江苏省泰州市2019-2020学年高二下学期期末考试数学试题(扫描版,无答案)

合集下载

江苏省连云港市2019-2020学年度高二上学期期末考试试题 数学【含解析】

江苏省连云港市2019-2020学年度高二上学期期末考试试题 数学【含解析】
【点睛】此题是容易题,考查基本概念。
2.双曲线 的渐近线方程是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据双曲线的渐近线的定义求得。
【详解】双曲线 的渐近线方程是 ,故选:B.
【点睛】此题是容易题,考查双曲线的基本定义。
3.“M<N”是“ ” ( )
A. 充要条件B. 充分不必要条件
C. 必要不充分条件D. 既不充分也不必要条件
【详解】因为 , , ,故 , ,故选:BD。
【点睛】此题考查充分条件和必要条件的概念,属于基础题。
12.设P是椭圆C: 上任意一点,F1,F2是椭圆C的左、右焦点,则( )
A.PF1+PF2= B. ﹣2<PF1﹣PF2<2
C. 1≤PF1·PF2≤2D. 0≤ ≤1
【答案】ACD
【解析】
【分析】
15.已知椭圆C: (a>b>0)的焦距为2.准线方程为x=3,则该椭圆的标准方程是_______;直线 与该椭圆交于A,B两点,则AB=_______.
【答案】 (1). (2).
【解析】
分析】
根据椭圆的定义和准线方程可求得第一问,联立椭圆和直线方程再通过韦达定理计算可求得第二问。
【详解】 ,解得 ,再解出 ,所以椭圆的标准方程是 。设A坐标为 ,B坐标为 ,直线AB的斜率为k。则
13.准线方程为 的抛物线的标准方程是.
【答案】
【解析】
抛物线的准线方程为 ,说明抛物线开口向左,且 ,所以抛物线的标准方程是 .
14.中国古代数学某名著中有类似问题:“四百四十一里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,毎天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了_______里.

2019-2020年高二下学期期末考试数学(理)试题 含答案

2019-2020年高二下学期期末考试数学(理)试题 含答案

2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

江苏省泰州市2019-2020学年高二下学期期末2份数学统考试题

江苏省泰州市2019-2020学年高二下学期期末2份数学统考试题

同步测试一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.100件产品中有6件次品,现从中不放回的任取3件产品,在前两次抽到正品的条件下第三次抽到次品的概率为( ) A .349B .198C .197D .3502.已知函数()f x 的图像在点()()22f ,处的切线方程是210x y -+=,若()()f x h x x=,则()2h '=( ) A .12B .12-C .18-D .583.已如集合{}20A x x =->,{}3B x =≤,则AB =( )A .(]2,3B .[)2,3C .()2,3D .[]2,34.下列选项叙述错误的是 ( ) A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” B .若命题2:,10p x R x x ∀∈++≠,则2:,10p x R x x ⌝∃∈++=C .若p q ∨为真命题,则p ,q 均为真命题D .若命题2:,10q x R x mx ∀∈++>为真命题,则m 的取值范围为22m -<<5.已知函数()f x 的导函数为()f x ',且()()f x f x '<对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .()()()()2ln 220,20f f f e f <<B .()()()()2ln 220,20f f f e f >>C .()()()()2ln 220,20f f f e f <>D .()()()()2ln 220,20f f f e f ><6.下列集合中,表示空集的是( )A .{}0B .(){},0x y y x =≤C .{}2560,x x x x N ++=∈D .{}24,x x x Z <<∈7.设01x <<,a ,b 都为大于零的常数,则221a bx x+-的最小值为( )。

