北师大版八年级下册全册数学教案
8年级数学北师大版下 册教案第2章《不等式的解集》

教学设计不等式的解集
拓展应用1、已知x﹣2﹤a的解集如图所示,则a的值为()
A、3
B、1
C、-3
D、4
2、不等式x﹤3的正整数解有()个。
A、1个
B、2个
C、3个
D、4个
3、不等式x﹤a的正整数解恰好是1,2,则a的取值范围为()
A 1<a<2
B 2<a<3
C 2≤a<3
D 2<a≤3
4. 在某次数学竞赛中,老师对优秀学生给予奖励,准备了30元,买了3个笔记本和若干支笔,已知笔记本每本4元,笔每支2元,问可以买多少支笔?
小结这节课你有哪些收获
板书设计
2.3不等式的解集
1.不等式的解:使不等式成立的未知数的值
2.不等式的解集:不等式的所有解
3.解不等式:
4.不等式解集的数轴表示:①画数轴
②找界点
③定方向
解集的表示
不等式的解
特殊到一般
思想
不等式的解集
数形结合
思想
不等式。
北师大版数学八年级下册第1章第2节直角三角形(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.注意引导学生围绕教学目标进行讨论,避免偏离主题。
3.关注发言不够积极的学生,鼓励他们参与讨论,提高他们的自信心。
-举例:通过几何图形的拼凑或代数方法,引导学生发现并理解勾股定理的推导。
-勾股定理的应用:将勾股定理应用于实际问题,解决如斜边长度计算等问题。
-举例:给出实际情景,如测量墙壁高度等,让学生运用勾股定理解决问题,注意单位的转换和计算过程的准确性。
-直角三角形的判定:在给定三条边长的情况下,准确判断一个三角形是否为直角三角形。
北师大版数学八年级下册第1章第2节直角三角形(教案)
一、教学内容
本节课选自北师大版数学八年级下册第1章第2节,主要内容为直角三角形。具体内容包括:
1.直角三角形的定义与性质:了解直角三角形的定义,掌握直角三角形的三个内角之和为180度,其中一个角为直角(90度)。
2.勾股定理:探讨直角三角形中,直角边与斜边的关系,推导并掌握勾股定理(a²+b²=c²)。
5.情感与价值观:激发学生对数学学习的兴趣,培养学生的数学美感,树立正确的数学价值观,认识到数学在科学、技术和社会发展中的重要作用。
三、教学难点与重点
1.教学重点
-直角三角形的定义与性质:理解直角三角形的定义,掌握直角三角形的内角和为180度,其中一个角为直角(90度)。
北师大版八年级下册数学全册教案设计(1)

北师大版八年级下册数学全册教案设计一、教学内容1. 第十一章:数据处理与概率11.1 数据的收集与整理11.2 频数与频率11.3 条形统计图和折线统计图11.4 饼图11.5 概率初步2. 第十二章:几何证明12.1 证明的概念与基本步骤12.2 对顶角、同位角、内错角12.3 平行线的性质12.4 三角形的内角和12.5 线段的垂直平分线二、教学目标1. 让学生掌握数据处理的基本方法和概率初步知识。
2. 培养学生运用几何证明方法解决问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:数据的处理与统计图的理解、几何证明的方法。
2. 教学重点:概率的计算、平行线的性质、三角形的内角和。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、计算器。
五、教学过程1. 实践情景引入通过生活中的实例,让学生了解数据处理与概率在实际生活中的应用。
引导学生通过观察、思考,发现几何图形中的规律。
2. 例题讲解详细讲解数据处理、统计图、概率计算的方法。
通过实际例题,让学生学会运用几何证明的方法解决问题。
3. 随堂练习设计具有代表性的练习题,巩固所学知识。
及时反馈,针对学生的错误进行讲解。
4. 课堂小结引导学生学会运用所学知识解决实际问题。
六、板书设计1. 数据处理与概率部分:板书展示数据的收集、整理、统计图、概率计算方法。
2. 几何证明部分:板书展示证明步骤、性质、定理。
七、作业设计1. 作业题目:第十一章:完成课后练习题1、2、3。
第十二章:完成课后练习题4、5、6。
2. 答案:见教材课后练习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生参加数学竞赛,提高解题能力。
布置研究性学习任务,让学生深入了解数据处理与概率在实际生活中的应用。
引导学生探索几何图形的奥秘,培养空间想象能力和逻辑思维能力。
重点和难点解析1. 教学内容的针对性与深度2. 教学目标的具体化与可测量性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与例题讲解5. 板书设计的条理清晰与信息量6. 作业设计的针对性与答案的准确性7. 课后反思的深度与拓展延伸的广度详细补充和说明:一、教学内容的针对性与深度教学内容的选择应紧密围绕教学目标,突出重点,兼顾难点。
北师大版八年级数学下册全套教案

§5.3 相似三角形教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义.2.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光.教学重点:.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)教学难点:准确找出相似三角形的对应边和对应角度。
