向量在立体几何中的应用

合集下载

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思1. 教学目的本节课是人教B版选修2课程的一部分,主要教授空间向量在立体几何中的应用。

本课程将帮助学生:•深入理解空间向量的概念及其运算法则•掌握将空间向量应用于立体几何中的方法和技巧•发展自己的独立思考能力和解决问题的能力2. 教学内容2.1 知识点本节课的重点知识点为:•空间向量的定义•空间向量的基本运算法则•点、线、面等几何图形在空间向量中的表示方法•空间向量在几何问题中的应用2.2 教学步骤本节课教学步骤如下:第一步:导入教师简单介绍空间向量及其基本运算法则,引发学生对此概念的兴趣。

第二步:概念讲解教师详细讲解空间向量的概念,以及点、线、面等几何图形在空间向量中的表示方法。

为了增强学生的理解,教师可以使用相关的图形和实例进行讲解。

第三步:举例说明教师通过几个实例,向学生展示如何使用空间向量解决立体几何问题。

在示例中,教师应尽可能地让学生自己思考并尝试解决问题,同时指导学生正确的解决方法,让学生深入理解知识点。

第四步:练习安排学生进行一定数量和难度的练习,让学生掌握应用相关知识解决问题的方法和技巧。

第五步:讲解与总结最后,教师应总结本节课的主要内容,并对学生的问题进行讲解和解答。

3. 教学反思本节课的教学方法主要采用“以实例为主,以问题为导向”的方式,让学生能够在探究中理解和掌握知识点。

这种探究式学习的方法能够有效激发学生的主动学习意识和自主学习能力。

在实际教学中,教师应充分发挥学生的主观能动性,让他们能够独立思考和解决问题。

同时,教师还应充分利用技术手段,如音视频、实例演示等方式进行综合教学,探索出适合学生的多元化、个性化的教学方式。

在上述教学步骤中,教师尤其需要注意:•难度掌握:教师在设计实例和练习时,应根据学生的实际情况及能力水平,掌握好难度,以确保学生的接受能力和理解能力•差异处理:同学的学习能力和理解能力会存在差异,教师需要采用差异化教学方法,根据学生的特点进行教学•评估方法:教师应采用多种评估方法,对学生进行全面评价,如通过小组讨论、思维导图、课堂测验等方式,合理衡量学生的学习成果和进步情况总之,人教B版选修2《空间向量在立体几何中的应用》教学,应侧重于实践探究和知识应用,培养学生的独立思考和解决问题的能力,让学生能够掌握并应用相关知识,提高学生的立体几何解题能力,为日后的数学学习打下基础。

空间向量在立体几何中的应用-立体几何

空间向量在立体几何中的应用-立体几何
(4)若平面α的一个 法向量 为m,P是α外一
点,A是α内任一点,则点P到α的距离d= | PA·m | .
|m|
考点一 用向量证明平行、垂直问题
如图,在四棱锥P—ABCD 中,PA⊥平面ABCD,底面 ABCD为矩形,且PA=AD, E,F分别为线段AB,PD的中 点.求证:
(1) AF∥平面PEC;
相等或互补 .
5.空间的距离
(1)一个点到它在一个平面内 正射影 的距离,叫做 点到这个平面的距离.
(2)已知直线l平行平面α,则l上任一点到α的距离 都 相等 ,且叫做l到α的距离.
返回目录
(3)和两个平行平面同时 垂直 的直线,叫做两 个平面的公垂线.公垂线夹在平行平面间的部分,叫做两 个平面的 公垂线段 .两平行平面的任两条公垂线段的长 都相等,公垂线段的 长度 叫做两平行平面的距离, 也是一个平面内任一点到另一个平面的距离.
EC=(
a
22 ,1,0),∴AF=
1
2 EP+
1 EC,
2
2
2
又AF⊂ 平面PEC,∴AF∥平面PEC.
(2)PD=(0,1,-1),CD=(-a,0,0), 11
∴AF·PD=(0, 2, 2)·(0,1,-1)=0, AF·CD=(0, 1 , 1 )·(-a,0,0)=0,
22 ∴AF⊥PD,AF⊥CD,又PD∩CD=D,
∴m⊥n.
∴平面ADE⊥平面A1D1F.
返回目录
考点二 用向量求线线角与线面角 如图所示,已知点P在正方体ABCDA′B′C′D′的对角线BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA ′ D′D所成角的大小
【分析】建立空间直角坐标系,利用空间向量方法求解. 返回目录

向量在立体几何中的几点应用

向量在立体几何中的几点应用

向量在立体几何中的几点应用向量在立体几何中的几点应用在数学中,向量是一个有大小和方向的量,它在几何中的应用非常广泛。

在立体几何中,向量也有着重要的应用,下面就来谈谈它的一些应用。

1.向量的叉积向量的叉积在立体几何中有着广泛的应用。

它定义了一个向量和一个法向量,这使得它适用于区分面积和体积,这是立体几何中很重要的概念。

在计算立体几何的体积时,有时需要利用向量的叉积。

例如,在计算一个四棱锥的体积时,可以用其底面上的两个向量构成一个平面向量,然后将这个平面向量与第五个顶点所在的向量做叉积,便可以得到该四棱锥的体积。

这个方法非常简单,而且不需要用到具体的高度或底面积这样的参数,因此,在计算体积时十分方便。

另一个例子是,在求解两条直线的交点时可以使用向量的叉积。

如果已知两个直线所在的平面,可以将它们所在的向量取叉积,便可以得到一个垂直于两条直线所在平面的向量,从而可以得到它们的交点。

这个方法也非常简单,而且不需要求解方程组,因此在计算交点时比较方便。

2.向量的点积向量的点积在立体几何中也有着很重要的应用。

它可以用来计算向量的夹角,从而在计算三角形的面积或四面体的体积等问题时十分方便。

例如,在计算三角形的面积时,可以用两个边向量之间的夹角及其对顶点到该边的距离来计算。

这就用到了向量的点积。

在计算四面体的体积时,我们可以用面积乘以高度来计算,而面积可以使用向量的叉积计算,高度可以用向量的点积计算。

这种方法比基本的平行六面体法更直观,更方便。

3.平面与直线的向量表示在立体几何中,我们经常需要对平面和直线进行求交、平移、旋转等处理。

而这些处理都可以使用向量的表示法来简化。

例如,在求解平面与直线的交点时,如果已知平面和直线的法向量,我们就可以用向量的点积求出它们之间的夹角,从而计算出交点。

这个方法比纯粹的代数方法更加便捷、直观。

再例如,在计算平面和直线的平移时,可以用向量的加减法来表示平移后的位置。

这种向量的表示法非常简单、直观,因此在计算中能够提高效率。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