江苏省泰州市2019-2020学年数学高二下期末统考试题含解析

江苏省泰州市2019-2020学年数学高二下期末统考试题含解析

江苏省泰州市2019-2020学年数学高二下期末统考试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. “4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要【答案】B 【解析】 【分析】 【详解】0a =时,直线210x ay +-=与直线220bx y +-=不平行,所以直线210x ay +-=与直线220bx y +-=平行的充要条件是2221b a -=≠-, 即4ab =且1(4)a b ≠≠,所以“4ab =”是直线210x ay +-=与直线220bx y +-=平行的必要不充分条件. 故选B .2. “直线l 垂直于平面α内无数条直线”是“直线l 垂直于平面α”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】 【详解】由“直线l 垂直于平面α”可得到“直线l 垂直于平面α内无数条直线”, 反之不成立(如与无数条平行直线垂直时不成立),所以“直线l 垂直于平面α内无数条直线”是“直线l 垂直于平面α”的必要而不充分条件,故选B. 考点:充分条件与必要条件3.在正方体1111ABCD A B C D -中,过对角线1AC 的一个平面交1BB 于E ,交1DD 于F 得四边形1AEC F ,则下列结论正确的是( ) A .四边形1AEC F 一定为菱形B .四边形1AEC F 在底面ABCD 内的投影不一定是正方形 C .四边形1AEC F 所在平面不可能垂直于平面11ACC A D .四边形1AEC F 不可能为梯形【答案】D 【解析】对于A ,当与两条棱上的交点都是中点时,四边形1AEC F 为菱形,故A 错误; 对于B, 四边形1AEC F 在底面ABCD 内的投影一定是正方形,故B 错误;对于C, 当两条棱上的交点是中点时,四边形1AEC F 垂直于平面11ACC A ,故C 错误; 对于D ,四边形1AEC F 一定为平行四边形,故D 正确. 故选:D4.已知8位学生得某次数学测试成绩得茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C .中位数为64.5D .平均数为64【答案】C 【解析】 【分析】根据茎叶图中的数据求得这组数据的众数、极差、中位数和平均数. 【详解】根据茎叶图中的数据知,这组数据的众数为67,A 错误; 极差是75﹣57=18,B 错误;中位数是62672+=64.5,C 正确; 平均数为6018+(﹣3﹣1+1+2+7+7+12+15)=65,D 错误.故选C . 【点睛】本题考查了利用茎叶图求众数、极差、中位数和平均数的应用问题,是基础题.5.若不等式()()2210a axx -++≤对一切()0,2x ∈恒成立,则a 的取值范围是 ( )A.1,2⎛-∞ ⎝⎦B.12⎡⎫++∞⎪⎢⎪⎣⎭ C.⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭D.⎣⎦【答案】C 【解析】 【分析】本题是通过x 的取值范围推导出a 的取值范围,可先将a 与x 分别放于等式的两边,在通过x 的取值范围的出a 的取值范围。

