增函数,进而问题转化为m2-mt+>(b n)max,由恒成立思想,即可得结论.【解答】解:∵a1=1,a n-a n-1=n(n≥2,n N),当n≥2时,a n-a n-1=n,a n-1-a n-2=n-1,…,a2-a1=2,并项相加,得:a n-a1=n+(n-1)+…+3+2,∴a n=1+2+3+…+n=n(n+1),又∵当n=1时,a1=×1×(1+1)=1也满足上式,∴数列{a n}的通项公式为a n =n(n+1),∴b n =+++…+=++…+=2(-+-+…+-)=2(-)==,令f(x)=2x+(x≥1),设x1>x2>1,则f(x1)-f(x2)=,,f(x1)-f(x2)>0∴f(x)在x[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(b n)max =,对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则须使m2-mt+>(b n)max=,即m2-mt>0对∀m[1,2]恒成立,即t<m的最小值,可得得t<1,∴实数t的取值范围为(-∞,1),故答案为:(-∞,1).15.【答案】解:(1)sin(A+C)=8sin2,∴sin B=4(1-cos B),∵sin2B+cos2B=1,∴16(1-cos B)2+cos2B=1,∴16(1-cos B)2+cos2B-1=0,∴16(cos B-1)2+(cos B-1)(cos B+1)=0,∴(17cos B-15)(cos B-1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2-2ac cos B=a2+c2-2××=a2+c2-15=(a+c)2-2ac-15=36-17-15=4,∴b=2.【解析】(1)利用三角形的内角和定理可知A+C=π-B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin 2,结合sin2B+cos2B=1,求出cosB,(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题.16.【答案】解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】本题考查的知识点是绝对值不等式的解法,不等式的证明,是中档题.(I)分当x <时,当≤x≤时,当x >时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度困难.17.【答案】解:(1)当时,,得,当时,,得,∴数列是公比为3的等比数列,∴ .(2)由(1)得:,又①∴②两式相减得:,故,∴.【解析】本题考査了等比数列的通项公式与求和公式、“错位相减法”、数列的递推关系,考查了推理能力与计算能力,属于中档题.(1)利用时,即可得出.(2)利用“错位相减法”、等比数列的求和公式即可得出.18.【答案】(Ⅰ)证明:连接EF交BD于O,连接OP.在正方形ABCD中,点E是AB中点,点F是BC中点,∴BE=BF,DE=DF,∴△DEB≌△DFB,∴在等腰△DEF中,O是EF的中点,且EF⊥OD,因此在等腰△PEF中,EF⊥OP,从而EF⊥平面OPD,又EF⊂平面BFDE,∴平面BFDE⊥平面OPD,即平面PBD⊥平面BFDE;(Ⅱ)解:由(Ⅰ)的证明可知平面POD⊥平面DEF,可得,,,PD=2,由于,∴∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,在Rt△POD中,由OD•PH=OP•PD,得.又四边形BFDE的面积,∴四棱锥P-BFDE的体积.【解析】(Ⅰ)连接EF交BD于O,连接OP,在正方形ABCD中,点E是AB中点,点F是BC中点,可得EF⊥OP,又EF⊂平面BFDE,即可证得平面PBD⊥平面BFDE;(Ⅱ)由(Ⅰ)的证明可知平面POD⊥平面DEF,进一步得到∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,求出PH的值,则答案可求.本题主要考查空间面面垂直的判定与性质、空间面面夹角的计算等基础知识,考查空间想象能力、推理论证能力、运算求解能力,是中档题.19.【答案】解:(1)根据题意,点P在直线上,设P(3m,m),连接MP,因为圆M的方程为,∴圆心M(0,2),半径r=1,∵过点P作圆M的切线PA,PB,切点为A,B,则有⊥,⊥,且,易得≌,又,即,则,即有,解得或,即P点的坐标为或,(2)根据题意,PA是圆M的切线,则⊥,则过点A,P,M三点的圆以MP为直径的圆,设P点坐标为(3m,m),M(0,2),则以MP为直径的圆为,变形得,即,则有,解得或,则当和时,恒成立,则经过A,P,M三点的圆必过定点,且定点坐标为和.【解析】本题主要考查了直线和圆的方程的综合应用以及圆锥曲线中的定点问题,考查学生的运算求解能力和逻辑思维能力,难度较大. (1)根据题意,设P 点坐标,利用全等关系解得,即可解出m 的值,即P 点的坐标. (2)根据题意可得,根据斜率可得,解出n 的之即可解出面积最小值.(3)根据题意,PA 是圆M 的切线,则,可得以MP 为直径的圆为,即可解得经过A,P,M 三点的圆必过定点,且定点坐标为和.20.【答案】(Ⅰ)证明:如图所示,取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO . 由题可得F 为AG 中点,O 为AC 中点,∴FO ∥GC ; 又G 为PF 中点,E 为PD 中点,∴GE ∥FD .又GE ∩GC =G ,GE 、GC ⊂面GEC ,FO ∩FD =F ,FO ,FD ⊂面FOD . ∴面GEC ∥面FOD . ∵CE ⊂面GEC ,∴CE ∥面BDF ;(Ⅱ)解:∵底面ABCD 是边长为 3 的菱形,∴AC ⊥BD ,设交点为O ,以O 为坐标原点建立如图所示空间直角坐标系, 则B (0,- ,0),D (0,,0),P (- ,0,3),C ( ,0,0),F ( ,0,2).则 , , ,,, ,,, ,,, . 设平面BDF 的一个法向量为 , , ,则,取z =3,得 , , . 设平面PCD 的一个法向量为 , , ,则,取y = ,得 , , . ∴cos < , >==. ∴平面 BDF 与平面 PCD 所成的锐二面角的余弦值为.【解析】(Ⅰ)取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO .由三角形中位线定理可得FO ∥GC ,GE ∥FD .然后利用平面与平面平行的判定得到面GEC ∥面FOD ,进一步得到CE ∥面BDF ;(Ⅱ)由底面ABCD 是边长为 3 的菱形,可得AC ⊥BD ,设交点为O ,以O为坐标原点建立如图所示空间直角坐标系,求出所用点的坐标,再求出平面 BDF 与平面 PCD的一个法向量,由两法向量所成角的余弦值求得平面 BDF 与平面 PCD所成的锐二面角的余弦值.本题考查直线与平面平行的判定,考查利用空间向量求二面角的平面角,是中档题.21.【答案】(1)证明:圆C:(x+2)2+y2=5的圆心为C(-2,0),半径为,所以圆心C到直线l:mx-y+1+2m=0的距离<.所以直线l与圆C相交,即直线l与圆C总有两个不同的交点;(2)解:设中点为M(x,y),因为直线l:mx-y+1+2m=0恒过定点N(-2,1),则,又所以,所以M的轨迹方程是,它是一个以,为圆心,以为半径的圆.(3)解:假设存在直线l,使得圆上有四点到直线l的距离为,由于圆心C(-2,0),半径为,则圆心C(-2,0)到直线l的距离为,由于圆心C(-2,0) ,半径为,则圆心C(-2,0)到直线l的距离为<化简得m2>4,解得m>2或m<-2.【解析】本题考查点到直线的距离公式,直线的一般式方程,轨迹方程,直线和圆的方程的应用,考查转化思想,考查分析问题解决问题的能力,计算能力,是中档题.(1)圆心C到直线l:mx-y+1+2m=0的距离,可得:对m R,直线l与圆C总有两个不同的交点A、B;(2)设中点为M(x,y),利用k AB•k MC=-1,即可求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3)利用圆心C(-2,0)到直线l的距离为,求出m的范围.22.【答案】(1)解:设直线l的方程为y=k(x+1),即kx-y+k=0.因为直线l被圆C2截得的弦长为,而圆C2的半径为1,所以圆心C2(3,4)到直线l:kx-y+k=0的距离为+,化简,得12k2-25k+12=0,解得或.所以直线l的方程为4x-3y+4=0或3x-4y+3=0;②写出动圆的方程即可求解.(2)①证明:设圆心C(x,y),由题意,得|CC1|=|CC2|,即+++.化简得x+y-3=0,即动圆圆心C在定直线x+y-3=0上运动;②解:圆C过定点,设C(m,3-m),则动圆C的半径为++++.于是动圆C的方程为(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2,整理,得x2+y2-6y-2-2m(x-y+1)=0.由得或,所以动圆C经过定点,其坐标为,.【解析】本题考查直线与圆及圆与圆的位置关系,同时考查动点轨迹的探求.(1)利用圆的弦长计算方法即可求解;(2)①由已知有|CC1|=|CC2|,从而求出动圆圆心的轨迹即可求解;。