教学方法:学情分析:教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.二、给出定义1.从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’可知△ABC∽△A’B’C’2.板书定义.叫学生写在笔记本上.3.什么叫相似比,说明相似比的意义.注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边)△ABC和△A’B’C’的比与△A’B’C’和△ABC的比不一定相等,而是成倒数的关系.三、导出定理1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?”如图:如果DE∥BC,∠ADE =∠B∠AED=∠C;AD:AB=DE D E:BC=AE:ACB C2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原三角形的三边对应成比例.(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)四、学生练习1、讨论224页练习1(1)所有的等腰三角形相似吗?等边三角形呢?为什么?(2)所有的直角三角形相似吗?等腰直角三角形呢?为什么?演示课件2、课堂练习224页2(目的,找对应边对应角)3、练习:找出哪些对三角形是相似的.找出对应角、对应边,列出比例式.五、课堂小结:1、相似三角形的定义;2、会准确找出两三角形的对应边和对应角;六、课外作业:P235 N1(1)、(2),N 2。
北师大版八年级下册数学3.1《1图形的平移》教案

4.平移在实际中的应用:分析生活中存在的平移现象,并能运用平移知识解决简单问题。
二、核心素养目标
1.培养学生的空间观念:通过图形的平移教学,使学生能够理解和感知图形在空间中的位置关系,发展空间想象力。
2.提升几何直观能力:让学生在观察、分析、操作图形平移过程中,培养几何直观思维,提高解决问题的能力。
三、教学难点与重点
பைடு நூலகம்1.教学重点
-图形平移的定义:使学生理解平移的概念,明确图形平移是在平面内所有点按照同一方向、相同距离的移动。
-平移的性质:掌握平移后图形的对应点、对应线段、对应角的关系,即对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
-平移的作图方法:学会利用三角板和直尺进行平移作图,掌握作图步骤和技巧。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们还能想到哪些生活中的平移现象?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-平移作图的方法:在作图过程中,学生可能会对如何准确、快速地进行平移作图感到困惑。
-平移在实际问题中的应用:学生可能难以将理论知识与实际情境相结合,需要教师引导和举例说明。
举例:在突破平移作图的难点时,可以引导学生按照以下步骤进行操作:
a.确定需要平移的图形。
b.确定平移的方向和距离。
c.利用三角板和直尺,按照确定的方向和距离,将图形的每个点进行平移。
3.增强逻辑推理能力:通过分析平移的性质和规律,培养学生严谨的逻辑推理能力,使他们能够运用逻辑思维解决问题。
八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案第一章:二次根式1.1 二次根式的概念与性质教学目标:理解二次根式的概念,掌握二次根式的性质及运算方法。
教学内容:介绍二次根式的定义,探索二次根式的性质,如平方、乘除、加减等运算方法。
教学方法:通过实际例子引导学生理解二次根式的概念,通过练习题巩固二次根式的性质及运算方法。
1.2 二次根式的乘除法教学目标:掌握二次根式的乘除法运算规则。
教学内容:介绍二次根式的乘除法运算方法,如乘法、除法的规则及注意事项。
教学方法:通过实际例子讲解二次根式的乘除法运算方法,通过练习题巩固学生的理解。
第二章:角的度量2.1 角的概念与分类教学目标:理解角的概念,掌握角的分类及度量方法。
教学内容:介绍角的概念,如锐角、直角、钝角等,学习角的度量方法,如度、分、秒的换算。
教学方法:通过实际例子引导学生理解角的概念,通过练习题巩固角的分类及度量方法。
2.2 量角器的使用教学目标:掌握量角器的使用方法,能够准确测量角的大小。
教学内容:介绍量角器的结构及使用方法,如量角器的摆放、读数等。
教学方法:通过实际操作讲解量角器的使用方法,通过练习题巩固学生的掌握程度。
第三章:平行线的性质3.1 平行线的定义与性质教学目标:理解平行线的定义,掌握平行线的性质及推论。
教学内容:介绍平行线的定义,探索平行线的性质,如同位角相等、内错角相等等。
教学方法:通过实际例子引导学生理解平行线的定义,通过练习题巩固平行线的性质及推论。
3.2 平行线的判定教学目标:掌握平行线的判定方法,能够正确判断两条直线是否平行。
教学内容:介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
教学方法:通过实际例子讲解平行线的判定方法,通过练习题巩固学生的理解。
第四章:几何图形的对称性4.1 对称性的概念与性质教学目标:理解对称性的概念,掌握对称性的性质及应用。
教学内容:介绍对称性的概念,探索对称性的性质,如轴对称、中心对称等。