空间向量在立体几何中的应用ʏ贵州省仁怀市周林高中 尹伟云空间向量是高中数学的一个重要组成部分,在高考中具有较高的地位,是立体几何中的一个主要命题方向,往往以 证算并重 的方式进行考查㊂常以多面体为载体,考查用向量法确定空间点㊁线㊁面的位置关系,求解空间角㊁空间距离㊁立体几何中的动点探究性问题等㊂需要同学们借助向量的工具性作用,将空间几何量之间的位置关系转化为数量关系来求解㊂下面分类分析空间向量在立体几何中的应用㊂1.证明共线与共面问题图1例1 如图1,在长方体A B C D -A 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且|E D 1|=2|D E |,|B F |=2|F B 1|,线段E F 的中点为M ㊂求证:(1)点M 在长方体的对角线A C 1上;(2)点C 1在平面A E F 内㊂解析:证法1(利用向量的坐标运算)图2(1)以点C 1为坐标原点,分别以向量C 1D 1ң,C 1B 1ң,C 1C ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系C 1-x yz ,如图2所示㊂设|C 1D 1|=a ,|C 1B 1|=b ,|C 1C |=c ,则C 1(0,0,0),A (a ,b ,c ),E a ,0,2c 3,F 0,b ,c 3,Ma 2,b 2,c 2㊂从而C 1M ң=a 2,b 2,c 2,C 1A ң=(a ,b ,c ),故C 1M ң=12C 1A ң㊂又C 1Mң与C 1A ң有公共点C 1,所以点M 在长方体对角线A C 1上㊂(2)由(1)知,E A ң=0,b ,c 3=C 1F ң,所以A E ʊC 1F ,从而A ,E ,F ,C 1四点共面,故点C 1在平面A E F 内㊂证法2(利用向量的几何运算)(1)由向量的平行四边形法则及三角形法则,得C 1M ң=12(C 1E ң+C 1F ң)=12(C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң)=12(C 1A 1ң+B 1F ң+F B ң)=12(C 1A 1ң+A 1A ң)=12C 1A ң,即C 1M ң=12C 1A ң㊂所以点M 在长方体对角线A C 1上㊂(2)依题意,得C 1E ң+C 1F ң=C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң=C 1D 1ң+F B ң+C 1F ң=C 1D 1ң+C 1B ң=C 1A ң,即C 1A ң=C 1E ң+C 1F ң㊂由向量共面的充要条件知,点C 1在平面A E F 内㊂评注:空间向量兼具代数与几何的双重特征,证明多点共线或多线共面问题也是从这两个方面入手,关键是掌握空间向量的线性运算法则和共线㊁共面的充要条件㊂具体方法是:要证明三点共线,可以证明任意两点构成的一组向量共线且共点;要证明四点共面,可以利用向量共面的充要条件,即以其中一点A 为起点,分别以另三点B ,C ,D 为终点得到向量A B ң,A C ң,A D ң,证明存在唯一的实数对(λ,μ),使A B ң=λA C ң+μA D ң成立即可;要证明两条直线共面,可以证明两条直线平行或相交,从而转化为两条直线的方向向量共不共线的问题,即若存在实数λ,使两条直线的方向向量a ,b 满足b =λa ,则两条直线平行,若不存在实数λ满足b =λa ,则两条直线相交㊂2.证明线㊁面的平行与垂直关系例2 如图3所示,在直二面角D -A B -E 中,四边形A B C D 是边长为2的正方形,|A E |=|E B |,F 为C E 上的点,且B F ʅ平面A C E ,G 为C E 的中点㊂解题篇 经典题突破方法 高二数学 2023年5月图3求证:(1)A E ʊ平面B D G ;(2)A E ʅ平面BC E ;(3)平面BD F ʅ平面A B C D ㊂解析:因为A B C D 为正方形,所以B C ʅA B ㊂因为二面角D -A B -E 为直二面角,平面D A B ɘ平面A B E =A B ,所以B C ʅ平面A E B ㊂设线段A B 的中点为O ,连接O E ㊂因为|A E |=|E B |,所以A B ʅO E ㊂图4故以O 为坐标原点,分别以向量O E ң,O B ң,A D ң的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -x yz ,如图4所示㊂则A (0,-1,0),B (0,1,0),C (0,1,2),D (0,-1,2)㊂设E (x 0,0,0)(x 0>0),则E C ң=(-x 0,1,2)㊂因为F 为C E 上的点,所以设E F ң=λE C=(-λx 0,λ,2λ),0ɤλɤ1,得F ((1-λ)x 0,λ,2λ),则B F ң=((1-λ)x 0,λ-1,2λ)㊂又A C ң=(0,2,2),A E ң=(x 0,1,0),B F ʅ平面A C E ,所以B F ң㊃A C ң=2(λ-1)+4λ=0,且B F ң㊃A E ң=(1-λ)x 20+λ-1=0,解得x 0=1,λ=13㊂所以E (1,0,0),F23,13,23,G 12,12,1㊂(1)方法1:设A C 与B D 相交于H ,则H (0,0,1),所以H G ң=12,12,0㊂可得A E ң=(1,1,0)=2H G ң㊂又A E ⊄平面B D G ,H G ⊂平面B D G ,所以A E ʊ平面B D G ㊂方法2:易知B D ң=(0,-2,2),B G ң=12,-12,1㊂设平面B D G 的一个法向量为k =(a ,b ,c ),则k ㊃B D ң=0,k ㊃B G ң=0,所以-2b +2c =0,12a -12b +c =0㊂取c =1,得k =(-1,1,1)㊂因此,k ㊃A E ң=(-1,1,1)㊃(1,1,0)=0㊂又A E ⊄平面B D G ,故A E ʊ平面B D G ㊂(2)方法1:因为A E ң=(1,1,0),B E ң=(1,-1,0),B C ң=(0,0,2),所以A E ң㊃B E ң=0,A E ң㊃B C ң=0,则A E ʅB E ,A E ʅB C ㊂又B E ɘB C =B ,所以A E ʅ平面B C E ㊂方法2:易知B E ң=(1,-1,0),B C ң=(0,0,2)㊂设平面B C E 的一个法向量为n =(x 1,y 1,z 1),由n ㊃B E ң=0,n ㊃B C ң=0,得x 1-y 1=0,2z 1=0㊂取y 1=1,得n =(1,1,0)㊂又A E ң=(1,1,0)=n ,故A E ңʊn ,A E ʅ平面B C E ㊂(3)由题意知,O E ң=(1,0,0)为平面A B -C D 的一个法向量,设平面B D F 的一个法向量为m =(x 2,y 2,z 2)㊂由(1)知,B F ң=23,-23,23,B D ң=(0,-2,2),所以m ㊃B F ң=23x 2-23y 2+23z 2=0,且m ㊃B D ң=-2y 2+2z 2=0㊂取z 2=1,则y 2=1,x 2=0,所以m =(0,1,1)㊂因m ㊃O E ң=0,故m ʅO E ң㊂因此,平面B D F ʅ平面A B C D ㊂评注:利用向量法证线面平行,一般有三个思路:一是用向量共面的充要条件,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量概念和直线在平面外,得线面平行;二是先求出平面的法向量,再证明法向量与直线的方向向量垂直;三是证明已知直线与平面内的一条直线平行,也就是将其转化为证明线线平行的问题,再根据线面平行的判断定理得证㊂证面面平行,一般有两个思路:一是利用向量证明一个平面内两条相交直线平行于另一个平面,根据面面平行的判定定理得证;二是求出两个平面的法向量,证明这两个法向量平行,则这两个平面平行㊂证线线垂直,可转化为两条直线的方向向量垂直,即证明两条直线方向向量的数量积为0㊂证线面垂直有两个思路:一是证平面的法向量与直线的方向向量平行;二是证直线与平面内两条相交直线垂直,再用线面垂直判定定理证明㊂证面面垂直,先求出两个平面的法向量,通过证明这两个平面的法向量垂直即可㊂解题篇 经典题突破方法高二数学 2023年5月以上思路大多要用到平面的法向量,当题中出现线面垂直时,则该直线的方向向量就是该平面的一个法向量,为减少计算量,无需另求法向量㊂3.