高二数学上学期开学考试数学试题解析版

高二数学上学期开学考试数学试题解析版
则从楼A看楼B,C视角的大小为 ;
(2)在 和 中,
, ,
则在 中, ,
中, ,
记矩形开发区 的面积为 ,




当 时,即 时,矩形开发区域AMPN的面积最大.
【点睛】本题考查了三角函数式化简变形的应用,正切和角公式及余弦差角公式的应用,辅助角公式的应用,由正弦函数性质求最值,属于中档题.
21.已知 , , .
即 的取值范围为 .
故选B
【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.
6.若实数 满足 ,则 的取值范围为( )
A. B. C. D.
【答案】A
【解析】
【分析】
利用基本不等式得 ,然后解不等式可得,同时注意 .
【详解】∵ ,∴ ( 时取等号), ,∴ ,又 ,∴ ,
∴ .
故选A.
【点睛】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用: .
7.已知 为 的三个内角 的对边, , 的面积为2,则 的最小值为( ).
A. B. C. D.
【答案】D
【解析】
【分析】
运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出 的最小值.
19.设函数 ( 且 )是定义域为 的奇函数.
(1)求实数 的值;
(2)若 , ,且 在 上的最小值为1,求实数 的值.
【答案】(1) ;(2) .
【解析】
【分析】
(1)根据奇函数 这一性质求解即可;
(2)由 ,求出 的值,利用换元法,根据二次函数的单调性,分类讨论进行求解即可.
【详解】(1)因为 是定义域为 的奇函数,所以 ,

2018-2019学年高二数学上学期开学考试试题理(含解析)

本试卷分第I卷(选择题)、第II卷(非选择题)两部分.共150分,考试时间120分钟.第I卷一、选择题(本大题共12小题,每小题5分,共60分.)1.已知集合A={-2,-1,0,1,2},B={x|(x -1)(x+2)<0},则A∩B=()A. {--1,0}B. {0,1}C. {-1,0,1}D. {,0,,1,2}【答案】A【解析】【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【详解】B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点睛】本题考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.已知等差数列中,,则()A. 8B. 16C. 24D. 32【答案】D【解析】【分析】利用等差数列通项公式直接求解.【详解】∵等差数列{a n}中,a5=8,∴a2+a4+a5+a9=a1+d+a1+3d+a5+a1+8d=a5+(3a1+12d)=4a5=4×8=32.故选:D.【点睛】本题考查等差数列的四项和的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.3.各项都是实数的等比数列{},前n项和记为,若, ,则等于()A. 50B. 60C. 70D. 90【答案】C【解析】【分析】由等比数列的性质,得:S10,S20﹣S10,S30﹣S20成等比数列,由此能求出S30的值.【详解】∵在等比数列中,S10=10,S20=30,由等比数列的性质,得:S10,S20﹣S10,S30﹣S20成等比数列,∴(S20﹣S10)2=S10•(S30﹣S20),∴(30﹣10)2=10(S30﹣30),解得S30=70.故选:C.【点睛】本题考查等差数列的前30项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.已知的面积为,且,则等于( )A. 30°B. 30°或150°C. 60°D. 60°或120°【答案】D【解析】【分析】由面积公式得,进而可求得,从而得解.【详解】由面积公式得,∴,A=60°或120°,故选:D.【点睛】本题主要考查正弦定理之下的三角形面积公式与特殊角的三角函数值,属于基础题.5.设入射光线沿直线射向直线,则被反射后,反射光线所在的直线方程是()A. B. C. D.【答案】D【解析】试题分析:反射光线和入射光线关于直线对称,所以设入射光线上的任意两点,其关于直线对称的两个点的坐标分别为,且这两个点在反射光线。