北师大版八年级下册的数学教学计划3篇(八年级数学下册教学工作计划北师大版)
北师大版八年级下册的数学教学计划3篇(八年级数学下册教学工作计划北师大版)北师大版八班级下册的数学教学方案1一、指导思想通过数学课的教学,使同学切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本学问和基本技能;努力培育同学的运算力气、规律思维力气,以及分析问题和解决问题的力气。
二、学情分析本学期我连续担当八班级三班四班的数学教学工作,两个班共有109人,从上学期期末考试成果来看,两班数学基础一般,而且已经开头消逝两极分化现象,一部分同学解题作答比较马虎,不能很好的发挥自己的水平,因此要在本期获得理想成果,老师和同学都要付出努力,查漏补缺,充分发挥同学是学习的主体,老师是教的主体作用,留意方法,培育力气。
三、教学目标学问技能目标:熟识三角形,把握三角形中各种线段及外角相关学问,进而对多边形的相关学问进行理解把握;把握全等三角形的性质与判定、轴对称及轴对称图形的特点;把握整式的乘除运算、乘法公式和因式分解。
进一步提高必要的运算技能和作图技能,提高应用数学语言的应用力气,通过一次函数的学习初步建立数形结合的思维模式。
过程方法目标:把握提取实际问题中的数学信息的力气,并用有关的代数和几何学问表达数量之间的相互关系;初步建立数形结合的思维模式,学会观看、分析、归纳、总结几何图形的内在特点,学会使用数学语言表示数学关系。
态度情感目标:通过对数学学问的探究,进一步熟识数学与生活的亲热联系,明确学习数学的意义,并用数学学问去解决实际问题,获得成功的体验,树立学好数学的信念。
体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和进展的重要作用。
熟识数学学习是一个布满观看、实践、探究、归纳、类比、推理和缔造性的过程。
养成独立思索和合作相互沟通相结合的良好思维品质。
四、教材分析第十一章三角形本章主要学习与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用。
北师大版八年级数学下册教案 4-2 提公因式法
4.2提公因式法教学目标【知识与技能】1.了解公因式的意义,能够确定多项式中各项的公因式;2.了解因式分解的提公因式法,能够用提公因式法对多项式进行因式分解.【过程与方法】经历对多项式各项的公因式的意义和因式分解的提公因式法的探究过程.对公因式是多项式的情况,能够用整体思想因式分解.【情感、态度与价值观】养成独立思考的习惯,培养合作交流的意识,在因式分解过程中感受因式分解在简化计算中所起到的作用.教学重难点【教学重点】用提公因式法因式分解.【教学难点】能观察出公因式是多项式的情况,并能合理地进行分解因式.教学过程一、情境导入问题:一块场地由三个矩形组成,这些矩形的长分别为43,32,74,宽都是12,求这块场地的面积.解法一:S=12×43+12×32+12×74=23+34+78=5524;解法二:S=12×43+12×32+12×74=12×(43+32+74)=12×5512=5524.观察上面的解题过程,你发现哪种方法更简便?二、合作探究探究点1公因式典例1多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abcB.3a2b2C.3a2b2cD.3ab[解析]系数的最大公约数是3,相同字母的最低指数次幂是ab,所以公因式为3ab.[答案]D多项式各项都含有的相同因式,叫做这个多项式各项的公因式.确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.探究点2用提公因式法进行因式分解典例2因式分解:(1)4a2+6ab+2a;(2)-5x 3+10x 2-15x ;(3)14a 3b 2-2a 2b 3. [解析] (1)原式=2a ·2a +2a ·3b +2a ·1=2a (2a +3b +1).(2)原式=-5x ·x 2+(-5x )·(-2x )+(-5x )·3=-5x (x 2-2x +3).(3)原式=14(a 3b 2-8a 2b 3)=14a 2b 2(a -8b ).提公因式法的基本步骤:(1)找出公因式;(2)把多项式各项写成公因式与另一项乘积的形式;(3)提公因式并确定另一因式.探究点3 提取多项式公因式进行因式分解典例3 下列因式分解正确的是 ( )A.mn (m -n )-m (n -m )=-m (n -m )(n +1)B.6(p +q )2-2(p +q )=2(p +q )(3p +q -1)C.3(y -x )2+2(x -y )=(y -x )(3y -3x +2)D.3x (x +y )-(x +y )2=(x +y )(2x +y )[解析] mn (m -n )-m (n -m )=-m (n -m )(n +1),A 项正确;6(p +q )2-2(p +q )=2(p +q )(3p +3q -1),B 项错误;3(y -x )2+2(x -y )=(y -x )(3y -3x -2),C 项错误;3x (x +y )-(x +y )2=(x +y )(2x -y ),D 项错误.[答案] A【误区警示】当公因式是形如(a -b )n 或(b -a )n 时,要注意幂指数n 的奇偶性:当n 为偶数时,(a -b )n =(b -a )n ;当n 为奇数时,(a -b )n =-(b -a )n .因此,在确定公因式的时候,“互为相反数的因式”是可以变为“相同的因式”的,这样就可以作为公因式,利用提公因式法因式分解.三、板书设计提公因式法{ 公因式{系数的最大公约数相同字母的最低次幂提公因式法的步骤{①确定公因式②提取公因式③确定另一个因式提取多项式公因式进行因式分解教学反思本节运用类比的数学方法,使学生易于理解和掌握.如学生在接受提取公因式法时,由提公因数到找公因式,由整式的乘法的逆运算到提取公因式的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.。