解决平行或垂直的探索性问题图5例3 如图5所示,在四棱柱A B C D -A 1B 1C 1D 1中,A 1D ʅ平面A B C D ,底面A B C D 是边长为1的正方形,侧棱|A 1A |=2㊂(1)在棱A 1B 上是否存在一点M ,使得A 1D ʊ平面A C M(2)在棱A 1A 上是否存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1图6解析:如图6,分别以D A ,D C ,D A 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系㊂则由题中数据,得D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),B 1(0,1,3),C 1(-1,1,3)㊂从而D A 1ң=(0,0,3),B A 1ң=(-1,-1,3),A C 1ң=(-2,1,3),C 1B 1ң=(1,0,0),A A 1ң=(-1,0,3)㊂(1)假设线段A 1B 上存在一点M (a 1,b 1,c 1),使得A 1D ʊ平面A C M ㊂设B M ң=λB A 1ң(0<λ<1),即(a 1-1,b 1-1,c 1)=λ(-1,-1,3)㊂则a 1-1=-λ,b 1-1=-λ,c 1=3λ㊂解得M (1-λ,1-λ,3λ)㊂从而A M ң=(-λ,1-λ,3λ),C M ң=(1-λ,-λ,3λ)㊂设平面A C M 的一个法向量为m =(a 2,b 2,c 2),则m ㊃A M ң=0,m ㊃C M ң=0,即-λa 2+(1-λ)b 2+3λc 2=0,(1-λ)a 2-λb 2+3λc 2=0㊂两式相减,得a 2-b 2=0㊂令a 2=1,得m =1,1,2λ-13λ㊂由D A 1ң㊃m =0,得3㊃(2λ-1)3λ=0,解得λ=12,此时M 12,12,32,M 为线段A 1B 的中点㊂所以线段A 1B 上存在一点M ,使得A 1D ʊ平面A C M ㊂(2)假设棱A 1A 上存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1㊂设A P ң=μA A 1ң,0<μɤ1,则P (1-μ,0,3μ),从而B 1P ң=(1-μ,-1,3(μ-1))㊂设平面A B 1C 1的一个法向量为n 1=(x 1,y 1,z 1),由n 1㊃C 1B 1ң=0,n 1㊃A C 1ң=0, 得x 1=0,-2x 1+y 1+3z 1=0㊂ 令z 1=3,则n 1=(0,-3,3)㊂设平面P B 1C 1的一个法向量为n 2=(x 2,y 2,z 2),由n 2㊃C 1B 1ң=0,n 2㊃B 1P ң=0,得x 2=0,(1-μ)x 2-y 2+3(μ-1)z 2=0㊂令z 2=3,得n 2=(0,3(μ-1),3)㊂由n 1㊃n 2=0,得-3ˑ3(μ-1)+3ˑ3=0,解得μ=43>1,不合题意,所以这样的点P 不存在㊂评注:涉及线段上的动点问题,先设出动点分线段的某个比值λ,根据两个向量共线的充要条件得数乘关系,从而用λ表示动点的坐标,再进行相关计算,这样可以减少未知量,简化过程㊂值得注意的是,应给出λ的取值范围㊂另外,建系时最好用右手直角坐标系且使几何元素尽量分布在坐标轴的正方向上㊂4.求解点面距离或几何体的体积例4 如图7,在三棱柱A B C -A 1B 1C 1中,棱A A 1ʅ侧面A B C ,A B ʅB C ,D 为A C 的中点,|A A 1|=|A B |=2,|B C |=3,求三 解题篇 经典题突破方法 高二数学 2023年5月图7棱锥A 1-B C 1D 的体积㊂解析:由题意知,B 1C 1,B 1B ,B 1A 1三条直线两两垂直,故以B 1为坐标原点,建立空间直角坐标系B 1-x yz ,如图8所示㊂图8则由题中数据,得B 1(0,0,0),B (0,2,0),C (3,2,0),C 1(3,0,0),A (0,2,2),A 1(0,0,2),D32,2,1,则C 1A 1ң=(-3,0,2),C 1B ң=(-3,2,0),B D ң=32,0,1㊂所以|C 1A 1ң|=(-3)2+02+22=13,|C 1B ң|=(-3)2+22+02=13,c o s øA 1C 1B =C 1A 1ң㊃C 1B ң|C 1A 1ң||C 1B ң|=-3ˑ(-3)13ˑ13=913㊂从而s i nøA 1C 1B =1-c o s 2øA 1C 1B=22213,所以S әA 1C 1B =12|C 1A 1ң|㊃|C 1B ң|s i n øA 1C 1B =12ˑ13ˑ13ˑ22213=22㊂设平面A 1C 1B 的一个法向量为n =(x ,y ,z ),则n ㊃C 1A 1ң=0,n ㊃C 1B ң=0,即-3x +2z =0,-3x +2y =0㊂令z =3,得x =2,y =3,即n =(2,3,3)㊂所以D 到平面A 1C 1B 的距离d =|n ㊃B D ң||n |=622,故V A 1-B C 1D =13S әA 1C 1B ㊃d =13ˑ22ˑ622=2㊂评注:求锥体或柱体的体积,关键是求底面积和高,对于底面积,如әA B C 的面积可由S =12|A B ң||A C ң|s i n A =12|A B ң||A C ң㊃1-c o s 2A =12(|A B ң||A C ң|)2-(A B ң㊃A C ң)2求解㊂高可以转化为空间两点间距离,又可看作是向量长度,即已知空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d =|P 1P 2ң|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,有时要用到|a |=a 2求解㊂高也可以看作是点到平面的距离,其数值等于斜线段对应的向量在平面法向量方向上的投影向量的模㊂如求点A 到平面α的距离,可在α内任取一点B ,则A 到平面α的距离d =||A B ң|c o s α|=|A B ң㊃n ||n |㊂另外,点面距离还可以转化为线面距离㊁两平行平面间的距离等㊂5.求空间角图9例5 如图9,在四棱锥P -A B C D 中,底面A B C D为矩形,P D ʅ底面A BC D ,|A B ||A D |=2,直线P A 与底面A B C D 成60ʎ角,点N 是P B的中点㊂(1)求异面直线D N 与B C 所成角的余弦值;(2)求直线P A 与平面P B C 所成角的正弦值;(3)求二面角P -N C -D 的余弦值㊂图10解析:依题意,以D 为原点,分别以向量D A ң,D C ң,D P ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系,如图10所示㊂设|A D |=1,则|A B |=2㊂因为P D ʅ底面A B -C D ,所以øP A D 是直线P A 与平面A B C D所成的角,得øP A D =60ʎ,则|P D |=3㊂易得D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,3),N 12,1,32㊂(1)易知D N ң=12,1,32,B C ң=(-1,0,0),所以异面直线D N 与B C 所成角θ1的余弦值为c o s θ1=|c o s <D N ң,B C ң>|=|D N ң㊃B C ң||D N ң||B C ң|=24㊂(2)易知P A ң=(1,0,-3),P B ң=(1,2,-3)㊂设平面P B C 的法向量为m =(x 1,y 1,z 1),直线P A 与平面P B C 所成的角为解题篇 经典题突破方法 高二数学 2023年5月θ2,则m ㊃P B ң=x 1+2y 1-3z 1=0,且m ㊃B C ң=-x 1=0㊂令z 1=2,则x 1=0,y 1=3㊂所以m =(0,3,2),则s i n θ2=|c o s <m ,P A ң>|=|m ㊃P A ң||m ||P A ң|=217㊂(3)由(2)知,m =(0,3,2)是平面P B C的一个法向量㊂设平面C D N 的法向量为n=(x 2,y 2,z 2),因为D N ң=12,1,32,D C ң=(0,2,0),所以n ㊃D N ң=12x 2+y 2+32z 2=0,且n ㊃D C ң=2y 2=0㊂令z 2=1,则x 2=-3,y 2=0,n =(-3,0,1)㊂所以c o s <m ,n >=m ㊃n |m ||n |=77㊂在二面角P -N C -D 内部取一点H (0,0,1),则C H ң=(0,-2,1)㊂因为m ㊃C H ң=-23+2<0,n ㊃C H ң=1>0,所以二面角P -N C -D 的大小等于<m ,n >,其余弦值为77㊂评注:解异面直线夹角问题,先求出两条异面直线的方向向量m ,n ,再求出m ,n 的夹角,设两异面直线的夹角θ,利用c o s θ=|c o s <m ,n >|=|m ㊃n ||m ||n |求出异面直线的夹角㊂注意异面直线夹角与向量夹角不完全相同,当两个方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角,两条异面直线夹角θ的取值范围是0,π2㊂解线面角问题,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为φ,则直线的方向向量a 在平面法向量n 方向上的投影向量的长度|a ㊃n ||n |与直线方向向量a 的模|a |之比|a ㊃n ||a ||n |就是线面角的正弦值,即有s i n θ=|c o s φ|=|a ㊃n ||a ||n |㊂当φ为锐角时,s i n θ=s i n (90ʎ-φ)=c o s φ=a ㊃n|a ||n |;当φ为钝角时,s i n θ=s i n (φ-90ʎ)=-c o s φ=-a ㊃n|a ||n |㊂解二面角问题,是依据二面角两个半平面的法向量夹角与二面角相等或互补来处理㊂大多数情况下是根据图形判断该角是锐角还是钝角,有时也可以根据两个半平面的法向量的指向来判断㊂6.