2019-2020学年高二数学上学期入学考试试题(含解析)

2019-2020学年高二数学上学期入学考试试题(含解析)一、选择题(共12小题;共60分)1.设集合,集合,则()A. B.C. D.【答案】B【解析】【分析】本题结合一元二次不等式的解法,考察集合的并集运算。

【详解】可解得集合A,,选B.【点睛】解决一元二次不等式应注意大前提是二次项系数大于零时才满足:小于取中间,大于取两边。

2.在等比数列中,,,则()A. B. C. D.【答案】D【解析】分析】应当做整体处理,可看做,求出,再进行求解。

【详解】,可求出=6,,选D.【点睛】等比数列的求法主要是解决的问题,整体代换解决是数学中常用的方法,考生应强化指数的相关运算。

3.已知为平面,为直线,下列命题正确的是( )A. ,若,则B. ,则C. ,则D. ,则【答案】D【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.4.与直线的距离等于的直线方程为()A. B.C. 或D. 或【答案】C【解析】【分析】本题考查平行直线间的距离公式。

【详解】设直线方程为,两平行直线间的距离为,解得c=0或-2。

直线的方程为或正确答案选C。

【点睛】平行直线间的距离公式为5.已知向量,,,若,则的值为()A. B. C. D.【答案】B【解析】【分析】本题考察的是向量的数量积公式的坐标运算、同角三角函数的求法、正切角的和角公式。

【详解】= ,,,,,选B.【点睛】本题不难,但综合性强,三角函数的基本公式能熟练运用,同角三角函数能进行快速转换是本题快速解题的关键。

6.已知数列的通项公式为,则满足的的取值为()A. B. C. D.【答案】B【解析】【分析】本题考察了数列通项的表示方法、不等式分类讨论的基本思想。

【详解】,,可得<,<,此时可分三种情况进行讨论:②时,,②时,,③时,,所以,选B.【点睛】解题遇到不等式中未知项在分母时,需进行分类讨论,讨论时要做到不重不漏。

2019-2020学年高二数学上学期开学考试试题理(含解析)