江苏省泰州市2019-2020学年高二下学期期末考试数学(理)试题

江苏省泰州市2019-2020学年高二下学期期末考试数学(理)试题

江苏省泰州中学2019-2020学年度第二学期期末考试高二数学(理科)试题一、填空题:(本大题共14小题,每小题5分,共70分)4!的值为 .1. 椭圆的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),则该椭圆的普通方程为 .3.已知()()2,4,1,,1,0a b m =-=,若a b ⊥,则m = .4.在[]2,1-上随机取一个数x ,使得1x <的概率为 .5.某高级中学共有2000名学生,为了了解不同年级学生的眼睛的近视情况,现用分层抽样的方法抽取一个容量为100的样本,高三年级抽取的学生人数为35人,则高三年级学生人数为 .6.右图是一个算法的流程图,则输出的k 的值是 .7.极坐标系中,点()1,0到直线()3R πθρ=∈的距离是 .8.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷两次,观察向上的点数,则两点数之和不为5的概率为 . 9.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 .10.现将5张连号的电影票分给5个人(5人中含甲乙两人),每人一张,且甲、乙两人分得的电影票连号,则共有不同的分法的种数为 .11.若33228x x x C C ++-=,则x 的值为 .12.若四位数M 满足:①组成该四位数的四个数字中首位数字最小;②相邻的两位数字不等且首尾两数字不等,则满足条件的四位数共有 个二、解答题:本大题共8小题,共100分.解答应写出必要的文字说明或推理、验算过程. 13. (本题满分10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,且在两种坐标系中取相同的长度单位,已知平面直角坐标系中,直线l 的参数方程为122x ty t=-+⎧⎨=+⎩(t 为参数)在极坐标系中,圆C 的圆心的极坐标为1,2C π⎛⎫⎪⎝⎭,半径为1.(1)求圆C 的直角坐标方程; (2)判断直线l 与圆C 的位置关系.14.(本题满分10分)82T x x ⎛⎫=+ ⎪⎝⎭(1)求T 的展开式中,含4x 的项;(2)求T 的展开式中,二项式系数最大的项.15.(本题满分10分)为了检测某种产品的质量,抽取了一个容量为N 的样本,数据的分组及各组的频数,频率如下表:(1)求N,a,b ;(2)根据以上数表绘制频率分布直方图,求落在[)10.95,11.15范围内的矩形的高;(3)若从样本中随机取两个产品,求这两个产品对应的数据落在[)11.35,11.55上的概率.16.(本题满分10分)若3221326.n n n A A A +=+(1)求n 的值;(2)求101110n ⎛⎫+ ⎪⎝⎭的近似值(精确到0.01).17.(本题满分14分)如图,四棱锥P ABCD -的底面ABCD 为平行四边形,且,2,3,3APB APC BPC PA PB PC M π∠=∠=∠====是PD 的中点.(1)若BD mPA nPB pPC =++,求m n p ++的值; (2)求线段BM 的长.18.(本题满分14分)某学校田径运动会跳远比赛规定:比赛设立及格线,每个运动员均有3次跳远的机会.若在比赛中连续两次跳不过及格线,则该运动员比赛结束.已知运动员甲每次跳远跳过及格线的概率为23,且该运动员不放弃任何一次跳远的机会. (1)求该运动员跳完两次就结束比赛的概率;(2)设该运动员比赛过程中跳过及格线的总次数为ξ,求ξ的分布列和数学期望()E ξ.19.(本题满分16分)如图,长方体1111ABCD A B C D -中,12,3AB AD AA ===点,E F 分别在线段11,AA DD 上,且满足112,2A E EA D F DF ==,点P 是线段AC 上任意一点(不含端点). (1)求直线EF 与直线AC 所成角的余弦值;(2)求平面FAB 与平面FEC 所成的锐二面角的大小;(3)求直线EP 与平面FAB 所成角的最大值.20.(本题满分16分)已知()()20111mnm nm n x x t a a x a x a x ++++=++++()()()2011222.m nm n b b x a x a x ++=+++++++(1)若1,2,8.m t n ===①求290129222b b b b ++++的值;②求0129,,,,a a a a 中的最大项;(2)若, 1.m n t ==①求证:对任意,02k N k n *∈≤≤,都有121121k k n k a C n +++=+; ②求211n i k n k b -=-∑及2111n i kk b -=+∑的值.。