结构不良型问题图11例6 (2022年北京高考卷)如图11,在三棱柱A B C -A 1B 1C 1中,侧面B C C 1B 1为正方形,平面B C C 1B 1ʅ平面A B B 1A 1,|A B |=|B C |=2,M ,N 分别为A 1B 1,A C 的中点㊂(1)求证:MN ʊ平面B C C 1B 1㊂(2)再从条件①㊁条件②中选择一个作为已知条件,求直线A B 与平面B MN 所成角的正弦值㊂条件①:A B ʅMN ;条件②:|B M |=|MN |㊂注:如果选择条件①和条件②分别解答,那么按第一个解答计分㊂解析:(1)因为侧面C B B 1C 1为正方形,所以C B ʅB B 1㊂又平面C B B 1C 1ʅ平面A B B 1A 1,平面C B B 1C 1ɘ平面A B B 1A 1=B B 1,C B ⊂平面C B B 1C 1,所以C B ʅ平面A B B 1A 1㊂因为A B ⊂平面A B B 1A 1,所以B C ʅA B ㊂因为M ,N 分别为A 1B 1,A C 的中点,所以MNң=B N ң-B M ң=12B A ң+12B C ң-B B 1ң-12B 1A 1ң=12B C ң-B B 1ң,故MN ң,B C ң,B B 1ң三向量共面㊂又MN ⊄平面B C C 1B 1,B C ⊂平面B C C 1B 1,B B 1⊂平面B C C 1B 1,所以MN ʊ平面B C C 1B 1㊂(2)若选①,A B ʅMN ,则A B ң㊃MN ң=0㊂由(1)知,MN ң=12B C ң-B B 1ң,所以A B ң㊃MN ң=A B ң㊃12B C ң-B B 1ң=0㊂解题篇 经典题突破方法 高二数学 2023年5月由B C ңʅA B ң,得B C ң㊃A B ң=0,所以A B ң㊃B B 1ң=0,即B A ʅB B 1㊂图12故B C ,B A ,B B 1三条直线两两垂直,以B 为坐标原点,分别以B C ң,B A ң,B B 1ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系B -x yz ,如图12所示㊂则由题中数据,得B (0,0,0),A (0,2,0),M (0,1,2),N (1,1,0),故B A ң=(0,2,0),B M ң=(0,1,2),B N ң=(1,1,0)㊂设平面B MN 的一个法向量为n =(x ,y ,z ),则n ʅB N ң,n ʅB M ң, 所以n ㊃B N ң=0,n ㊃B M ң=0,即x +y =0,y +2z =0㊂令z =1,得n =(2,-2,1)㊂因此,直线A B 与平面B MN 所成角θ的正弦值为s i n θ=|c o s <n ,B A ң>|=|n ㊃B A ң||n ||B A ң|=|-2ˑ2|22+(-2)2+12ˑ2=23㊂若选②:|M B |=|MN |,则|B M ң|2=|MN ң|2㊂由(1)知,MN ң=12B C ң-B B 1ң,所以B B 1ң+12BA ң2=12B C ң-B B 1ң2,化为|B B 1ң|2+14|B A ң|2+B B 1ң㊃B A ң=14|B C ң|2+|B B 1ң|2-B C ң㊃B B 1ң,即B B 1ң㊃B A ң+B C ң㊃B B 1ң=0㊂因为B C ʅB B 1,所以B C ң㊃B B 1ң=0,B B 1ң㊃B A ң=0,即B B 1ʅB A ,故BC ,B A ,B B 1三条直线两两垂直㊂以下步骤与选①相同,过程略㊂评注:本题运用空间向量的三角形法则㊁平行四边形法则㊁数量积及模的运算,得到共面和垂直关系,避开了复杂的推理过程,无需添加辅助线,降低了思维难度,让人感到耳目一新㊂对于选择性条件的结构不良试题,应该选择一个易于入手的条件进行求解㊂7.最值问题例7 (2022年全国乙卷理数)如图图1313,在四面体A -B C D 中,A D ʅC D ,|A D |=|C D |,øA D B =øB D C ,E 为A C 的中点㊂(1)证明:平面B E D ʅ平面A C D ;(2)设|A B |=|B D |=2,øA C B =60ʎ,点F 在棱B D 上,当әA F C 的面积最小时,求C F 与平面A B D所成角的正弦值㊂解析:(1)因为|A D |=|C D |,E 为A C 的中点,所以A C ʅD E ㊂又øA D B =øC D B ,|D B |=|D B |,所以әA B D ɸәC B D ,|A B |=|C B |㊂连接B E ,又因为E 为A C 的中点,所以A C ʅB E ㊂因为D E ɘB E =E ,所以A C ʅ平面B E D ㊂因为A C ⊂平面A C D ,所以平面B E D ʅ平面A C D ㊂(2)因为әA B D ɸәC B D ,所以|C B |=|A B |=|B D |=2㊂又因为øA C B =60ʎ,所以әA B C 是等边三角形,|A E |=|E C |=1,|B E |=3㊂因为A D ʅC D ,所以|D E |=12|A C |=1㊂图14在әD E B 中,|D E |2+|B E |2=|B D |2,所以B E ʅD E ㊂以E 为坐标原点建立如图14所示的空间直角坐标系E -x yz ㊂则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1),所以A D ң=(-1,0,1),A B ң=(-1,3,0),D B ң=(0,3,-1)㊂连接E F ,由(1)知,A C ʅ平面B E D ㊂因为E F ⊂平面B E D ,所以AC ʅE F ,S әA F C =12|A C |㊃|E F |㊂因为|A C |=2,所以当|E F |取最小值时,әA F C 的面积最小㊂设此时F (a ,b ,c ),D F ң=λD B ң(0ɤλɤ1),即(a ,b ,c -1)=λ(0,3,-1),得F (0,3λ,1-λ)㊂解题篇 经典题突破方法高二数学 2023年5月则|EF ң|=02+(3λ)2+(1-λ)2=4λ-142+34㊂当λ=14时,|E F |取最小值,此时F 0,34,34,从而C F ң=1,34,34㊂设平面A B D 的一个法向量为n =(x ,y ,z ),则n ㊃A D ң=-x +z =0,n ㊃A B ң=-x +3y =0㊂取y =3,则n =(3,3,3)㊂所以C F 与平面A B D 所成角θ的正弦值为s i n θ=|c o s <n ,C F ң>|=|n ㊃C F ң||n ||C F ң|=621ˑ74=437㊂评注:对于面积㊁点面距离或体积的最值,一般有两个思考方向:一是从图中直接观察,先分清哪些量是定值,哪些量是变量,通过点或线的变化情况寻找最值,如本题中,E 为定点,F 为动点,可以看出当E F ʅB D 时,|E F |取最小值,易得|D F |=12,故D F ң=14D B ң,即可得点F 的坐标,或者由EF ң=(0,3λ,1-λ)与D B ң=(0,3,-1)垂直,得E F ң㊃D B ң=0,进而得λ;二是直接根据目标函数的关系,转化为函数的最值或值域问题来处理,如果是求空间角的三角函数的最值,可直接利用数量积及模的计算公式写出三角函数的表达式,再转化为二次函数来处理㊂8.逆向探索性问题图15例8 已知四边形A B C D 是梯形,S 为A D 的中点,B C ʊA D ,øBCD =90ʎ,|A D |=2|B C |=4㊂现将әA B S 沿B S 向上翻折,使A 到A ',且二面角A '-B S -C 为直二面角,E ,F 分别是A 'S ,A 'B 的中点,如图15所示㊂在线段B C 上是否存在一点M ,使得点D 到平面E F M 的距离为25若存在,求出|B M ||M C |的值;若不存在,请说明理由㊂图16解析:由题意知,四边形B C D S 是边长为2的正方形,B S ʅS D ,B S ʅS A ',S A 'ʅS D ,以S 为坐标原点,分别以向量S D ң,S B ң,S A 'ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系S -x yz ,如图16所示㊂则点S (0,0,0),A '(0,0,2),C (2,2,0),D (2,0,0),E (0,0,1),F (0,1,1),则E F ң=(0,1,0),D E ң=(-2,0,1)㊂假设在线段B C 上存在一点M (x 0,2,0)满足题意,则E M ң=(x 0,2,-1)㊂设平面E F M 的法向量为n =(x ,y ,z ),则有n ㊃E F ң=0,n ㊃E M ң=0㊂故(x ,y ,z )㊃(0,1,0)=0,(x ,y ,z )㊃(x 0,2,-1)=0,所以y =0,z =x 0x ㊂令x =1,得n =(1,0,x 0)㊂则D E ң在平面E F M 的法向量方向上的投影向量的长为|D E ң㊃n ||n |=25,得|-2+x 0|1+x 20=25,两边同时平方,得21x 20-100x 0+96=0,即(3x 0-4)㊃(7x 0-24)=0㊂因0<x 0<2,解得x 0=43,所以M43,2,0㊂从而M C ң=23,0,0,|M C |=23,|B M |=2-23=43,即在线段B C 上存在一点M 满足题意,且|B M ||M C |=2㊂评注:对于距离㊁体积或空间角的逆向存在性问题,其求解思路是先假设条件存在,把假设当作新的已知条件进行推理,通过构造方程求解㊂若得到合理的数据,则假设成立;若出现矛盾,则假设不成立㊂对于翻折问题,关键是抓住翻折前后几何量的变与不变进行相关计算㊂(责任编辑 徐利杰)解题篇 经典题突破方法 高二数学 2023年5月。