北师大版八年级下册全册数学教案
教案第一章三角形的证明C=90度,点D在BC上,第二章一元一次不等式与一元一次不等式组2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
从问题中来,到问题中去。
1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。
(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。
(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。
当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。
(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案C=90度,点D在BC上,1.角平分线性质定理及其逆定理的内容是什么?我们是如何证明的?2.三角形的三条角平分线交于一点吗?我是然后证明的?3.反证法的一般步骤有哪些?4.你还有哪些困惑? 随堂练习 课外作业2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
从问题中来,到问题中去。
1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。
(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。
(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。
当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。
(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。
已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。
(2)人离开10m 以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全:410<2.0x 分析巩固练习:用不等式表示:(1) a 的相反数是正数;(2) m 与2的差小于32; (3) x 的31与4的和不是正数; (4) y 的一半与x 的2倍的和不小于3。
解答:(1)a 的相反数是-a ,正数是比零大的数,所以“a 的相反数是正数”就是-a >0;(2)“m 与2的差”就是m-2,“ 差小于32”即是m-2<32; (3)“x 的31”就是31x ,“x 的31与4的和不是正数”就是31x+4≤0;(4)“y 的一半”不是21y,“x 的2倍”就是2x ,“不小于3”即指大于或等于3,故“y 的一半与x 的2倍的和不小于”就是21y+2x ≥3。
3. 下列各数:21,-4,π,0,5.2,3其中使不等式2-x >1,成立是 ( )A .-4,π,5.2B .π,5.2,3C .21,0,3 D .π,5.2答案:D4. 有理数a ,b 在数轴上的位置如图1-2所示,所ba ba +-的值 ( )A .>0B .<0C .=0D .≥0 答案:B小结提问,快速回答:1. 表示不等式关系的符号有哪些?2. 用适当的符号表示下列关系:(1)x 的5倍与3的差比x 的4倍大; (2)a 的41的相反数是非负数; (3)x 的3倍不小于y 的8倍。
3. 下列不等式中,总能成立的是 ( )A .2a >0 B .02≤-a C .2a >a D .2a >a 作业要求:作业本2.2不等式的基本性质一、教学目标1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质。
二、教学重难点不等式的基本性质的掌握与应用。
三、教学过程设计1.比较归纳,产生新知我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。
请问:如果在不等式的两边都加上或都减去同一个整式,那么结果会怎样?请兴几例试一试,并与同伴交流。
类比等式的基本性质得出猜想:不等式的结果不变。
试举几例验证猜想。
如3<7,3+1=4,7+1=8,4<8,所以3+1<7+1;3-5=-2,7-5=2,-2<2,所以3-5<7-5;3+a<7+a;3<7,3-a<7-a等。
都能说明猜想的正确性。
2.探索交流,概括性质完成下列填空。
2<3,2×5 3×5;2<3,2×(-1)3×(-1);2<3,2×(-5)3×(-5);你发现了什么?请再举几例试试,与同伴交流。
