人工神经网络三要素及其特点
人工神经网络

人工神经网络1.简介人工神经网络(ANN)技术是一种信息处理范式,灵感来自于生物神经系统的方式,如大脑、处理信息。
这拍拉的DIGM关键的元素是一款新颖的结构的信息处理系统。
它是由大量的高度互连处理单元(神经元都)工作在和谐中要解决的具体问题。
像人一样,学习结合起来,通过实例说明。
一个人工神经网络被配置为某一特定的应用,如模式识别或数据分类,通过一个学习的过程。
学习在生物体系需要调整突触连接之间的神经元都存在。
结合起来,这是有据可查的。
在更多的实际统计数据的模糊神经网络的非线性建模工具。
它们能被用于模型复杂的输入-输出关系或发现模式在数据。
本文将简要介绍有关知识安和打好基础,为进一步研究。
2.人工神经网络的特点神经网络模型,拥有的卓越的能力也衍生意义是从复杂的或不精确数据,可被用于提取模式和趋势发现太过于复杂以致难以被任何人类或其它计算机技术注意到。
一个受过训练的神经网络可以被认为是一个“专家”在信息范畴内,才能来来作分析。
这位专家就可以被用来提供给测感和给定新的有兴趣环境,然后提问“假如如此”的问题。
神经网络的其他优点包括:自适应学习能力:学习如何做任务的基础上,给出了初始数据训练或经验。
自组织:一个人工神经网络可以创造自己的组织或表示它收到的信息时的学习时间。
实时操作:安计算可以对并联,和特殊的硬件设备被设计和制造,充分利用这一能力。
通过冗余信息容错编码:局部破坏网络导致相应的降解性能。
然而,一些网络能力甚至可以保留与主要网络伤害。
3.一个简单的神经元和复杂的神经元一个简单神经元一种人工神经元是一种装置与许多输入和一个输出,如图。
3-26。
神经元的有两种模式的操作:培养模式和使用模式。
在训练模式中,神经元可以训练的射击(或没有),为特定的输入方式。
在使用模式,当一个教输入模式检测到输入、输出成为其关联的输出电流。
如果输入模式不属于这教的名单输入方式、烧成规则是用来确定是否发生火灾或不是。
射击规则是在神经网络的一个重要概念。
深度剖析人工神经网络

深度剖析人工神经网络一、引言随着传感器技术、互联网技术、半导体技术和计算机技术的快速发展,人工智能成为信息时代研究的热门话题之一。
而人工神经网络作为人工智能的一种表现形式,已经成为计算机科学、人工智能和数据科学中的一个重要领域。
本文将深度剖析人工神经网络的相关知识。
二、人工神经网络的概念与类型人工神经网络(Artificial Neural Network,ANN)是模仿生物神经系统的工程模型,通过计算机模拟大脑神经细胞(神经元)的结构和功能来处理信息。
人工神经网络由节点(neuron)和连接(connection)组成,节点通常被称为神经元。
人工神经网络的类型可以根据其结构和学习方式进行分类。
结构上,人工神经网络可分为前馈型神经网络(Feedforward Neural Network)和反馈型神经网络(Recurrent Neural Network)两种类型。
前馈型神经网络从输入层到输出层形成一个单向传递的结构,每一层都有多个节点;而反馈型神经网络在前馈型神经网络的基础上增加了反馈层,使信息可以在神经网络中循环流动。
学习方式上,人工神经网络可分为监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)三种类型。
监督学习是指通过样本数据来训练网络模型,目标是让模型能够准确地预测未知数据;无监督学习则没有标记数据,模型需要自学习出数据的结构规律;强化学习是指模型在不断地尝试和环境交互中,通过激励机制逐步学习获得最优的适应策略。
三、人工神经网络的应用领域人工神经网络在众多领域中都有广泛的应用,例如图像识别、语音识别、自然语言处理、运动控制、故障诊断、金融风险评估等。
在图像识别领域,人工神经网络可以对图像的特征进行提取和分类,广泛应用于人脸识别、车辆检测、物体跟踪等领域。
在自然语言处理领域,人工神经网络可以用于自动回答、机器翻译、语音合成等任务,将语言数据转换为计算机可以理解的形式。
人工神经网络理论简介

人工神经网络理论简介人工神经网络是基于模仿生物大脑结构和功能而构成的一种信息处理系统。