空间向量在立体几何中的应用

空间向量在立体几何中的应用
解 1如图,建立空间直角坐标系. ∵∠ADC=∠DAB=90°, AB=4,CD=1,AD=2. ∴A2,0,0,C0,1,0,B2,4,0. 由PD⊥平面ABCD,得
∠PAD 为 PA 与平面 ABCD 所成的角, ∴∠PAD=60°. 在 Rt△PAD 中,由 AD=2,得 PD=2 3. ∴P(0,0,2 3).
O→P=(0,
22,-2),O→D=(-
2, 2
22,-2).
设平面 OCD 的法向量为 n=(x,y,z),
由 n·O→P=0,n·O→D=0,

22y-2z=0,
- 22x+ 22y-2z=0.
取 z= 2,得 n=(0,4, 2).
∵M→N·n=(1- 42)×0+ 42×4+(-1)× 2=0,∴M→N⊥n.
解 作AP⊥CD于点P,分别以AB,AP,AO所在的直线为x,y,z 轴建立空间直角坐标系A-xyz,如图所示,
则 A(0,0,0),B(1,0,0),P(0, 22,0),D(- 22, 22,0),
O(0,0,2),M(0,0,1),N, 42,-1),
A→M·n=0.
a2y+ 2az=0,
令 y=2,则 z=- 22,x=0.
∴n=(0,2,- 22).
又B→C1=(- 23a,-a2, 2a),
∴cos〈B→C1,n〉=B→→C1·n
|BC1||n|

-a-a 3a×
9=-29 2
6.
设 BC1 与平面 AMC1 所成的角为 θ,
则 sin θ=|cos〈B→C1,n〉|=296.
题型三 二面角的求法
例3 12分如图所示,正三棱柱ABC- A1B1C1的所有棱长都为2,D为CC1的中 点,求二面角AA1DB的余弦值.