2019-2020学年高二数学上学期开学考试试题理(含解析)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一项是符合题目要求的把答案填涂在答题卡上)1.已知集合,集合,则符合条件的集合的子集个数为()A. B. C. D.【答案】C【解析】【分析】列举出集合中的运算,利用子集个数公式可得出结果.【详解】,,因此,符合条件的集合的子集个数为.故选:C.【点睛】本题考查集合子集个数的计算,解答的关键就是求出集合的元素个数,考查计算能力,属于基础题.2.若函数的单调递增区间是,则的值为()A. B. C. D.【答案】D【解析】【分析】将函数的解析式表示为分段函数的形式,求出该函数的单调递增区间,即可得出实数的值.【详解】,则函数的单调递增区间为,,解得.故选:D.【点睛】本题考查利用函数的单调区间求参数,考查计算能力,属于基础题.3.已知直线,,,若且,则的值为()A. B. C. D.【答案】D【解析】【分析】根据直线平行与垂直求出实数、的值,进而可计算出的值.【详解】,则,解得,,则,解得.因此,.故选:D.【点睛】本题考查根据两直线平行与垂直求参数,考查计算能力,属于基础题.4.已知、是两条不同直线,、、是三个不同平面,下列命题中正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】【分析】利用面面垂直的性质定理可判断A选项的正误;利用线面垂直的性质定理可判断B选项的正误;利用线面平行的性质定理可判断C选项的正误;利用线面平行和面面平行的性质定理可判断D选项的正误.综合可得出结论.【详解】对于A选项,若,,则与平行或相交,A 选项错误;对于B选项,若,,则,B选项正确;对于C选项,若,,则与平行、相交或异面,C选项错误;对于D选项,若,,则与平行或相交,D选项错误.故选:B.【点睛】本题主要考查空间直线和平面、平面和平面平行或垂直的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.5.函数的图象是( )A. B.C. D.【答案】A【解析】【详解】试题分析:由偶函数排除B、D,排除C.故选A.考点:函数的图象与性质.6.已知函数是定义在上的偶函数,对任意,都有,当时,,则()A. B. C. 1 D.【答案】C【解析】由题意,故选C.7.各侧棱长都相等,底面是正多边形的棱锥称为正棱锥,正三棱锥的侧棱长为,侧面都是直角三角形,且四个顶点都在同一个球面上,则该球的表面积为()A. B. C. D.【答案】D【解析】因为侧棱长为a的正三棱锥P﹣ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;所以球的表面积为:4π=3πa2故答案为D.点睛:本题考查了球与几何体的问题,是高考中的重点问题,一般外接球需要求球心和半径,首先应确定球心的位置,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心,有时也可利用补体法得到半径.8.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】B【解析】【分析】首先根据函数的图象求出该函数的周期,进一步利用函数经过的点的坐标求出函数的解析式,然后利用函数图象的平移变换可得出结果.【详解】由图象可知,函数的最小正周期为,,,,,由于函数在附近单调递减,则,,,则,,所以,,因此,为了得到函数的图象,只需将函数的图象上所有点向左平移个单位长度.故选:B.【点睛】本题考查了利用函数图象求函数解析式,以及三角函数图象变换,考查计算能力,属于中等题.9.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是、、、,给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A. ①和②B. ①和③C. ④和②D. ③和②【答案】C【解析】【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【详解】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:C.【点睛】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.10.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点.角满足,则的值为()A. 或B.C.D. 或【答案】A【解析】【分析】利用三角函数的定义可得出和的值,分和两种情况讨论,利用两角差的余弦公式可求得的值.【详解】,.由任意角的三角函数的定义可得,.当时,;当时,.综上所述,或.故选:A.【点睛】本题考查三角函数求值,涉及两角差的余弦公式的应用,考查计算能力,属于中等题.11.已知直线与圆交于两点,且为等边三角形,则圆的面积为A. B. C. D.【答案】D【解析】圆方程可化为圆心到直线的距离,故选D.12.对实数和,定义运算“”:,设函数,,若函数的图象与轴恰有两个公共点,则实数的取值范围是()A. B.C. D.【答案】B【解析】【分析】令得,将问题转化为直线与函数的图象有两个交点,并根据定义得出的解析式,作出函数的图象即可得出答案.【详解】令得,将问题转化为直线与函数的图象有两个交点,若,即,解得.若,即,解得或...作出函数的图象如下图所示:如图所示,当或时,直线与函数的图象有两个交点,因此,实数的取值范围是.故选:B.【点睛】本题考查了利用函数的零点个数求参数,解题的关键就是作出函数的图象,考查数形结合思想的应用,属于中档题.二、填空题(本大题4小题,每小题4分,共16分.把正确答案填在题中横线上)13.已知幂函数的图象过点,则_______.【答案】【解析】试题分析:因为是幂函数,所以,得,,.考点:幂函数的定义.14.化简__________.【答案】【解析】【分析】通分,利用二倍角的正弦、余弦的降幂公式可化简所求代数式.【详解】.故答案为:.【点睛】本题考查三角函数值化简计算,涉及二倍角降幂公式的应用,考查计算能力,属于中等题.15.在平行四边形中,,,为的中点.若,则的长为__________.【答案】【解析】【分析】利用基底、表示向量,然后利用平面向量数量积的运算律可求得的长.【详解】如下图所示:是的中点,四边形为平行四边形,,,,,,解得.故答案:.【点睛】本题考查向量模的计算,选择合适的基底表示向量是解答的关键,考查了平面向量数量积运算律的应用,考查运算求解能力,属于中等题.16.在函数的图象上求一点,使到直线的距离最短,则点的坐标为__________.【答案】【解析】【分析】设点的坐标为,利用点到直线的距离公式结合二次函数的基本性质可求得点的坐标.【详解】设点的坐标为,则点到直线的距离为,当时,即当时,取最小值,因此,点的坐标为.故答案为:.【点睛】本题考查抛物线上到直线距离最小的点的坐标的求解,考查点到直线的距离公式和二次函数的基本性质的应用,考查计算能力,属于中等题.三、解答题(本大题共6小题,共56分,解答应写出文字说明、证明过程或演算步骤)17.平面向量,,,已知,.(1)求向量和向量;(2)求与夹角和.【答案】(1),;(2)与的夹角为,.【解析】【分析】(1)利用共线向量的坐标表示可求得的值,利用垂直向量的坐标表示可求得的值,由此可计算出向量和向量的坐标;(2)计算出的值,可求得与的夹角,利用向量模的坐标计算公式可求出.【详解】(1),,,且,,所以,解得,因此,,;(2),则,即与的夹角为.,因此,.