通过计算结果不难发现:前两个空填“<”,后三个空填“>”。
得出不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(通过自我探索与具体的例子使学生加深对不等式性质的印象)3.练习巩固,促进迁移1.(1)用“>”号或“<”号填空,并简说理由。
①6+2 -3+2;②6×(-2)-3×(-2);③6÷2 -3÷2;④6÷(-2)-3÷(-2)(2)如果a>b,则2.利用不等式的基本性质,填“>”或“<”:(1)若a>b,则2a+1 2b+1;(2)若<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,(a-b)c 0。
4.巩固应用,拓展研究.1. 按照下列条件,写出仍能成立的不等式,并说明根据。
(1)a>b两边都加上-4;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以2;(4)a≤2b两边都加上c;2. 根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数):5.课内深化,提升能力比较下列各题两式的大小:6.回顾联系,形成结构想一想:本节课学了哪些知识?有哪些性质?在运用性质时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)7.课外作业与拓展课外作业:课本第9页“习题1.2”2.3不等式的解集一、教学目标1.理解不等式解与解集的意义。
2.了解不等式解集的数轴表示。
二、教学重难点重点是区分不等式解与解集的概念,难点是在数轴上表示不等式的解集。
三、教学过程设计1.创设情景,导出问题(课本问题)燃放某中礼花弹时,为了确保安全,人在点燃导火线后要在燃放前10m以外的安全区域。
已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度应为多少厘米?(在建立不等式之前,先让学生分析清楚问题中量与量之间的关系:为了使人有足够的时间到达安全区域,导火线燃烧的时间应大于人到达安全区域的时间。
)设导火线的长度应为x cm ,根据题意,得即x>52.探索交流,得出概念1.想一想:(1)你能找出几个使不等式x>5成立的x的值吗?(2)x=5,6,8能使不等式x>5成立吗?(字母可以表示任何数,但对于满足x>5中的字母x,它能够取任意数吗?如果不能,它能取哪些数呢?启发学生动手验证、动脑思考,并从中初步体会不等式解的意义及不等式解与方程解的不同之处。
)能使不等式成立得未知数得值,叫做不等式的解。
例如,6是不等式x>5一个解,7,8,9,……也是不等式x>5的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x-5≤-1的解集为x≤4;不等式x2>0的解集是所有非零实数。
求不等式解集的过程叫做解不等式。
2.议一议:请你用自己的方式将不等式x>5的解集和x-5≤-1的解集分别表示在数轴上,并与同伴交流。
(引导学生回忆实数与数轴上点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,让学生用具体实数对应的点加以说明)3.练习巩固,促进迁移1.判断下列说法是否正确:(1)x=2是不等式x+3<4的解;(2)x=2是不等式3x<7的解集;(3)不等式3x<7的解是x=2;(4)x=3是不等式3x≥9的解。
答案:(1)不正确;(2)不正确;(3)不正确;(4)正确。
2.在数轴上表示出下列不等式的解集:(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点。
(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则。
4.回顾联系,形成结构想一想:本节课学了哪些知识?在运用时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)5.课外作业与拓展课外作业:课本第12页“习题1.3”2.4一元一次不等式(1)教学目的和要求:会用一元一次不等式,并能在数轴上表示其解集。
教学重点和难点:重点:一元一次不等式的解法难点:解决一元一次不等式时等号方向的改变。
教学过程:1. 观察下列不等式:(1)155.22≥-x ; (2)75.8≤x (3)x <4 (4)x 35+>240 这些不等式有哪些共同特点?这些等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,象这样的不等式,叫做一元一次不等式。
2. 先阅读每(1)题的解法,然后仿做第(2)题,最后谈谈自己读题、做题的体会。
(1)解不等式3722xx -≥-,并把它的解集表示在数轴上。
解 去分母,得 )7(2)2(3x x -≥- 去括号,得 x x 21463-≥-移项、合并同类项,得205≥x两边都除以5,得4≥x这个不等式的解集在数轴上表示如下(图1-13)(2)解不等式2235-+≥x x ,并把它的解集表示的数轴上。
答案:320-≤x 其解集在数轴上表示如下图1-403. 解不等式)1(2)3(410-≤--x x ,并把它的解集在数轴上表示出来。
解答:去括号,得2212410-≤+-x x , 移项,得x x 4212210+≤++。
合并同类项,得 24x 6≤系数化为1,得x ≤4。