高考数学一轮复习专题讲座3数列在高考中的常见题型与求解201711254156

合集下载

【一轮参考】高优指导2017数学人教B版(文)一轮高考必考大题3数列问题

【一轮参考】高优指导2017数学人教B版(文)一轮高考必考大题3数列问题
������+1 4������+1 -4 -4 n+1 (1-3������)4 = -n· 4 = . 3 3 (3������-1)4������+1 +4 所以,Tn= . 9
高考必考大题
考情分析 题型一 题型二 题型三 典例剖析 感悟提高
-14-
策略技巧数列与函数的综合一般体现在两个方面: (1)以数列的特征量n,an,Sn等为坐标的点在函数图象上,可以得到 数列的递推关系; (2)数列的项或前n项和可以看作关于n的函数,利用函数的性质求 解数列问题.
高考必考大题
考情分析 题型一 题型二 题型三 典例剖析 感悟提高
-12-
类型二 数列与函数的交汇 典题2设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象 上(n∈N+). (1)证明:数列{bn}为等比数列; (2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距 1 2 }的前n项和Tn. 为 2- ,求数列{an������������
������������ 则由题意得 ������������
=
1 ,得 2
λn=2rn;
同理 λn+1=2rn+1, 从而 λn+1=λn+rn+rn+1=2rn+1. 将 λn=2rn 代入,解得 rn+1=3rn, 故 {rn}为公比 q=3 的等比数列.
高考必考大题
考情分析 题型一 题型二 题型三 典例剖析 感悟提高
-17-
(2)解 :由于 r1=1,q=3,故 rn=3n-1, ������ 从而 =n· 31-n,
������������

高考数学一轮复习 专题讲座3 数列在高考中的常见题型

高考数学一轮复习 专题讲座3 数列在高考中的常见题型

2n1+1-2n1+3
=3(2nn+3).
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
(1)求数列的通项公式时,通常用累加、累乘、构造法求解. (2)根据数列的特点选择合适的求和方法,本题选用的裂项相 消法,常用的还有分组转化求和,错位相减求和等.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
(2)由
an= 2n+ 1
可知
bn=ana1n+
= 1(
2n+
1 1)(
2n+
3)=12
1 2n+
1-2n1+
3.
设数列{bn}的前 n 项和为 Tn,则
Tn= b1+ b2+…+ bn
=1213-
1 5
+15-17
+…+
解决等差数列与等比数列的综合问题,关键是理清两个数 列的关系.如果同一数列中部分项成等差数列,部分项成 等比数 列,要把成等差数列或等比数列的项抽出来单独研究;如 果两个数列通过运算综合在一起,要从分析运算入手,把 两个数列分割开弄清两个数列各自的特征,再进行求解.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
专题二 数列的通项与求和
(2015·高考全国卷Ⅰ)Sn 为数列{an}的前 n 项和.已 知 an>0,a2n+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设
bn=ana1n+
,求数列
1
{
bn}的前
n
项和.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略