数学与应用数学专业毕业论文-向量在立体几何中的应用

数学与应用数学专业毕业论文-向量在立体几何中的应用

向量在立体几何中的应用摘要作为现代数学的重要标志之一的向量已进入了中学数学教学,为用代数方法研究几何问题提供了强有力的工具,促进了高中几何的代数化.而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规方法去解决往往比较复杂,运用向量作行与数的转化,则使过程得到大大的简化.向量法应用于平面几何中时,它能将平面几何许多问题代数化、程序化从而得到有效的解决,体现了数学中数与形的完美结合.立体几何常常涉及到的两大问题:证明与计算,用空间向量解决立体几何中的这些问题,其独到之处,在于用向量来处理空间问题,淡化了传统方法的有“形”到“形”的推理过程,使解题变得程序化.装关键词:向量;立体几何;证明;计算;运用订线ABSTRACTAs one of the important signs of modern mathematics the vector has entered middle school mathematics teaching, using algebraic method research geometry problems provides powerful tools, promoted the high school of the geometry of algebra. And in the high school mathematics system, geometric occupies a very important position, some geometry problems with conventional method to solve tend to be complex, using vector for the number of rows and transformation, makes the process is greatly simplified. Vector method was used the plane geometry, it will be when the plane geometry many problems algebra effectively, programmed to solve, reflected in mathematics, the perfect combination of Numbers and forms. Three-dimensional geometry often involved the two big problems: proof and calculation, with space vector solve three-dimensional geometry in these problems, its unique, is using vector to deal with the problem of space, fade the traditional methods are "form" to "form" reasoning process, causes the problem-solving become programmed.Keywords:Vector; solid geometry; proof; calculation; use目录摘要 (Ⅰ)ABSTRACT (Ⅰ)1 向量方法在研究几何问题中的作用 (1)2 向量方法解决证明问题的直接应用 (2)2.1平行问题 (2)2.1.1证明两直线平行 (2)2.1.2证明线面平行 (3)2.2垂直问题 (4)2.2.1证明两直线垂直 (4)2.2.2证明线面垂直 (4)2.2.3证明面面垂直 (5)2.3处理角的问题 (6)2.3.1求异面直线所成的角 (6)2.3.2求线面角 (7)2.3.3求二面角 (8)3 向量方法解决度量问题的直接应用 (10)3.1两点间的距离 (10)3.2点与直线距离 (10)3.3点到面的距离 (11)3.4求两异面直线的距离 (11)3.5求面积 (12)3.6求体积 (13)4 向量方法解决证明与计算问题有关的综合应用 (14)5 向量在立体几何中应用的教学反思 (21)5.1对比综合法与向量法的利弊 (21)5.2向量法解决立体几何问题的步骤 (22)5.3向量法能解决所有立体几何问题吗 (22)参考文献 (23)1 向量方法在研究几何问题中的作用]1[向量是高中数学新增加的内容,在作用上它取代了以往复数在高中数学教材中的地位,但从目前的使用情况来看,向量的作用要远远大于复数.一个复数所对应的点只能在平面上,而向量却有平面向量和空间向量之分,这一点在与几何(尤其是立体几何)的联系上表现得更加突出.向量知识、向量观点在数学、物理等学科的很多分支上都有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形于一体,能与中学数学教学内容中的许多主干知识相结合,形成知识交汇点.向量进入高中数学教材,为用代数方法研究几何问题提供了强有力的工具,促进了高中几何的代数化.而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规方法去解决往往比较繁杂,而运用向量作形与数的转化,则能使过程得到大大的简化.用向量法解决几何问题有着思路清晰、过程简洁的优点,往往会产生意想不到的神奇效果.著名教育家布鲁纳说过:“学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退.”这充分揭示了方法求变的重要性,如果我们能重视向量的教学,重视学生在学习向量过程中产生的障碍并且提供相应的教学对策,必然能引导学生拓展思路,减轻他们的学习负担.向量方法在解决几何问题时充分体现了它的优越性,平面向量就具有较强的工具性作用,向量方法不仅可以用来解决不等式、三角、复数、物理、测量等某些问题,还可以简捷明快地解决平面几何许多常见证明(平行、垂直、共线、相切、角相等)与求值(距离、角、比值等)问题.不难看出向量法应用于平面几何中时,它能将平面几何许多问题代数化、程序化从而得到有效的解决,体现了数学中数与形的完美结合.向量法是将几何问题代数化,用代数方法研究几何问题.立体几何的证明与计算常常涉及到两大问题:一是位置关系,它主要包括线线垂直、线面垂直、线线平行、线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成的角,面面所成角等.用空间向量解决立体几何中的这些问题,其独到之处,在于用向量来处理空间问题,淡化了传统方法的有“形”到“形”的推理过程,使解题变得程序化.那么解立体几何题时就可以用向量方法,对某些传统性较大,随机性较强的立体几何问题,引入向量工具之后,可提供一些通法.2 向量方法解决证明问题的直接应用2.1平行问题]2[2.1.1证明两直线平行b a CD AB b D C a B A //,,;,⇒=∈∈λ. 知),(),,(2211y x CD y x AB ==,则有b a y x y x //1221⇒=. 例 1 已知直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足,求证:OA//BD.证明:如上图,以点O 为原点,以射线OA 为z 轴,建立空间直角坐标系xyz O -,k j i ,,为沿x 轴,y 轴,z 轴的坐标向量,且设),,(z y x BD =,∵α⊥BD ,∴j BD i BD ⊥⊥,∴0)0,0,1(),,(==⋅=⋅x z y x i BD ,0)0,1,0(),,(==⋅=⋅y z y x ,∴),0,0(z =∴k z BD =,又知O 、B 为两个不同的点,∴OA BD //.方法思路:在两条直线上分别取不同的两点得到两向量,转化为证明两向量平行.2.1.2证明线面平行1、线∉a 面α,a B A ∈,,面α的法向量为n ,α//0AB n AB n AB ⇔⊥⇔=⋅. 方法思路:求面的法向量,在直线找不同两点得一向量,证明这一向量与法向量垂直(即证明数量积为0),则可得线面平行.2、已知面α外的直线a 的方向向量为a ,21,e e 是平面α的一组基底(不共线的向量),若αλλ//2211a e e a ⇔+=.例2 如上图,正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,P 、Q 分别是对角线AC 、BF 上的一点,且AP = FQ,求证:PQ ∥平面BCE.证明:设λ=,∵AP = FQ, ∴λ=,∴FQ AF PA PQ ++==λλ++-=λλλλ+-+--=)1(λλ-+∴//PQ 平面BCE.方法思路:证明直线的方向向量可用平面的一组基底线性表示(即在平面内存在一向量与方向相等),则可得面内一直线与面外的线平行,从而证明线面平行.2.1.3面面平行1、不重合的两平面α与β的法向量分别是m 和n ,βαλ//⇔=.方法思路:求平面的法向量,转化为证明两法向量平行,则两平面平行.2、不重合的两平面α与β,面α的法向量为,若βαβ//⇔⊥.方法思路:求出其中一平面的法向量,再证该法向量与另一面的不共线的两向量数量积为0(即垂直),则可得两平面平行.2.2垂直问题]3[2.2.1证明两直线垂直不重合的直线a 和直线b 的方向向量分别为a 和b ,则有b a b a ⊥⇒=⋅0. 例3 如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB //CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.证明:PE ⊥BC证明:以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B设 (,0,0),(0,0,)(0,0)C m P n m n <>,则 )0,2,21(),0,,0(m E m D , 可得)0,1,(),,2,21(-=-=m n m , 因为0022m m PE BC ⋅=-+=, 所以 PE BC ⊥.2.2.2证明线面垂直直线l 的方向向量为]4[,平面α的方向向量为,则有αλ⊥⇒⋅=l . 