由于人工神经网络具有复杂的动力学特性、并行处理机制、学习、联想和记忆等功能,以及它的高度自组织、自适应能力和灵活活性而受到自然科学领域学者和各行业应用专家的广泛重视[31]。
4.1 神经网络的特点神经网络实际上是由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络吸取了生物神经网络的许多优点,因而有其固有的特点[32]:1、分布式存储信息。
其信息的存储分布在不同的位置,神经网络是用大量神经元的连接及对各连接权值的分布来表示特定的信息,从而使网络在局部网络受损或输入信号因各种原因发生部分畸变时,仍然能够保证网络的正确输出,提高网络的容错性和鲁棒性。
2、并行协同处理信息。
神经网络中的每个神经元都可根据接收到的信息进行独立的运算和处理,并输出结果,同一层中的各个神经元的输出结果可被同时计算出来,然后传输给下一层做进一步处理,这体现了神经网络并行运算的特点,这个特点使网络具有非常强的实时性。
虽然单个神经元的结构及其简单,功能有限,但大量神经元构成的网络系统所能实现的行为是极其丰富多彩的。
3、良好的容错性与联想记忆功能。
神经网络通过自身的网络结构能够实现对信息的记忆。
而所记忆的信息是存储在神经元之间的权值中。
从单个权值中看不出所存储的信息内容,因而是分布式的存储方式。
这使得网络具有良好的容错性,并能进行聚类分析、特征提取、缺损模式复原等模式信息处理工作;又宜于做模式分类、模式联想等模式识别工作。
4、对信息的处理具有自组织、自学习的特点,便于联想、综合和推广。
神经网络的神经元之间的连接强度用权值大小表示,这种权值可以通过对训练样本的学习不断变化,而且随着训练样本量的增加和反复学习,这些神经元之间的连接强度会不断增加,从而提高神经元对这些样本特征的反应灵敏度。
4.2 神经网络的结构与泛化能力4.2.1 神经元模型神经元是人工神经网络的基本处理单元,它一般是一个多输入单输出的非线性元件。
人工神经网络基础文档资料

<1> 层次型神经网络
(1)前向神经网络 神经元分层排列,顺序连接。由输入层施加输入信息,通过 中间各层,加权后传递到输出层后输出。每层的神经元只接 受前一层神经元的输入,各神经元之间不存在反馈。
32
<1> 层次型神经网络
(2)层内有互联的前向神经网络 在前向神经网络中有 的在同一层中的各神经元相互有连接,通过层内神经元的 相互结合,可以实现同一层内神经元之间的横向抑制或兴 奋机制,这样可以限制每层内能同时动作的神经元数,或 者把每层内的神经元分为若干组,让每组作为一个整体来 动作。
41
<2> 神经网络的学习规则
2、纠错式学习— Delta(δ)学习规则
首先我们考虑一个简单的情况:设某神经网络的输 出层中只有一个神经元i,给该神经网络加上输入,这样 就产生了输出yi(n),称该输出为实际输出。
对于所加上的输入,我们期望该神经网络的输出为
d(n),称为期望输出或目标输出(样本对里面包含输入和
1949年,心理学家Hebb提出神经系统的学习规则, 为神经网络的学习算法奠定了基础。现在,这个规 则被称为Hebb规则,许多人工神经网络的学习还 遵循这一规则。
3
一 人工神经网络发展
1957年,F.Rosenblatt提出“感知器”(Perceptron) 模型,第 一次把神经网络的研究从纯理论的探讨付诸工程实践,掀 起了人工神经网络研究的第一次高潮。
在互连网络模型中,任意两个神经元之间都可能有相互 连接的关系。其中,有的神经元之间是双向的,有的是单 向的。
Hopfield网络、Boltzman机网络属于这一类。
35
<2> 互联型神经网络
在无反馈的前向网络中,信号一旦通过某个神经元,过 程就结束了。而在互连网络中,信号要在神经元之间反复往 返传递,神经网络处在一种不断改变状态的动态之中。从某 个初始状态开始,经过若干次的变化,才会到达某种平衡状 态,根据神经网络的结构和神经元的特性,还有可能进入周 期振荡或其它如浑沌等平衡状态。
人工神经网络简介

特点和优越性