高考数学一轮复习 高考必考题突破讲座(三)数列、不等式及推理与证明学案

高考数学一轮复习 高考必考题突破讲座(三)数列、不等式及推理与证明学案

高考必考题突破讲座(三)数列、不等式及推理与证明1.数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法,常考求和方法有:错位相减法、裂项相消法、分组求和法等.2.数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.3.数列与不等式的综合问题数列与不等式知识相结合的考查主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法等.【例1】 (2017·天津卷)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解析 (1)设{a n }的公差为d ,{b n }的公比为q ,q >0.由b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0,解得q =2,所以b n =2n. 由b 3=a 4-2a 1,可得3d -a 1=8,① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,所以a n =3n -2, 故数列{a n }的通项公式为a n =3n -2, {b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n -1}的前n 项和为T n , 由(1)知a 2n =6n -2,b 2n -1=2×4n -1,所以a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n, 4T n =2×42+5×43+…+(3n -4)×4n +(3n -1)×4n +1,两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n)1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,所以T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.【例2】 已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解析 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列,且a 1=32,所以q =-12.故a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56;当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.【例3】 (2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n+1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.解析 (1)由已知,S n +1=qS n +1,S n +2=qS n +1+1, 两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列,从而a n =qn -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2, 即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2.所以a n =2n -1(n ∈N *).(2)由(1)可知,a n =qn -1.所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1).由e 2=1+q 2=53,q >0,解得q =43.因为1+q2(k -1)>q2(k -1),所以1+q 2(k -1)>qk -1(k ∈N *).故e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1=4n -3n3n -1.1.(2018·河北石家庄二模)已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和.解析 (1)因为S m -1=-4,S m =0,S m +2=14, 所以a m =S m -S m -1=4,a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d ,则2a m +3d =14,所以d =2. 因为S m =a 1+a m2×m =0,所以a 1=-a m =-4,所以a m =-4+2(m -1)=4,解得m =5. (2)由(1)知a n =-4+2(n -1)=2n -6, 所以n -3=log 2b n ,即b n =2n -3,所以(a n +6)·b n =2n ·2n -3=n ·2n -2.设数列{(a n +6)·b n }的前n 项和为T n , 则T n =1×12+2×1+3×2+…+n ·2n -2,①所以2T n =1×1+2×2+3×22+…+n ·2n -1,②①-②,得-T n =12+1+2+…+2n -2-n ·2n -1=12(1-2n )1-2-n ·2n -1=(1-n )·2n -1-12.所以T n =(n -1)·2n -1+12. 2.在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解析 (1)设公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =6,2a 1+7d =27,解得⎩⎪⎨⎪⎧a 1=3,d =3,∴a n =3n .(2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1, ∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n =(n +1)(2-n )2n +1,∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 3.(2018·山东济南模拟)已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由.解析 (1)设等差数列{a n }的公差为d (d ≠0), ∴⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1.∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3, ∴b n =3n.(2)不存在.理由如下: ∵1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *),易知数列⎩⎨⎧⎭⎬⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13, ∴不存在k ∈N *,使得等式1-2T k =1b k成立.高考必考题突破讲座(三) 数列、不等式及推理与证明[解密考纲]数列、不等式是高中数学的主干知识,涉及函数思想的渗透和逻辑推理及数学运算.高考中常以数列的计算、推理和不等式的放缩变形为载体,考查学生的逻辑推理和运算能力.1.(2018·湖南长沙统考)已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2.(1)求数列{a n }的通项公式; (2)记b n =2a n a n +1,设b n 的前n 项和为S n .求最小的正整数n ,使得S n >2 0162 017. 解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =2,故{a n }的通项公式为a n =2n -1,n ∈N *. (2)因为b n =2a n a n +1=12n -1-12n +1, 所以S n =⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1,令1-12n +1>2 0162 017,解得n >1 008,故取n =1 009. 2.(2018·江西南昌模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .解析 (1)设等差数列{a n }的公差为d , 由S 3+S 4=S 5,得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1) =(-2)×n =-2n .3.(2018·东北三省四校模拟)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .解析 (1)依题意得⎩⎪⎨⎪⎧3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1.(2)∵b n a n=3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1,∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+…+2×3n -1+(2n +1)×3n,两式相减,得-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n=3+2×3(1-3n -1)1-3-(2n +1)×3n =-2n ×3n ,∴T n =n ·3n.4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n .解析 (1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x . 又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式, 所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5] =12·⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1=3n 6n +1. 5.已知数列{a n }满足a 1=3,a n +1+1-a n +1=1,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =log 2n 2+n a n,数列{b n }的前n 项和为S n ,求使S n <-4的最小自然数n .解析 (1)由a n +1+1-a n +1=1,n ∈N *,知数列{a n +1}是以2为首项,1为公差的等差数列, 所以a n +1=2+n -1=n +1,所以a n =n 2+2n , 故数列{a n }的通项公式为a n =n 2+2n .(2)b n =log 2n 2+n n 2+2n =log 2n +1n +2=log 2(n +1)-log 2(n +2),则S n =b 1+b 2+…+b n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2),由S n <-4,得1-log 2(n +2)<-4,解得n >30, 故满足S n <-4的最小自然数n 为31.6.设a 1,a 2,a 3,a 4是各项均为正数且公差为d (d ≠0)的等差数列. (1)求证:2a 1,2a 2,2a 3,2a 4依次成等比数列;(2)是否存在a 1,d 使得a 1,a 22,a 33,a 44依次成等比数列?并说明理由.解析 (1)因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)假设存在a 1,d 满足条件.令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4, 令t =da,则1=(1-t )(1+t )3, 且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1. 将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列.。