例4,如图,m, n 是平面α内的两条相交直线.如果n l m l ⊥⊥,,求证:α⊥l .证明:在α内作任一直线g ,分别在g n m l ,,,上取非零向量g n m l ,,,. 因为m 与n 相交,所以向量n m ,不平行.由向量共面的充要条件知,存在唯一的有序实数对(x,y ),使n y m x g +=将上式两边与向量l 作数量积,得n l y m l x g l ⋅+⋅=⋅,因为 0,0=⊥=⊥n l m l ,所以0=⋅g l ,所以g l ⊥即g l ⊥.这就证明了直线l 垂直于平面α内的任意一条直线,所以α⊥l .方法思路:找直线的方向向量(在两直线上取两点得一向量)及平面的法向量,只需证明两向量平行,则可证线面垂直. 2.2.3证明面面垂直1、不重合的平面α与β的法向量分别为m 和n ,则有βα⊥⇔=⋅0n m . 方法思路:找平面的法向量,只需证明两向量数量积为0,则可证明两平面垂直.2、平面β的法向量为n ,21,e e 是平面α的一组基底(不共线的向量),则有βαλλ⊥⇔+=2211e e n .例5 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1,CD 的中点(1)求证:AD ⊥D 1F ;(2)证明平面AED ⊥平面A 1FD 1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为“0”的问题,当然也可用其它的证法.证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0), D(0,2,0), A 1(0,0,2)D 1(0,2,2),E(2,0,1), F(1,2,0)(1)(0,2,0),AD = 1(1,0,2)D F =-m n gα l AB C DA 1B 1C 1D 1z y∴ 1AD D F ⋅=0×1+2×1+0×(-2)=0, ∴AD ⊥D 1F(2)AE =(2,0,1) 1D F =(1,0,-2),||5AE = ,|1|5D F = 设AE 与D 1F 的夹角为θ,则θcos =055)2(10012|F D ||AE |FD AE 11=-⨯+⨯+⨯=⋅所以D 1F ⊥AE ,由(1)知D 1F ⊥AD ,又AD ∩AE=A ,∴D 1F ⊥平面AED ,∵D 1F ⊂平面A 1FD 1M∴平面AED ⊥平面A 1FD 1方法思路:找其中以平面的法向量,证明法向量与另一平面平行,即法向量可以用另一平面的一组基底(不共线的向量)线性表示.2.3处理角的问题]5[2.3.1求异面直线所成的角a,b 是两异面直线,b D C a B A ∈∈,,,,a ,b 所成的角为θ,则有CD AB CDAB CD AB ⋅⋅=〉〈=,cos cos θ.例6 如图所示,三棱锥A-BCD,AB ,,CD BD BCD ⊥⊥平面若AB=BC=2BD,求二面角B-AC-D 的大小.解: 如图建立空间直角坐标系O-xyz,∵AB=BC=2BD,设BD=1则AB=BC=2,DC=3A(1,0,2),B(1,0,0),C(0,3,0),D(0,0,0))2,0,1(),0,3,0(),0,3,1(),2,0,0(==-=-=→→→→DA DCBC AB设平面ABC 的法向量为),,(1111z y x n =→, 则00.11=⇒=→→z n AB030.111=+-⇒=→→y x n BC取平面ABC 的法向量)0,1,3(1=→n 设平面ACD 的法向量为),,(2222z y x n =→则00.22=⇒=→→y n DC020.222=+⇒=→→z x n DA取法向量)1,0,2(-=→n cos<→→21,n n >=5151040131001)2(32221-=++⨯++⨯+⨯+-⨯=⋅→→→→n n n n 515arccos,21->=∴<→→πn n 互补平面角与二面角><--∴→→21,n n D AC B , 515arccos的大小的所求二面角D AC B --∴. 方法思路:找两异面直线的方向向量,转化为向量的夹角问题,套公式(但要理解异面直线所成的夹角与向量的夹角相等或互补).2.3.2求线面角设平面α的斜线l 与面α所成的角为β,若,,l B A ∈m 是面α的法向量,则有〉〈=m AB ,cos sin β.例7如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90,侧棱AA 1=2,D 、E分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.求A 1B 与平面ABD 所成角的大小(结果用余弦值表示);D D A 1C 1B 1z E解析:如图所示,建立坐标系,坐标原点为C ,设a CA 2=,则)0,0,2(a A ,)0,2,0(a B ,)1,0,0(D ,)2,0,2(1a A ,)1,,(a a E ,)31,32,32(a a G , ∵ ()2,,333a a GE =---,()0,2,1BD a =-,032322=-=⋅a , ∴1=a ,()112,,333GE =---,()12,2,2A B =--∵ GE 为平面ABD的法向量,且32,cos 1==〉〈GE B A . ∴ A 1B 与平面ABD 所成角的余弦值是32. 方法思路:找直线的方向向量与平面的法向量,转化为向量的夹角问题,再套公式(注意线面角与两向量所在直线夹角互余).2.3.3求二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如右图所示),则 ① 若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ.② 若二面角βα--l 是“锐角型”的如右图所示,那么其大小等于两法向量21n n 、的夹角,即||||cos 2121n n ⋅=θ方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、,则二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n ⋅=θ.例8 在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.解 如图所示,建立空间直角坐标系xyz O -, 依题意:A 1(0,0,2),D (0,a ,0). ∴Q (2,2,0),D (0,4,0), ∴)20,2(),2,2,2(1-=-=A , 面AA 1D 的法向量)0,0,1(1=n , 设面A 1DQ 的法向量),,(3212a a a n =,则⎪⎩⎪⎨⎧=+-=⋅=-+=⋅,022,022*********a a QD n a a a Q A n ⎩⎨⎧==⇒,2,1312a a a a ∴)2,,(1112a a a n =, 令a 1=1,则)2,1,1(2=n ,∴66611,cos 21=⨯=>=<n n , 二面角的平面角为锐角,∴二面角A —A 1D —Q 的大小为66arccos. 此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若令11-=a ,则)2,1,1(2---=n ,∴66,cos 21->=<n n ,∴二面角A —A 1D —Q 的大小 是><21,n n 66arccos-=π的补角66arccos .所以在计算之前不妨先依题意直观判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”.O (A 1z3 向量方法解决度量问题的直接应用3.1两点间的距离]6[两点间距离重在“转化”,即将空间两点间距离转化为向量的长度问题.利用向量的模,可以推导出空间两点的距离公式,即空间两点()()11112222,,,,,P x y z P x y z ,则()()()22212212121d PP x x y y z z ==-+-+-例1 在三棱锥S ABC -中,面SAC ⊥面ABC ,SA AC ⊥,BC AC ⊥6SA =,21,8AC BC ==,求SB 的长. 分析 如图,本题可以用几何法求出SB , 但需要证明若用向量法,注意到SA ,AC ,BC 之间的关系.建立以A 点为原点的空间直角坐标系.则无须证明就有如下巧解.解 如图,建立以A 为原点的空间直角坐标系,则()()()0,0,0,21,0,0,0,6A B S ,所以()()()222080216011SB SB ==-+-+-=.本题用向量法巧妙地把与SB 有关元素的位置关系转化为相应向量是SB 的数量关系,构造向量的空间距离模型,然后通过数值计算将问题加以解决.3.2点与直线距离]7[如图 求得向量AP 在向量AB 的射影长为d , 则点P 到直线AB 22AP d -例2 设P 为矩形ABCD 所在平面外的一点,直线PA 垂直平面外的一点, 直线PA 垂直平面ABCD ,AB =3,BC =4,PA =1 求点P 到直线BP 的距离. 解()()29BP BD BA AP BC BA AB ⋅=+⋅+==BD5所以BP 在BD 上的射影长为95,又10BP =,所以点P 到直线BD 的距离3.3点到面的距离任取一点α∈Q 得m PQ ,是平面α的法向量,则有:点P 到平面α的距离mm PQ d ⋅=(向量PQ 在法向量m 的投影的长度).方法思路:求出平面的任一法向量m (方程组可求),在平面内任取一点Q 与点P 得一向量转化为PQ 在法向量的投影长度,套公式.3.4求两异面直线的距离知b a ,是两异面直线,b D C a B A ∈∈,,,,找一向量与两异面直线都垂直的向量m ,则两异面直线的距离mm AC d ⋅=例3如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形 B B A A ''是矩形,。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