人工神经网络的特点和优越性主要表现在 三个方面: 第一,具有自学习功能。例如实现图像识别 时,只在先把许多不同的图像样板和对应的应识别 的结果输入人工神经网络,网络就会通过自学习功 能,慢慢学会识别类似的图像。 第二,具有联想存储功能。用人工神经网络 的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一 个复杂问题的优化解,往往需要很大的计算量,利 用一个针对某问题而设计的反馈型人工神经网络, 发挥计算机的高速运算能力,可能很快找到优化解。
基本特征
人工神经网络是由大量处理单元互联组成的非线性、 自适应信息处理系统,具有四个基本特征: 1、非线性:人工神经元处于激活或抑制二种不同的状 态,这种行为在数学上表现为一种非线性关系。 2、非局限性:一个神经网络通常由多个神经元广泛连 接而成。一个系统的整体行为不仅取决于单个神经元 的特征,而且可能主要由单元之间的相互作用、相互 连接所决定。 3、非常定性:人工神经网络具有自适应、自组织、自 学习能力。神经网络不但处理的信息可以有各种变化, 而且在处理信息的同时,非线性动力系统本身也在不 断变化。 4、非凸性
分类
人工神经网络分类为以下两种: 1.依学习策略分类主要有: 监督式学习网络 无监督式学习网络 混合式学习网络 联想式学习网络 最适化学习网络 2.依网络架构分类主要有: 前向式架构 回馈式架构 强化式架构
人工神经网络简介
By 詹小青 学号:03120结构的 前馈网络,由三部分组成:输入层、输出层和 隐藏层。
人工神经网络的定义: 人工神经网络即ANNs,它是一种模仿动物神经 网络行为特征,进行分布式并行信息处理的算法数 学模型。 它由大量的节点(或称神经元)和之间相互联 接构成。每个节点代表一种特定的输出函数,称为 激励函数。每两个节点间的连接都代表一个对于通 过该连接信号的加权值,称之为权重,这相当于人 工神经网络的记忆。如:
神经网络简介

神经网络简介神经网络(Neural Network),又被称为人工神经网络(Artificial Neural Network),是一种模仿人类智能神经系统结构与功能的计算模型。
它由大量的人工神经元组成,通过建立神经元之间的连接关系,实现信息处理与模式识别的任务。
一、神经网络的基本结构与原理神经网络的基本结构包括输入层、隐藏层和输出层。
其中,输入层用于接收外部信息的输入,隐藏层用于对输入信息进行处理和加工,输出层负责输出最终的结果。
神经网络的工作原理主要分为前向传播和反向传播两个过程。
在前向传播过程中,输入信号通过输入层进入神经网络,并经过一系列的加权和激活函数处理传递到输出层。
反向传播过程则是根据输出结果与实际值之间的误差,通过调整神经元之间的连接权重,不断优化网络的性能。
二、神经网络的应用领域由于神经网络在模式识别和信息处理方面具有出色的性能,它已经广泛应用于各个领域。
1. 图像识别神经网络在图像识别领域有着非常广泛的应用。
通过对图像进行训练,神经网络可以学习到图像中的特征,并能够准确地判断图像中的物体种类或者进行人脸识别等任务。
2. 自然语言处理在自然语言处理领域,神经网络可以用于文本分类、情感分析、机器翻译等任务。
通过对大量语料的学习,神经网络可以识别文本中的语义和情感信息。
3. 金融预测与风险评估神经网络在金融领域有着广泛的应用。
它可以通过对历史数据的学习和分析,预测股票价格走势、评估风险等,并帮助投资者做出更科学的决策。
4. 医学诊断神经网络在医学领域的应用主要体现在医学图像分析和诊断方面。
通过对医学影像进行处理和分析,神经网络可以辅助医生进行疾病的诊断和治疗。
5. 机器人控制在机器人领域,神经网络可以用于机器人的感知与控制。
通过将传感器数据输入到神经网络中,机器人可以通过学习和训练来感知环境并做出相应的反应和决策。
三、神经网络的优缺点虽然神经网络在多个领域中都有着广泛的应用,但它也存在一些优缺点。
人工神经网络的原理和应用

人工神经网络的原理和应用简介人工神经网络(Artificial Neural Network,简称ANN)是一种基于生物神经网络结构和功能的计算模型,它通过模拟神经元之间的相互连接和信息传递来实现智能化的任务处理。
本文将介绍人工神经网络的原理,包括神经元、权重及激活函数的概念,并探讨其在各领域中的应用。
人工神经网络的原理人工神经网络由神经元(Neuron)、权重(Weight)和激活函数(Activation Function)三个核心组件构成。