高考数学一轮复习 高考必考题突破讲座(三)数列、不等式及推理与证明练习

高考数学一轮复习 高考必考题突破讲座(三)数列、不等式及推理与证明练习

高考必考题突破讲座(三)数列、不等式及推理与证明[解密考纲]数列、不等式是高中数学的主干知识,涉及函数思想的渗透和逻辑推理及数学运算.高考中常以数列的计算、推理和不等式的放缩变形为载体,考查学生的逻辑推理和运算能力.1.(2018·湖南长沙统考)已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2. (1)求数列{a n }的通项公式; (2)记b n =2a n a n +1,设b n 的前n 项和为S n .求最小的正整数n ,使得S n >2 0162 017. 解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =2,故{a n }的通项公式为a n =2n -1,n ∈N *. (2)因为b n =2a n a n +1=12n -1-12n +1, 所以S n =⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =1-12n +1,令1-12n +1>2 0162 017,解得n >1 008,故取n =1 009. 2.(2018·江西南昌模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .解析 (1)设等差数列{a n }的公差为d , 由S 3+S 4=S 5,得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1) =(-2)×n =-2n .3.(2018·东北三省四校模拟)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .解析 (1)依题意得⎩⎪⎨⎪⎧3a 1+3×22d +5a 1+4×52d =50,a 1+3d 2=a 1a 1+12d ,解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1.(2)∵b n a n=3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1,∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+…+2×3n -1+(2n +1)×3n,两式相减,得-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n=3+2×31-3n -11-3-(2n +1)×3n=-2n ×3n,∴T n =n ·3n.4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n .解析 (1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x . 又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式, 所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=3n -n +-5]=12·⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1=3n 6n +1. 5.已知数列{a n }满足a 1=3,a n +1+1-a n +1=1,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =log 2n 2+na n,数列{b n }的前n 项和为S n ,求使S n <-4的最小自然数n .解析 (1)由a n +1+1-a n +1=1,n ∈N *,知数列{a n +1}是以2为首项,1为公差的等差数列, 所以a n +1=2+n -1=n +1,所以a n =n 2+2n , 故数列{a n }的通项公式为a n =n 2+2n .(2)b n =log 2n 2+n n 2+2n =log 2n +1n +2=log 2(n +1)-log 2(n +2),则S n =b 1+b 2+…+b n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2),由S n <-4,得1-log 2(n +2)<-4,解得n >30, 故满足S n <-4的最小自然数n 为31.6.设a 1,a 2,a 3,a 4是各项均为正数且公差为d (d ≠0)的等差数列. (1)求证:2a 1,2a 2,2a 3,2a 4依次成等比数列;(2)是否存在a 1,d 使得a 1,a 22,a 33,a 44依次成等比数列?并说明理由.解析 (1)因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)假设存在a 1,d 满足条件.令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4, 令t =da,则1=(1-t )(1+t )3, 且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1. 将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列.。