江苏省泰州市2019-2020学年高二上学期期末考试数学(理科)试题含解析

江苏省泰州市2019-2020学年高二上学期期末考试数学(理科)试题含解析

泰州市 2017~2018 学年度第一学期期末考试 高二数学(理科)试题一、填空题:(本大题共 14 小题,每小题 5 分,共 70 分.请将答案填入答题纸填空题的相应答题线上.) 1. 命题“若 ,则 ”的逆命题为______.【答案】若 ,则【解析】命题“若 ,则 ”的逆命题为“若 ,则 ”.2. 复数( 为虚数单位)在复平面上对应的点的坐标为______.【答案】【解析】复数在复平面上对应的点的坐标为 .3. 抛物线的准线方程为______.【答案】y=-2【解析】由题意可得 p=4,所以准线方程为,填4. 函数在 处的切线的斜率为______.【答案】【解析】因为,且,即函数在 处的切线的斜率为 .5. 双曲线的渐近线的方程为______.【答案】【解析】令,即,即双曲线的渐近线的方程为.6. 椭圆在其上一点处的切线方程为.类比上述结论,双曲线在其上一点处的切线方程为______.【答案】【解析】由类比,得双曲线在其上一点处的切线方程为.7. 若“”是“不等式【答案】【解析】因为” 成立的充分条件,则实数 的取值范围是______.,且“”是“不等式” 成立的充分条件,所以,则,解得,即实数 的取值范围是 .点睛:本题考查充分条件和必要条件的判定;在处理涉及数集的充分条件或必要条件的判定时,往往将问题转化为集合间的包含关系处理,已知命题,若 ,则 是 的充分条件, 是 的必要条件.8. 抛物线上一点到其焦点 的距离为 ,则 ______.【答案】4【解析】因为抛物线上一点到其焦点 的距离为 ,所以,解得 .点睛:本题考查抛物线的定义;在求抛物线上的点到焦点的距离时,往往利用抛物线的定义将点到焦点的距离转化为该点到准线的距离,但要注意抛物线是哪一种标准方程,如抛物线上一点到其焦点 的距离为 ,抛物线上一点 到其焦点 的距离为 ,等等.9. 已知 【答案】63 【解析】由,若(),则 ______.归纳,得,即,即 .10. 已知双曲线左支上一点 到左焦点的距离为 16,则点 到右准线的距离为______.【答案】10【解析】因为双曲线左支上一点 到左焦点的距离为 16,所以该点到右焦点的距离为,且离心率为,设点 到右准线的距离为 ,则由双曲线的第二定义,得,解得 ,即点 到右准线的距离为 10. 点睛:本题考查双曲线的第一定义和第二定义的应用;椭圆和双曲线均有两个定义,第一定义是到两个定 点的和(或差的绝对值)为定值的动点的轨迹,但要注意定值和两个定点间的距离的大小关系,第二定义是圆锥曲线的统一定义,是到定点到定直线的距离的比值为常数的动点的轨迹,但要注意定点不在定直线 上.11. 为椭圆上一点,,则线段 长度的最小值为______.【答案】【解析】设 ,则,,即线段 长度的最小值为 .12. 若函数 【答案】在 处取得极小值,则 的取值范围是______.【解析】由题意,得,.................. 点睛:本题考查利用导数研究函数的极值;利用导数研究函数的极值时,要注意可导函数 在时存在极值,则,且 两侧的导函数异号,若 时,取得极小值,往往忽视验证两侧的导函数是否异号., 时,,则 在 时13. 已知椭圆 :的左、右焦点分别为 ,点 在椭圆 上,且,则当 【答案】时,椭圆的离心率的取值范围为______.点睛:本题考查椭圆的几何性质、平面向量的共线和垂直的判定;在研究椭圆中过焦点的弦时,要注意与对称轴垂直的情形,即椭圆和双曲线的通径,如过椭圆的左焦点与对称轴垂直的弦称为椭圆的通径,长度为 ,记住结论可减少运算量.14. 已知函数在 上单调递增,则 的取值范围为______.【答案】【解析】当 时,在 上递增,显然成立;当 时,,在 恒成立,即 ,即;当 时,的对称轴为 ,当,即时,,可得,显然成立;当,即时,,可得,即,解得,综上所述,,即 的取值范围为.点睛:本题考查利用导数研究函数的单调性;已知函数在某区间上单调递增求有关参数,往往有两种思路: (1)先求出该函数的单调递增区间,再利用所给区间和单调递增区间的关系进行求解;(2)将函数 在某区间上单调递增转化为(但不恒为 0)在该区间上恒成立.