【点睛】本题考查利用向量平行与垂直求参数,同时也考查了向量夹角与模的计算,考查运算求解能力,属于基础题.18.已知圆,直线.(1)当为何值时,直线与圆相切.(2)当直线与圆相交于、两点,且时,求直线的方程.【答案】(1);(2)或.【解析】【分析】(1)将圆的方程化为标准形式,得出圆的圆心坐标和半径长,利用圆心到直线的距离等于半径,可计算出实数的值;(2)利用弦长的一半、半径长和弦心距满足勾股定理可求得弦心距,利用点到直线的距离公式可求得实数的值,进而可得出直线的方程.【详解】(1)圆的标准方程为,圆心的坐标为,半径长为,当直线与圆相切时,则,解得;(2)由题意知,圆心到直线的距离为,由点到直线的距离公式可得,整理得,解得或.因此,直线的方程为或.【点睛】本题考查直线与圆的位置关系,考查利用直线与圆相切求参数以及根据弦长求直线方程,解答的核心就是圆心到直线的距离的计算,考查计算能力,属于中等题.19.已知定义在上的函数是奇函数.(1)求实数的值,并求函数的值域;(2)若集合为值域,集合,集合,求.【答案】(1),值域为;(2).【解析】【分析】(1)利用奇函数定义得出,化简计算可求得实数的值,令,用表示,结合可求出的取值范围,即为函数的值域;(2)求出集合、,利用补集和交集的定义可求出集合.【详解】(1)因为函数是奇函数,则,即,解得,.由得,,得,即,解得.因此,函数的值域为;(2)由于对数函数为上的增函数,当时,,则,,则,且,因此,.【点睛】本题考查利用函数的奇偶性求参数,同时也考查了函数值域以及集合的混合运算,考查计算能力,属于中等题. 20.已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面,、分别是、的中点.(1)求证:平面;(2)求证:;(3)求与平面所成角的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接交于点,连接、,证明四边形为平行四边形,可得出,再利用线面平行的判定定理即可得出结论;(2)取的中点,连接、、,证明出平面,进而可证明出;(3)连接,证明出平面,可得出与平面所成的角为,通过解可得出的值.【详解】(1)如图,连接交于点,连接、,则为的中点,在三棱柱中,且,、分别为、的中点,所以,且,为的中点,且,则四边形为平行四边形,,平面,平面,因此,平面;(2)取的中点,连接、、,四边形为菱形,则,、分别为、的中点,,则.为等边三角形,为的中点,,平面平面,平面平面,平面,平面,平面,,,平面,平面,;(3)由(2)知,平面,所以,直线与平面所成的角为,,,则为等边三角形,所以,,同理可得,,平面,平面,,则为等腰直角三角形,且,因此,与平面所成角.【点睛】本题考查直线与平面平行的证明,同时也考查了利用线面垂直证明线线垂直,以及线面角的计算,考查推理能力与计算能力,属于中等题.21.已知线段的端点的坐标是,端点在圆上运动.(Ⅰ)求线段的中点的轨迹的方程;(Ⅱ)设圆与曲线的两交点为,求线段的长;(Ⅲ)若点在曲线上运动,点在轴上运动,求的最小值.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】试题分析:(Ⅰ)设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得,,再由点在圆上运动,求得点的轨迹方程,进而可求得点点的轨迹的方程;(Ⅱ)由两圆的方程,相减得到直线的方程,根据圆的弦长公式,即可求解的长;(Ⅲ)根据圆的性质得,由为关于轴的对称点,进而可求得的最小值,即可得到的最小值.试题解析:(Ⅰ)设点的坐标为,点的坐标为,由于点的坐标为,且点是线段的中点,所以,于是有,①因为点在圆上运动,所以点的坐标满足方程即:②把①代入②,得整理,得所以点的轨迹的方程为.(Ⅱ)圆与圆的方程相减得:由圆的圆心为,半径为1,且到直线的距离则公共弦长(Ⅲ)是以为圆心,半径的圆是以为圆心,半径的圆所以①当且仅当在线段且在线段上时,取等号.设为关于轴的对称点则代入①式得:当且仅当共线时,取等号.所以的最小值为.点睛:本题考查了圆的标准方程求解、直线与圆的位置关系等知识点的应用,此类为解答的关键在于熟记圆的标准方程与一般方程、直线与圆的位置关系的判定与应用,同时注意数形结合法与转化思想在解题中的合理运用.22.已知向量,设函数.(1)求的值域;(2)设函数的图像向左平移个单位长度后得到函数的图像,若不等式有解,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)根据向量的数量积和三角形函数的性质即可求出值域;(2)先求出h(x),由不等式f(x)+h(x)+sin2x﹣m<0有解,转化为m>f(x)+h(x)+sin2x,根据二次函数的性质即可求出.【详解】解:(1),的值域为(2)函数,的图像向左平移个单位长度后得到函数的图像,,,依题意,不等式在有解,设,令,则函数的值域为.故实数的取值范围为.【点睛】本题主要考查函向量数量积,正余弦函数的单调性、定义域和值域,二次函数的性质,不等式成立的问题,属于中档题.2019-2020学年高二数学上学期开学考试试题理(含解析)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一项是符合题目要求的把答案填涂在答题卡上)1.已知集合,集合,则符合条件的集合的子集个数为()A. B. C. D.【答案】C【解析】【分析】列举出集合中的运算,利用子集个数公式可得出结果.【详解】,,因此,符合条件的集合的子集个数为.故选:C.【点睛】本题考查集合子集个数的计算,解答的关键就是求出集合的元素个数,考查计算能力,属于基础题.2.若函数的单调递增区间是,则的值为()A. B. C. D.【答案】D【解析】【分析】将函数的解析式表示为分段函数的形式,求出该函数的单调递增区间,即可得出实数的值.【详解】,则函数的单调递增区间为,,解得.故选:D.【点睛】本题考查利用函数的单调区间求参数,考查计算能力,属于基础题.3.已知直线,,,若且,则的值为()A. B. C. D.【答案】D【解析】【分析】根据直线平行与垂直求出实数、的值,进而可计算出的值.【详解】,则,解得,,则,解得.因此,.故选:D.【点睛】本题考查根据两直线平行与垂直求参数,考查计算能力,属于基础题.4.已知、是两条不同直线,、、是三个不同平面,下列命题中正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】【分析】利用面面垂直的性质定理可判断A选项的正误;利用线面垂直的性质定理可判断B选项的正误;利用线面平行的性质定理可判断C选项的正误;利用线面平行和面面平行的性质定理可判断D选项的正误.综合可得出结论.【详解】对于A选项,若,,则与平行或相交,A选项错误;对于B选项,若,,则,B选项正确;对于C选项,若,,则与平行、相交或异面,C选项错误;对于D选项,若,,则与平行或相交,D选项错误.故选:B.【点睛】本题主要考查空间直线和平面、平面和平面平行或垂直的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.5.函数的图象是( )A. B.C. D.【答案】A【解析】【详解】试题分析:由偶函数排除B、D,排除C.故选A.考点:函数的图象与性质.6.已知函数是定义在上的偶函数,对任意,都有,当时,,则()A. B. C. 1 D.【答案】C【解析】由题意,故选C.7.各侧棱长都相等,底面是正多边形的棱锥称为正棱锥,正三棱锥的侧棱长为,侧面都是直角三角形,且四个顶点都在同一个球面上,则该球的表面积为()A. B. C. D.