高考数学一轮复习 名师专题讲座3 数列、不等式的高考解答题型及求解策略课件 文

高考数学一轮复习 名师专题讲座3 数列、不等式的高考解答题型及求解策略课件 文

12/11/2021
第十九页,共二十六页。
(2)证明:由(1)可知 an=qn-1. 所以双曲线 x2-ay22n=1 的离心率 en= 1+a2n= 1+q2n-1. 由 e2= 1+q2=53,解得 q=43. 因为 1+q2(k-1)>q2(k-1),所以 1+q2k-1>qk-1(k∈N*). 于是 e1+e2+…+en>1+q+…+qn-1=qqn--11, 故 e1+e2+…+en>4n3-n-31 n.
12/11/2021
第三页,共二十六页。
题型一 数列的通项与求和 题型概览:(1)根据所给条件的特点,确定合适的方法求通项, 如借助基本量求 an,根据 an 与 Sn 的关系求 an,根据递推关系求 an. (2)根据数列的特点选择合适的求和方法,常用的有分组求 和,裂项求和,错位相减法求和.
12/11/2021
12/11/2021
第八页,共二十六页。
①-②得 -Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1 =32+211--22n-1-(2n+1)×2n-1=1-2n2×2n-1. 所以 Tn=2n-12×2n+1.
12/11/2021
第九页,共二十六页。
[解题反思] 本题将数列与解析几何交汇,增大了试题难度, 较好地考查了考生的数形结合思想、逻辑思维能力,其实质是考 查等比数列的通项公式与求和及错位相减法.此类问题对考生的 计算能力要求较高.
12/11/2021
第二十五页,共二十六页。
内容 总结 (nèiróng)
第七章
No Image
12/11/2021
第二十六页,共二十六页。
12/11/2021
第二十三页,共二十六页。

2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)(word版可编辑修改)

2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)(word版可编辑修改)

2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)(word版可编辑修改)的全部内容。

生新的解题方法,这种思维方法的特点就是“构造”。

若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉。

1)构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法。

2)构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.3)构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法。

4)构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.四、典型例题分析【题型5】 构造法:1)构造等差数列或等比数列例5 设各项均为正数的数列的前n 项和为,对于任意正整数n ,都有等式:{}n a n S 成立,求的通项.n n n S a a 422=+{}n a n a 解:,n n n S a a 422=+⇒112142---=+n n n S a a ∴nn n n n n n a S S a a a a 4)(42211212=-=-+----,∵,∴。

高考数学一轮总复习第六章数列高考解答题专项三数列中的综合问题课件

.
(+1)
2
2
=
1
,
2
1
(2)证明由(1)知,

1

1
=
2
1
1
=2 - +1
(+1)
1
1
1
+ +…+ =2(12

2
1
+
2
1
1
− +…+
3

,
1
1

)=2(1- )<2.
+1
+1
考点三
数列中的综合问题
考向1.数列与不等式的综合
例 3.已知数列{an}的前 n 项和为
1
Sn,a1=2,当
2n+1,②
①-②得,-Tn=4+(22+23+…+2n)-(n+1)·
2n+1=-n·
2n+1,
所以Tn=n·
2n+1,
所以λTn≤(n2+9)·
2n,即λn·
2n+1≤(n2+9)·
2n,

( 2 +9)
λ≤ 2

因为2
+

2
= +
9
≥2
2
9
.
2
9
·
=3,当且仅当
2 2
n=3 时,等号成立,所以 λ≤3.
221b5,即(2+d)2=2(2+4d),化简整理得d2-4d=0,解得
d=0(舍去),或d=4,
∴bn=2+4(n-1)=4n-2.

高考数学一轮复习专题三数列课件文

2,n=1, 所以 Tn=3n-n2-2 5n+11,n≥2,n∈N*.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/12
最新中小学教学12
最新中小学教学课件
12
(1)求通项公式 an; (2)求数列{|an-n-2|}的前 n 项和.
解:(1)由题意得