二、解答题:(本大题共 6 小题,共 90 分.解答应写出文字说明,证明过程或演算步骤.)15. 已知复数.⑴求 ;⑵若复数满足 为实数,求 .【答案】⑴⑵【解析】试题分析:(1)利用复数的除法法则进行求解;(2)先利用复数的加法法则得到数的概念确定 值,再利用模长公式进行求解.,再利用复试题解析:⑴⑵∵ ∴∵ 为实数∴∴∴∴16. 已知 :,; :方程表示双曲线.⑴若 为真命题时,求实数 的取值范围;⑵当 为假命题,且 为真命题,求实数 的取值范围.【答案】⑴⑵【解析】试题分析:(1)利用一元二次不等式恒成立和判别式为负进行求解;(2)先利用双曲线的标准方程的特点求出 的范围,再利用真值表判定两简单命题的真假,再利用集合的运算进行求解.试题解析:⑴∵,∴,解得⑵∵方程表示双曲线∴,解得∵ 为假命题,且 为真命题∴∴17. ⑴当 时,求证:;⑵用数学归纳法证明.【答案】⑴见解析⑵见解析 【解析】试题分析:(1)利用作差法进行证明;(2)利用数学归纳法的步骤进行证明.试题解析:⑴∵∴∴⑵①当 时,左边 所以当 时,命题成立; ②假设当 时,命题成立 则有则当时,左边所以当时,命题也成立综上①②可知原命题成立点睛:本题考查利用作差法和数学归纳法证明不等式;在利用数学归纳法证明不等式时,其关键步骤是研究当 到时,不等式的左边和右边各多了几项,多了哪些项,如何合理进行放缩.18. 某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用 (万元)和宿舍与工厂的距离的关系为:.为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为 万元,工厂一次性补贴职工交通费万元.设 为建造宿舍、修路费用与给职工的补贴之和.⑴求 的表达式; ⑵宿舍应建在离工厂多远处,可使总费用 最小,并求最小值.【答案】⑴⑵见解析【解析】试题分析:(1)利用题意提取有关知识,利用函数模型建立表达式;(2)利用导数研究函数的单 调性,进而求出函数 的最小值.试题解析:⑴整理得,⑵由得所以 在 上单调递减,在故当 时, 取得最小值上单调递增答:⑴⑵宿舍应建在离工厂 处,可使总费用 最小,最小值为 万元.19. 已知椭圆的离心率为 ,左顶点为,过原点且斜率不为 0 的直线与椭圆交于 两点,其中点 在第二象限,过点 作 轴的垂线交 于点 .⑴求椭圆的标准方程; ⑵当直线 的斜率为 时,求⑶试比较 与大小.的面积;【答案】⑴⑵ ⑶见解析【解析】试题分析:(1)利用离心率、左顶点坐标求解即可;(2)根据直线过原点且斜率为 写出直线方程,联立直线和椭圆方程,求出,再写出直线 的方程,求出点 的坐标,利用三角形的面积公式进行求解;(3)设直线 的方程为, ,与椭圆方程联立,得到关于 的一元二次方程,利用根与系数的关系、弦长公式及椭圆的对称性进行求解.试题解析:⑴因为左顶点为,所以因为椭圆的离心率为 ,所以 ,解得又因为,所以故所求椭圆的标准方程为⑵因为直线 过原点,且斜率为 所以直线 的方程为代入椭圆方程解得因为,所以直线 的方程为从而有故的面积等于⑶方法一:设直线 的方程为,代入椭圆方程得设,则有,解得从而 由椭圆对称性可得所以于是 故从而 所以因为点 在第二象限,所以方法二:设点,则点,于是有因为,所以直线 的方程为所以从而从而有20. 已知函数的最小值为 .⑴设 ⑵求证:,求证: 在 ;上单调递增;⑶求函数的最小值.【答案】⑴见解析⑵见解析⑶见解析【解析】试题分析:(1)先求导求出 ,再求导,利用导数的符号变换得到函数 的单调区间;(2)由⑴可知 在上单调递增,再利用零点存在定理及函数的单调性进行求解;(3)分离参数,合理构造,利用导数研究函数的最值.试题解析:⑴∵∴在 ⑵由⑴可知上单调递增在上单调递增∵∴ 存在唯一的零点,设为 ,则且当时,;当从而 在 上单调递增,在所以 的最小值时, 上单调递减∵∴∴∴(当且仅当 时取等号)∵∴(第二问也可证明,从而得到 )⑶ 同⑴方法可证得 在 ∵ ∴上单调递增∴ 存在唯一的零点,设为 ,则且所以 的最小值为∵∴∴,即由⑵可知∴=∵在上单调递增∴所以的最小值为。