【答案】D【解析】因为侧棱长为a的正三棱锥P﹣ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;所以球的表面积为:4π=3πa2故答案为D.点睛:本题考查了球与几何体的问题,是高考中的重点问题,一般外接球需要求球心和半径,首先应确定球心的位置,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心,有时也可利用补体法得到半径.8.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】B【解析】【分析】首先根据函数的图象求出该函数的周期,进一步利用函数经过的点的坐标求出函数的解析式,然后利用函数图象的平移变换可得出结果.【详解】由图象可知,函数的最小正周期为,,,,,由于函数在附近单调递减,则,,,则,,所以,,因此,为了得到函数的图象,只需将函数的图象上所有点向左平移个单位长度.故选:B.【点睛】本题考查了利用函数图象求函数解析式,以及三角函数图象变换,考查计算能力,属于中等题.9.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是、、、,给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A. ①和②B. ①和③C. ④和②D. ③和②【答案】C【解析】【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【详解】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:C.【点睛】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.10.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点.角满足,则的值为()A. 或B.C.D. 或【答案】A【解析】【分析】利用三角函数的定义可得出和的值,分和两种情况讨论,利用两角差的余弦公式可求得的值.【详解】,.由任意角的三角函数的定义可得,.当时,;当时,.综上所述,或.故选:A.【点睛】本题考查三角函数求值,涉及两角差的余弦公式的应用,考查计算能力,属于中等题.11.已知直线与圆交于两点,且为等边三角形,则圆的面积为A. B. C. D.【答案】D【解析】圆方程可化为圆心到直线的距离,故选D.12.对实数和,定义运算“”:,设函数,,若函数的图象与轴恰有两个公共点,则实数的取值范围是()A. B.C. D.【答案】B【解析】【分析】令得,将问题转化为直线与函数的图象有两个交点,并根据定义得出的解析式,作出函数的图象即可得出答案.【详解】令得,将问题转化为直线与函数的图象有两个交点,若,即,解得.若,即,解得或...作出函数的图象如下图所示:如图所示,当或时,直线与函数的图象有两个交点,因此,实数的取值范围是.故选:B.【点睛】本题考查了利用函数的零点个数求参数,解题的关键就是作出函数的图象,考查数形结合思想的应用,属于中档题.二、填空题(本大题4小题,每小题4分,共16分.把正确答案填在题中横线上)13.已知幂函数的图象过点,则_______.【答案】【解析】试题分析:因为是幂函数,所以,得,,.考点:幂函数的定义.14.化简__________.【答案】【解析】【分析】通分,利用二倍角的正弦、余弦的降幂公式可化简所求代数式.【详解】.故答案为:.【点睛】本题考查三角函数值化简计算,涉及二倍角降幂公式的应用,考查计算能力,属于中等题.15.在平行四边形中,,,为的中点.若,则的长为__________.【答案】【解析】【分析】利用基底、表示向量,然后利用平面向量数量积的运算律可求得的长.【详解】如下图所示:是的中点,四边形为平行四边形,,,,,,解得.故答案:.【点睛】本题考查向量模的计算,选择合适的基底表示向量是解答的关键,考查了平面向量数量积运算律的应用,考查运算求解能力,属于中等题.16.在函数的图象上求一点,使到直线的距离最短,则点的坐标为__________.【答案】【解析】【分析】设点的坐标为,利用点到直线的距离公式结合二次函数的基本性质可求得点的坐标.【详解】设点的坐标为,则点到直线的距离为,当时,即当时,取最小值,因此,点的坐标为.故答案为:.【点睛】本题考查抛物线上到直线距离最小的点的坐标的求解,考查点到直线的距离公式和二次函数的基本性质的应用,考查计算能力,属于中等题.三、解答题(本大题共6小题,共56分,解答应写出文字说明、证明过程或演算步骤)17.平面向量,,,已知,.(1)求向量和向量;(2)求与夹角和.【答案】(1),;(2)与的夹角为,.【解析】【分析】(1)利用共线向量的坐标表示可求得的值,利用垂直向量的坐标表示可求得的值,由此可计算出向量和向量的坐标;(2)计算出的值,可求得与的夹角,利用向量模的坐标计算公式可求出.【详解】(1),,,且,,所以,解得,因此,,;(2),则,即与的夹角为.,因此,.【点睛】本题考查利用向量平行与垂直求参数,同时也考查了向量夹角与模的计算,考查运算求解能力,属于基础题.18.已知圆,直线.(1)当为何值时,直线与圆相切.(2)当直线与圆相交于、两点,且时,求直线的方程.【答案】(1);(2)或.【解析】【分析】(1)将圆的方程化为标准形式,得出圆的圆心坐标和半径长,利用圆心到直线的距离等于半径,可计算出实数的值;(2)利用弦长的一半、半径长和弦心距满足勾股定理可求得弦心距,利用点到直线的距离公式可求得实数的值,进而可得出直线的方程.【详解】(1)圆的标准方程为,圆心的坐标为,半径长为,当直线与圆相切时,则,解得;(2)由题意知,圆心到直线的距离为,由点到直线的距离公式可得,整理得,解得或.因此,直线的方程为或.【点睛】本题考查直线与圆的位置关系,考查利用直线与圆相切求参数以及根据弦长求直线方程,解答的核心就是圆心到直线的距离的计算,考查计算能力,属于中等题.19.已知定义在上的函数是奇函数.(1)求实数的值,并求函数的值域;(2)若集合为值域,集合,集合,求.【答案】(1),值域为;(2).【解析】【分析】(1)利用奇函数定义得出,化简计算可求得实数的值,令,用表示,结合可求出的取值范围,即为函数的值域;(2)求出集合、,利用补集和交集的定义可求出集合.【详解】(1)因为函数是奇函数,则,即,解得,.由得,,得,即,解得.因此,函数的值域为;(2)由于对数函数为上的增函数,当时,,则,,则,且,因此,.【点睛】本题考查利用函数的奇偶性求参数,同时也考查了函数值域以及集合的混合运算,考查计算能力,属于中等题.20.已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面,、分别是、的中点.(1)求证:平面;(2)求证:;(3)求与平面所成角的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接交于点,连接、,证明四边形为平行四边形,可得出,再利用线面平行的判定定理即可得出结论;(2)取的中点,连接、、,证明出平面,进而可证明出;(3)连接,证明出平面,可得出与平面所成的角为,通过解可得出的值.【详解】(1)如图,连接交于点,连接、,则为的中点,在三棱柱中,且,、分别为、的中点,所以,且,为的中点,且,则四边形为平行四边形,,平面,平面,因此,平面;(2)取的中点,连接、、,四边形为菱形,则,、分别为、的中点,,则.为等边三角形,为的中点,,平面平面,平面平面,平面,平面,平面,,,平面,平面,;(3)由(2)知,平面,所以,直线与平面所成的角为,,,则为等边三角形,所以,,同理可得,,平面,平面,,则为等腰直角三角形,且,因此,与平面所成角.。