(一轮)数列高考大题规范解答系列3数列课件


n
②证明:
k=1
kT+k+1bkk++2b2k=n2+n+22-2(n∈N*).
[解析] (1)设等比数列{an}的公比为q(q>0). 由a1=1,a3=a2+2,可得q2-q-2=0. 因为q>0,可得q=2,故an=2n-1. 设等差数列{bn}的公差为d. 由a4=b3+b5,可得b1+3d=4. 由a5=b4+2b6,可得3b1+13d=16, 从而b1=1,d=1,故bn=n. 所以,数列{an}的通项公式为an=2n-1, 数列{bn}的通项公式为bn=n.
(1)求{an}和{bn}的通项公式; (2)记{an}的前 n 项和为 Sn,求证:SnSn+2<S2n+1(n∈N*);
(3)对任意的正整数 n,设 cn=ab3nn- +aa11nn,-an+n22为bn偶,数n为. 奇数,
求数列{cn}
的前 2n 项和. 【分析】 (1)看到求{an}和{bn}的通项公式,想到求 a1,b1,公差 d
n
所以,
k=1
kT+k+1bkk++2b2k=233-222+244-233+…+n2+n+21 -n2+n+11
=n2+n+22 -2.
谢谢观看Βιβλιοθήκη a3,利用等比数列的通项公式求解.
(2)看到判断 Sn+1,Sn,Sn+2 是否成等差数列,想到等差数列的等差中
项,利用 2Sn=Sn+1+Sn+2 进行证明.
【标准答案】——规范答题 步步得分 (1)设{an}的首项为 a1,公比为 q. 由题设可得aa1111++qq+=q22,=-6, ····························2 分 得分点① 解得 q=-2,a1=-2. ················································4 分 得分点② 故{an}的通项公式为 an=(-2)n. ·································6 分 得分点③

版高考数学一轮总复习 高考大题冲关系列3 数列的综合问题课件 理


-冲关策略- 等差数列、等比数列综合问题的解题策略 (1)分析已知条件和求解目标,为最终解决问题设置中间 问题,例如求和需要先求出通项、求通项需要先求出首 项和公差(公比)等,确定解题的顺序. (2)注意细节:在等差数列与等比数列综合问题中,如果 等比数列的公比不能确定,则要看其是否有等于 1 的可 能,在数列的通项问题中第一项和后面的项能否用同一 个公式表示等,这些细节对解题的影响也是巨大的.
(1)设从 2017 年起的前 n 年,该景点不开发新项目的累 计利润为 An 万元,开发新项目的累计利润为 Bn 万元(需扣除 开发所投入资金),求 An,Bn 的表达式;
(2)依上述预测,该景点从第几年开始,开发新项目的 累计利润超过不开发新项目的累计利润?
[解题视点] (1)依题意可得 An 是等差数列的前 n 项和, Bn 可由等差、等比数列的性质求解;(2)利用数列的单调性 来解答.
(2)由(1)得 Bn-An=5n2-50-130n0,易知{Bn-An}是递增 数列.
观察并计算知 B3-A3<0,B4-A4=30-18010>0, 所以从第 4 年开始,开发新项目的累计利润超过不开发 新项目的累计利润.
-冲关策略- (1)此类问题的解题思路:仔细阅读所给材料,认真理解题 意,将已知条件翻译成数学语言并转化为数学问题,分清 是等差数列还是等比数列,是求通项问题还是求项数问 题,或是求和问题等,并建立相应数学模型求解. (2)一般涉及递增率,要用等比数列,涉及依次增加或者减 少,要用等差数列,有的问题是通过转化得到等差或等比 数列,在解决问题时要向这些方向思考.
(2)由(1)知 bn=(3n-1)·2nn·an=2nn-1,
所以
Tn