神经元神经元是人工神经网络的基本单元,它模拟生物神经元的结构和功能。
神经元接受输入信号,通过加权求和和激活函数的运算,产生输出信号。
一个神经网络通常包含多个神经元组成的输入层、隐藏层和输出层。
权重权重表示神经元之间连接的强度,它决定了输入信号对输出信号的影响程度。
在训练过程中,神经网络通过调整权重来逐步优化模型的性能。
权重调整的方法有很多,常见的方法包括梯度下降法、反向传播算法等。
激活函数激活函数对神经元输出信号进行非线性变换,帮助神经网络学习和处理更复杂的数据。
常用的激活函数有sigmoid函数、ReLU函数等,它们可以将输入信号映射到一定的范围内,保证输出结果在合理的区间内。
人工神经网络的应用人工神经网络在各个领域中都有广泛的应用。
图像识别人工神经网络在图像识别领域中发挥重要作用。
通过训练神经网络模型,可以实现图像分类、目标检测、人脸识别等任务。
著名的卷积神经网络(Convolutional Neural Network,简称CNN)就是应用于图像识别领域的一种特殊类型的神经网络。
自然语言处理人工神经网络在自然语言处理领域也得到了广泛应用。
通过训练神经网络模型,可以实现文本分类、情感分析、机器翻译等任务。
循环神经网络(Recurrent Neural Network,简称RNN)和长短期记忆网络(Long Short-Term Memory,简称LSTM)是应用于自然语言处理的常见神经网络模型。
人工神经网络知识概述

人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。
BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。
19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。
人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。
但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。
细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。
突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。
各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1人工神经网络三要素
人工神经网络是对生物神经系统的某种抽象、简化与模拟,是由许多并行互联的相同神经元模型组成。
网络的信息处理由神经元之间的相互作用来实现;知识与信息存储在处理单元相互间的物理连接上;网络的学习和识别决定于各神经元连接权系数的动态演化过程。
一个神经网络模型描述了一个网络如何将它的输入矢量转化为输出矢量的过程。
通常,神经网络模型由网络模型的神经元特性、拓补结构和学习或训练规则三个要素确定。
一、神经元特性
作为神经网络基本单元的神经元模型也有其三个基本要素:l)一组连接权;2)一个求和单元:3)一个非线性激励函数。
神经元是神经网络的基本处理单元,它一般是多输入单输出的非线性器件,其结构模型如图4一1所示。
式中j x (1,2,,)j p =⋅⋅⋅为输入信号,
kj w (1,2,,)j p =⋅⋅⋅为神经元j 到神经元k 的连接权值,1p
k kj j j u w x ==∑为线性组合结果,k θ为阈值。
ϕ为神经元激励函数,k y 为神经元的输出。
1. 激活函数 (Activation Functions)
(1) 线性激活函数
x x purelin x f ==)()(
(2) 硬限幅激活函数
⎩⎨⎧<≥==0
,00 ,1)lim()(x x x hard x f
x
(3)对称的硬限幅激活函数
⎩⎨⎧<-≥==0 ,10 ,1 )(lim )(x x x s hard x f (4)Sigmoid (S 形)激活函数 x e x sig x f λ-+==11)(log )(,0>λ 具有平滑和渐进性,并保持单调性,参数λ可控制其斜率。