2019-2020学年高二数学上学期开学考试试题(含解析)

2019-2020学年高二数学上学期开学考试试题(含解析)一、选择题(本大题共12小题)已如集合,,则A. B.C. 或D.已知向量,,,若,则实数x的值为A. B. C. D.已知,,则A. B. C. D.已知等比数列满足,且,则A. 8B. 16C. 32D. 64对于实数a,b,c,下列命题正确的是A. 若,则B. 若,则C. 若,则D. 若,则过两直线:,:的交点且与平行的直线方程为A. B.C. D.已知是公差为1的等差数列,为的前n项和,若,则A. B. C. 10 D. 12设m,n是两条不同的直线,,是两个不同的平面,下列命题正确的是A. ,,且,则B. ,,且,则C. ,,,则D. ,,,,则已知的内角A,B,C所对的边分别为,c,且,,A. B. C. D.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 相交或相切已知圆锥的底面圆周及顶点均在球面上,若圆锥的轴截面为正三角形,则圆锥的体积与球的体积之比为A. 27:32B. 3:8C. :16D. 9:32在R上定义运算:若不等式对任意实数x成立,则A. B. C. D.二、填空题(本大题共4小题)函数的定义域为______.若,,,则的最小值为______.设,将的图象向右平移个单位长度,得到的图象,若是偶函数,则的最小值为______如图,正方形ABCD中,M,N分别是BC,CD的中点,若,则.三、解答题(本大题共4小题)等差数列中,,,Ⅰ求的通项公式;Ⅱ设,求数列的前n项和.已知圆C:,直线:,:若,,被圆C所截得的弦的长度之比为1:2,求实数k的值已知线段AB的端点B的坐标是,端点A在圆C上运动,求线段AB的中点M的轨迹方程如图,正方体切掉三棱锥后形成多面体,过的截面分别交,于点E,F.证明:平面;求异面直线与EF所成角的余弦值.如图,某城市有一块半径为单位:百米的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处图中阴影部分只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C相切的小道问:A,B两点应选在何处可使得小道AB最短?2019-2020学年高二数学上学期开学考试试题(含解析)一、选择题(本大题共12小题)已如集合,,则A. B.C. 或D.已知向量,,,若,则实数x的值为A. B. C. D.已知,,则A. B. C. D.已知等比数列满足,且,则A. 8B. 16C. 32D. 64对于实数a,b,c,下列命题正确的是A. 若,则B. 若,则C. 若,则D. 若,则过两直线:,:的交点且与平行的直线方程为A. B.C. D.已知是公差为1的等差数列,为的前n项和,若,则A. B. C. 10 D. 12设m,n是两条不同的直线,,是两个不同的平面,下列命题正确的是A. ,,且,则B. ,,且,则C. ,,,则D. ,,,,则已知的内角A,B,C所对的边分别为,c,且,,A. B. C. D.直线与圆的位置关系是A. 相交B. 相切C. 相离D. 相交或相切已知圆锥的底面圆周及顶点均在球面上,若圆锥的轴截面为正三角形,则圆锥的体积与球的体积之比为A. 27:32B. 3:8C. :16D. 9:32在R上定义运算:若不等式对任意实数x成立,则A. B. C. D.二、填空题(本大题共4小题)函数的定义域为______.若,,,则的最小值为______.设,将的图象向右平移个单位长度,得到的图象,若是偶函数,则的最小值为______如图,正方形ABCD中,M,N分别是BC,CD的中点,若,则.三、解答题(本大题共4小题)等差数列中,,,Ⅰ求的通项公式;Ⅱ设,求数列的前n项和.已知圆C:,直线:,:若,,被圆C所截得的弦的长度之比为1:2,求实数k的值已知线段AB的端点B的坐标是,端点A在圆C上运动,求线段AB的中点M的轨迹方程如图,正方体切掉三棱锥后形成多面体,过的截面分别交,于点E,F.证明:平面;求异面直线与EF所成角的余弦值.如图,某城市有一块半径为单位:百米的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处图中阴影部分只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C相切的小道问:A,B两点应选在何处可使得小道AB最短?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年上学期高二开学摸底考试数学试卷本试卷分第I卷(选择题)、第II卷(非选择题)两部分.共150分,考试时间120分钟.第I卷一、选择题(本大题共12小题,每小题5分,共60分.)1.已知集合A={-2,-1,0,1,2},B={x|(x -1)(x+2)<0},则A∩B=()A. {--1,0}B. {0,1}C. {-1,0,1}D. {,0,,1,2}【答案】A【解析】【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【详解】B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点睛】本题考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.已知等差数列中,,则()A. 8B. 16C. 24D. 32【答案】D【解析】【分析】利用等差数列通项公式直接求解.【详解】∵等差数列{a n}中,a5=8,∴a2+a4+a5+a9=a1+d+a1+3d+a5+a1+8d=a5+(3a1+12d)=4a5=4×8=32.故选:D.【点睛】本题考查等差数列的四项和的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.3.各项都是实数的等比数列{},前n项和记为,若, ,则等于()A. 50B. 60C. 70D. 90【答案】C【解析】【分析】由等比数列的性质,得:S10,S20﹣S10,S30﹣S20成等比数列,由此能求出S30的值.【详解】∵在等比数列中,S10=10,S20=30,由等比数列的性质,得:S10,S20﹣S10,S30﹣S20成等比数列,∴(S20﹣S10)2=S10•(S30﹣S20),∴(30﹣10)2=10(S30﹣30),解得S30=70.故选:C.【点睛】本题考查等差数列的前30项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.已知的面积为,且,则等于( )A. 30°B. 30°或150°C. 60°D. 60°或120°【答案】D【解析】【分析】由面积公式得,进而可求得,从而得解.【详解】由面积公式得,∴,A=60°或120°,故选:D.【点睛】本题主要考查正弦定理之下的三角形面积公式与特殊角的三角函数值,属于基础题.5.设入射光线沿直线射向直线,则被反射后,反射光线所在的直线方程是()A. B. C. D.【答案】D【解析】试题分析:反射光线和入射光线关于直线对称,所以设入射光线上的任意两点,其关于直线对称的两个点的坐标分别为,且这两个点在反射光线上,由直线的两点式可求出反射光线所在的直线方程为,所以D为正确答案.考点:1、直线的对称性;2、直线方程的求法.6.设为直线,是两个不同的平面,则下列事件中是必然事件的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】【分析】利用空间中的线面关系逐一核对四个选项得答案.