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲座3 数列在高考中的常见题型与求解策略1.(2016·辽宁省五校联考)抛物线x 2=12y 在第一象限内图像上一点(a i ,2a 2i )处的切线与x轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( ) A .64 B .42 C .32 D .21解析:选B.令y =f (x )=2x 2,则切线斜率k =f ′(a i )=4a i ,切线方程为y -2a 2i =4a i (x -a i ),令y =0得x =a i +1=12a i ,由a 2=32得:a 4=8,a 6=2,所以a 2+a 4+a 6=42.2.(2014·高考辽宁卷)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0 解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n+1.因为y =2x是单调增函数,所以a 1a n >a 1a n +1,所以a 1a n -a 1(a n +d )>0,所以a 1(a n -a n -d )>0,即a 1(-d )>0,所以a 1d <0.3.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________.解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,所以a 4a 5=2.再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.所以a 4+a 5的最小值为2 2. 答案:2 24.(2016·南昌调研测试卷)一牧羊人赶着一群羊通过6个关口,每过1个关口,守关人将拿走当时羊的一半,然后退还1只给牧羊人,过完这些关口后,牧羊人只剩下2只羊,则牧羊人在过第1个关口前有________只羊.解析:记此牧羊人通过第1个关口前、通过第2个关口前、…、通过第6个关口前,剩下的羊的只数组成数列{a n }(n =1,2,3,4,5,6),则由题意得a 2=12a 1+1,a 3=12a 2+1,…,a 6=12a 5+1,而12a 6+1=2,解得a 6=2,因此代入得a 5=2,a 4=2,…,a 1=2.答案:25.(2016·南昌调研测试卷)设数列{a n }的前n 项和为S n ,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0. (1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3,得4a n +1=a 2n +1-a 2n +2a n +1-2a n , 即(a n +1+a n )(a n +1-a n -2)=0. 因为当n ≥5时,a n >0, 所以a n +1-a n =2,所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3, 得a 1=3或a 1=-1,又a 1,a 2,a 3,a 4,a 5成等比数列, 所以a n +1+a n =0(n ≤5), q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.6.(2015·高考山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d ,令n =1,得1a 1a 2=13,所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.②由①②解得a 1=1,d =2, 所以a n =2n -1. 经检验,符合题意.(2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1·41+2·42+…+n ·4n,所以4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+…+4n -n ·4n +1=4(1-4n)1-4-n ·4n +1=1-3n 3×4n +1-43,所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.1.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆. (1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a的等差数列.所以{a n }的前n 项和S n =128×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n 1-32=256⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1,{b n }的前n 项和T n =400n +n (n -1)2a .所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.2.(2015·高考广东卷)数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值;(2)求数列{a n }的前n 项和T n ;(3)令b 1=a 1,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n (n ≥2).证明:数列{b n }的前n 项和S n 满足S n <2+2ln n .解:(1)令n =1⇒a 1=1;令n =2⇒a 1+2a 2=2⇒a 2=12;令n =3⇒a 1+2a 2+3a 3=4-54⇒a 3=14.(2)当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=4-n +12n -2,①a 1+2a 2+3a 3+…+(n -1)a n -1+na n =4-n +22n -1.②②-①,得na n =n +12n -2-n +22n -1=n2n -1,所以a n =12n -1.又因为当n =1时,a 1=1也适合a n =12,所以a n =12n -1(n ∈N *),易证数列{a n }是等比数列,首项a 1=1,公比q =12.所以数列{a n }的前n 项和T n =a 1(1-q n)1-q =2-12n -1.(3)证明:因为 b 1=a 1=1,所以S 1<2+2ln 1成立.又因为 b 2=a 12+⎝ ⎛⎭⎪⎫1+12a 2,b 3=a 1+a 23+(1+12+13)a 3,…,b n =a 1+a 2+…+a n -1n +⎝ ⎛⎭⎪⎫1+12+…+1n a n ,所以数列{b n }的前n 项和S n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1+12+…+1n a 1+⎝ ⎛⎭⎪⎫1+12+…+1n a 2+…+(1+12+…+1n )a n=(1+12+…+1n)(a 1+a 2+…+a n )=(1+12+…+1n )⎝ ⎛⎭⎪⎫2-12n -1<2⎝ ⎛⎭⎪⎫1+12+…+1n ,构造函数h (x )=ln 1x -1x+1,x >0,h ′(x )=1-xx2,令h ′(x )>0,解得0<x <1; 令h ′(x )<0,解得x >1,所以h (x )=ln 1x -1x+1,x >0在(0,1)上单调递增,在(1,+∞)上单调递减, 所以h (x )≤h (1)=0,所以ln 1x -1x+1≤0,x >0(仅当x =1时取等号),即ln x ≥1-1x.又因为ln n =lnnn -1+ln n -1n -2+…+ln 2>⎝ ⎛⎭⎪⎫1-n -1n +⎝ ⎛⎭⎪⎫1-n -2n -1+…+⎝ ⎛⎭⎪⎫1-12 =12+13+…+1n, 所以2⎝ ⎛⎭⎪⎫1+12+…+1n <2+2ln n ,所以S n <2+2ln n .。

相关文档
最新文档