江苏省泰州市2019-2020年度数学高二下学期文数期末考试试卷D卷

江苏省泰州市2019-2020年度数学高二下学期文数期末考试试卷D卷

江苏省泰州市2019-2020年度数学高二下学期文数期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)命题p:“∃x≥0,e <x0+1”,则¬p是()A . ∀x≥0,ex<x+1B . ∃x≥0,ex>x+1C . ∃x≥0,ex≥x+1D . ∀x≥0,ex≥x+12. (2分) (2018高二下·中山月考) 已知,是双曲线的左、右焦点,若直线与双曲线交于,两点,且四边形为矩形,则双曲线的离心率为()A .B .C .D .3. (2分) (2018高二下·聊城期中) 已知函数,则()A .B .C .D .4. (2分) (2016高二上·吉安期中) 如图,焦点在x轴上的椭圆 =1(a>0)的左、右焦点分别为F1、F2 , P是椭圆上位于第一象限内的一点,且直线F2P与y轴的正半轴交于A点,△APF1的内切圆在边PF1上的切点为Q,若|F1Q|=4,则该椭圆的离心率为()A .B .C .D .5. (2分)下列命题中:①命题“,使得”,则是假命题.②“若,则互为相反数”的逆命题为假命题.③命题“”,则“”.④命题“若,则”的逆否命题是“若,则”.其中正确命题是()A . ②③B . ①②C . ①④D . ②④6. (2分)在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A . ①B . ①③C . ③D . ②7. (2分)(2019·随州模拟) 复数 ,则的虚部为()A .B . iC . -1D . 18. (2分)用反证法证明命题“+是无理数”时,假设正确的是()A . 假设是有理数B . 假设是有理数C . 假设或是有理数D . 假设+是有理数9. (2分)已知抛物线的焦点与椭圆的一个焦点重合,过点P(4,0)的直线与抛物线交于A,B两点,若A(5,m),则的值()A .B .C .D . 310. (2分) (2016高二上·吉林期中) 双曲线 =1的焦点到其渐近线距离为()A . 1B .C .D . 2二、填空题 (共5题;共5分)11. (1分)(2016·金华模拟) 已知F1 , F2分别是双曲线C:﹣ =1(a>0,b>0)的左右焦点,过F1的直线与双曲线C的右支交于点P,若线段F1P的中点Q恰好在双曲线C的一条渐近线,且• =0,则双曲线的离心率为________.12. (1分)设命题p:,命题q:x2﹣(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,则实数a的取值范围是________13. (1分) (2016高二上·蕲春期中) 已知直线l:xcosθ+ysinθ=cosθ与y2=4x交于A、B两点,F为抛物线的焦点,则 + =________.14. (1分) (2017高二上·集宁期末) 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.15. (1分) (2016高二上·扬州期中) 如果p:x>2,q:x>3,那么p是q的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出适当的一种填空)三、解答题 (共6题;共41分)16. (10分) (2016高二下·上海期中) 已知z为复数,ω=z+ 为实数,(1)当﹣2<ω<10,求点Z的轨迹方程;(2)当﹣4<ω<2时,若u= (α>0)为纯虚数,求:α的值和|u|的取值范围.17. (5分)判断命题“若m>0,则方程x2+2x﹣3m=0有实数根”的逆否命题的真假.18. (5分)已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.(1)求a、b的值;(2)求f(x)的单调区间;(3)求f(x)在[0,4]上的最大值与最小值.19. (10分) (2019高二上·桂林期末) 设点A,B的坐标分别为(-2,0),(2,0)直线AM,BM相交于点M,且它们的斜率之积是- .(1)求点M的轨迹E的方程;(2)设直线l:y=kx与E交于C,D两点,F1(-1,0),F2(1,0),若E上存在点P,使得,求实数k的取值范围.20. (1分)已知函数f (x)= lnx﹣,则f′(3)=________.21. (10分)(2017·江苏模拟) 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共41分) 16-1、16-2、17-1、18-1、19-1、19-2、20-1、21-1、21-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档