【详解】对于A,若l∥α,l∥β,则α∥β或α与β相交,故A错误;对于B,若 l⊥α,l⊥β,由线面垂直的性质得α∥β,故B正确;对于C,若l⊥α,l∥β,则α⊥β,故C错误;对于D,若α⊥β,l∥α,则 l⊂β或l∥β或l与β相交.故选:B.【点睛】本题考查命题的真假判断与应用,考查了空间中的线面关系,属于中档题.7.已知函数,则函数的值域为()A. B. C. D.【答案】B【解析】【分析】根据二次函数与指数函数的图象与性质,求出函数f(x)的值域.【详解】函数,∴f(x)=,又﹣(x﹣1)2+1≤1,∴0<≤2,∴函数f(x)的值域为(0,2].故选:B.【点睛】本题考查了二次函数与指数函数的图象与性质应用问题,属于基础题.8.设且,则下列不等式中恒成立的是().A. B. C. D.【答案】D【解析】【分析】举出反例a=-2,b=1,可判断A,B,C均不成立,进而得到答案.【详解】对于A,取a=-2,b=1,显然不成立;对于B,取a=-2,b=1,显然不成立;对于C, 取a=-2,b=1,显然不成立;对于D,函数y=x3在R上单调递增,时有故选:D【点睛】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.9.如果直线与直线互相垂直,则的值为().A. B. C. , D. ,,【答案】C【解析】本题主要考查平面直线的位置关系.根据任意两条直线,的垂直判定定理:,将题目中的参数代入上式得到:,解得或.故本题正确答案为.10.点在直线上,为原点,则的最小值为()A. B. C. D.【答案】A【解析】试题分析:直线上的点到原点的距离的最小值,即原点到直线的距离,根据点到直线的距离公式得:,故答案为A.考点:1.定点到直线上的点的距离的最小值;2.点到直线的距离公式.11.关于函数f(x)=2(sin x-cos x)cos x的四个结论:P1:最大值为;P2:把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)cos x的图象;P3:单调递增区间为 (k∈Z);P4:图象的对称中心为 (k∈Z).其中正确的结论有 ( ).A. 1个B. 2个C. 3个D. 4个【解析】【分析】化简函数的解析式,求出函数的最值判断①的正误;利用三角函数的图象的平移判断②的正误;求出函数的单调增区间判断③的正误;求出函数的对称中心判断④的正误.【详解】对于①,因为f(x)=2sinxcosx﹣2cos2x=sin(2x﹣)﹣1,所以最大值为﹣1,故①错误.对于②,将f(x)=sin2x﹣1的图象向右平移个单位后得到f(x)=sin(2x﹣)﹣1的图象,而函数f(x)=2(sinx﹣cosx)cosx=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1.故②错误.对于③,由﹣+2kπ≤2x﹣≤+2kπ,得﹣+kπ≤x≤+kπ,k∈Z,即增区间为[kπ+,kπ+(k∈Z),故③正确.对于④,由2x﹣=kπ,k∈Z,得x=+,k∈Z,所以函数的对称中心为(π+,﹣1)(k∈Z).故④正确.故选:B.【点睛】本题考查三角函数的化简求值,函数的单调性以及函数的图象的平移,三角函数的对称中心,是中档题.12.不等式对于恒成立,那么的取值范围是()A. B. C. D.【答案】B【解析】【分析】对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.【详解】不等式(a﹣2)x2﹣2(a﹣2)x﹣4<0对一切x∈R恒成立,当a﹣2=0,即a=2时,﹣4<0恒成立,满足题意;当a﹣2≠0时,要使不等式恒成立,需,即有,即,解得﹣2<a<2.综上可得,a的取值范围为(﹣2,2].故选:B.【点睛】本题考查了不等式恒成立问题,主要考查的是二次函数的图象和性质,注意讨论二次项系数是否为0,是第II卷二、填空题(本大题共4小题,每小题5分,共20分.)13.角的终边经过点且 ,则 =_____________.【答案】【解析】【分析】由角α的终边经过点P(x,4),根据cosα的值求出x的值,确定出P的坐标,利用同角三角函数间的基本关系求出sinα的值.【详解】∵角α的终边经过点P(x,4),且,∴cosα==,即x=0,x=3或x=﹣3,∴P(±3,4),∴sinα=,故答案为:【点睛】此题考查三角函数的定义,同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.14.数列,,,,…的第5项是____________.【答案】【解析】【分析】根据分子、分母及各项符号的变化情况得到结果.【详解】由数列:数列,,,,…可知:奇数项的符号为“+”,偶数项的符号为“-”,每项的绝对值为∴数列:,,,,…的一个通项公式是a n=(−1)n+1∴第5项是故答案为:.【点睛】本题考查了通过观察求数列的通项公式,考查了推理能力,属于基础题.15.已知△中,,,,则_________【答案】【解析】试题分析:由题意,由余弦定理知.考点:1.余弦定理.16.已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是________【答案】【解析】【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【详解】解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得 b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|x N﹣x P|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时 b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得 b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,直线经过点(0,),再根据直线平分△ABC的面积,故a不存在,故b<.综上可得,1﹣<b<,故答案为:.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.解下列不等式(1).(2).【答案】(1) ;(2)见解析.【解析】【分析】(1)首先将二次项系数化正,求出对应方程的根,直接写出解集即可;(2)按照a的正负、两根的大小关系讨论求解即可.【详解】()∵∴,∴,解得或,∴不等式的解集是或.()当,的图像开口向下,与轴交点为,,且,∴的解集为:,当时,,∴无解,当时,抛物线的图像开口向上,与轴交点为,,当时,不等式可化为,解得,当时,解得或,当时,解得或,综上,当时,不等式的解集是,当时,不等式的解集是,当时,不等式的解集是或,当时,不等式的解集是,当时,不等式的解集是或.【点睛】(1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.(2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即判别式的符号进行分类,最后当根存在时,再根据根的大小进行分类.18.已知.(1)若,求的值.(2)若,且,求的值.【答案】(1) ; (2)【解析】【分析】(1)利用诱导公式化简,然后结合同角基本关系式即可得到结果;(2)根据f(α)=sinαcosα=,两边加上1,利用同角三角函数间的基本关系化简,根据α的范围判断cosα﹣sinα为负数,开方即可求出值.【详解】(1)(2)由.可知:又因为,所以,即.所以.【点睛】此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.19.设△的内角所对边的长分别为,且有。

相关文档
最新文档