)(x f 性质:⎩
⎨⎧+∞→→无穷阶光滑λ ),lim()(x hard x f
二、神经网络结构
神经网络由大量并行分布的神经元广泛互联构成。
网络的拓补结构是神经网络的一个重要特征,从连接方式看神经网络结构主要有两种。
(l)前馈型网络
前馈网络中神经元是分层排列的,每个神经元只与前一层的神经元相连。
输
入层和输出层与外界相连,其它中间层称为隐层,隐层可为一层或多层。
除了通 用的前馈网络外,还存在其变型,如前馈内层互连网络,网络在同一层内相互连 接,互相制约,从外部看还是一个前馈网络,很多自组织网络存在此种结构。
单隐层网络:常用;三、四层网络:特殊的目的;四层以上网络:罕见。
(2)反馈型网络
所有节点都是计算单元,也可接受输入,并向外界输出。
网络的任意两个神经元之间都可能存在连接,信息在各神经元之间反复传递至趋于某一稳定状态。
三、神经网络的学习方法
1、学习方式
网络的学习可以分为3种基本类型:1)网络权值的学习;2)网络节点函数的
学习;3)网络拓补结构的学习。
其中,网络权值的学习最为简单,目前大多数文
献中所谓的网络学习指的就是网络权值的学习。
下文的介绍也围绕网络权值的
学习进行。
学习的过程就是按某种预定的度量通过调节自身参数(如权值)来达到 性能改养的过程。
学习方式有三种:
(l)监督学习(有教师学习)
输入层 隐层 输出层 ……
…… ……
这种学习方式需要外界存在一个“教师”,它可对给定一组输入提供应有的
输出结果,这组己知的输入一输出数据称为训练样本集,学习系统(神经网络)根据 己知输入与实际输出之间的差值(误差信号)来调节系统参数。
(2)非监督学习(无教师学习)
非监督学习不存在外部教师,学习系统完全按照环境提供数据的某些统计规
律来调节自身参数或结构,以表示出外部输入的某种固有特性。
(3)再励学习(强化学习)
这种学习介于上述两种情况之间,外部环境对系统输出结果只给出评价信息
(奖或惩)而不给出正确答案,学习系统通过强化受奖的动作来改善自身的性能。
2、学习算法
(l)误差纠正学习
神经网络的误差信号为()()()k k k e n d n y n =-
式中()k d n 为理想输出,()k y n 为实际输出。
误差纠正学习的最终目的是使某一基于误()k e n 的目标函数达到最小,使网络中每个输出单元的实际输出在某种统计意义上逼近理想输出。
(2)Hebb 学习
两个神经元之间的连接权,正比于两个神经元的活动值,当两神经元同为激活或同为抑制时,该连接的强度应增强,反之减弱。
(3)竞争(eompetitive)学习
网络各输出单元相互竞争,原来输出单元中如有某一单元较强,它将获胜并抑制其它单元,最后只有此强者处于激活状态。
环境 学习系统 输入 环境 教师 学习系统 输入 理想输出 实际
输出
误差信号 + —
学习系统 环境 评价 输出
动作 输入 状态
4.1.2人工神经网络的特点
人工神经网络在信息处理方面与传统的计算机相比有自身的优势:
(l)并行性。
传统的计算方法是基于串行处理的思想发展起来的,计算和存储是完全独立的两个部分。
计算速度取决于存储器和运算器之间的连接通道,大大限制了它的运算能力。
而神经网络中的神经元之间存在大量的相互连接,所以信息输入之后可以很快地传递到各个神经元进行并行处理,在值传递的过程中同时完成网络的计算和存储功能,将输入输出的映射关系以神经元间连接强度(权值)的方式存储下来,其运算效率非常高。
(2)自学习、自组织性。
神经网络系统具有很强的自学习能力,系统可以在学习过程中不断地完善自己,具有创造性。
(3)联想记忆功能。
在神经网络的训练过程中,输入端给出要记忆的模式,通过学习并合理地调一节网络中的权系数,网络就能记住所有的输入信息。
在执行时,若网络的输入端输入被噪声污染的信息或是不完整、不准确的片断,经过网络的处理后,在输出端可得到恢复了的完整而准确的信息。
(4)很强的鲁棒性和容错性。
在神经网络中,信息的存储是分布在整个网络中相互连接的权值上的,这就使得它比传统计算机具有较高的抗毁性。
少数几个神经元损坏或断几处连接,只会稍许降低系统的性能,而不至于破坏整个网络系统,因而具有强的鲁棒性和容错性。