练习:
正方体ABCD-A1B1C1D1中,P 为DD1的中
点,O1,O2,O3分别是平面A1B1C1D1、平面
BB1C1C、平面ABCD的中心
(2) 求异面直线PO3与O1O2Z成的角
D1 O1
C1
A1
B1
P
O2
D
C
A
O3
Y B
X
空间向量在
立几中应用
小结
本堂课的学习重点是用向量代数的方法解决 立体几何问题,但在学习中应把几何综合推 理与向量代数运算推理有机结合起来 向量代数推理是更加精练,严密的推理,每 一步都要根据运算法则进行 学习过程中应善于“前思后想”,提炼方法, 开拓思路
本题多次运用了封闭回路
空间向量在
立几中应用
利用向量求空间距离
空间距离是一种重要的几何量,利 用常规方法求距离,需要较强的转化能力, 而用向量法则相对简单
空间向量在
立几中应用
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
Z
D
C
B A
D1 A1
X
C1 Y
B1
空间向量在
评述:
立几中应用
空间向量在
立几中应用
空间向量在立体几何中的应用
空间向量在
立几中应用
利用向量判断位置关系
利用向量可证明四点共面、线线平 行、线面平行、线线垂直、线面垂直等问 题,其方法是通过向量的运算来判断,这 是数形结合的典型问题
空间向量在
立几中应用
空间向量在
立几中应用
空间向量在
立几中应用
利用向量求空间角
利用向量可以进行求线线角、线面 角、面面角,关键是进行向量的计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量在立体几何中的应用高中立体几何中引入了空间向量,大大降低了立体几何解题的难度.对于解决空间的角与距离等问题提供了很大的帮助.下面简单介绍向量在立体几何中应用。

1、向量在求角中的应用。

(1)异面直线所成的角。

思路:分别找到与两条直线共线的向量→→b a ,、设这两条直线所成的角为θ,则有→→→→→→∙=><=ba ba b a ,cos cos θ,特别地,两条直线垂直有→→∙b a =011D C 中,O 是底面OE 和1FD ,则 11)O (1,1,0), =(1,-1,1)、1FD =(0,-1,2)321)1()1(011=⨯+-⨯-+⨯=∙FD ,3=5=设异面直线OE 和1FD 所成的角θ,则515153,cos cos 1===><=→→FD OE θ 异面直线OE 和1FD 所成的角θ=515arccos(2)直线与平面所成的角。

思路: 找到与直线共线的向量,→a 平面的一个法向量,→n 设直线与平面所成的角为θ,则→→→→→→∙=><=na na n a ,cos sin θ例: 如图,四棱锥P-ABCD 的底面是正方形,,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面 3PA AB =,求直线AC 与平面EAM 所成的角。

解:设AB=1,则PA=3, 建立如图示的空间直角坐标系A-XYZ,则A (0,0,0)、C (1,1,0)、E (109,0, 103)、M(0, 109,0) =(1,1,0)、 =(109,0,103) 、=(0, 109,0)设平面EAM 的法向量为),,(z y x n =→,有0,0=∙=∙即0103109=+z x ,0109=y 整理得03=+z x ,0=y 取,1=x 则3-=z ,而0=y平面EAM 的一个法向量为)3,0,1(-=→n10,2,1===∙→→→→n AC n AC设直线AC 与平面EAM 所成的角为θ→→→→→→∙=><=nAC n AC n AC ,cos sin θ105201==直线AC 与平面EAM 所成的角为θ=105arcsin(3) 平面与平面所成的角(二面角)。

思路1:分别找到两个平面的一个法向量→→mn ,、算→→→→→→∙>=<mn mn m n ,cos设这两个平面所成的角为θ,通过观察判断θ的钝锐性,选择><=→→m n ,cos cos θ与0,cos cos >=<+→→m n θ中一个运算下去。

例:如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.求面APB 与面CPB 所成二面角的大小.解:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)0,233,0(),23,0,0(B P).0,233,2(),0,23,1(-C A =(1, 23,23-) =(1, 3-,0)设平面APB 的法向量为),,(z y x n =→,有0,0=∙=∙ 即 02323=-+z y x ,03=-y x 取3=y ,则3,3==z x ,平面APB 的一个法向量为)3,3,3(=→n同理可得平面CPB 的一个法向量为)3,3,0(=→m→→∙m n =12, 32,21==→→m n 7727612,cos ==∙>=<→→→→→→mn mn m n设面APB 与面CPB 所成二面角的平面角为θ,通过观察知道θ为钝角,则有0,cos cos >=<+→→m n θ ,772cos -=θ 所以θ=772arccos-π2、向量在求距离中的应用。

(1)点到平面的距离。

思路:找到过该点的平面的一条斜线段,写出与该线段共线且等长度的向量→a ,将向量→a 向平面的一个法向量→n 投影,射影的长度就是点到平面的距离。

→→→∙=nna d例:在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.求点P 到平面ABD 1的距离. 解:建立如图示的空间直角坐标系D-XYZ ,则 P (4,0,1)、A (0,4,0)、B (4,4,0)、D 1(0,0,4), =(4,-4,1)=(4,0 ,0)1AD =(0, 4-,4)设平面ABD 1的法向量为),,(z y x n =→,有0,01=∙=∙AD 即04=x ,044=+-z y 取1=y ,则1=z ,而0=x平面ABD1的一个法向量为)1,1,0(=→n 3-=∙→→n AP 2=→n所以点P 到平面ABD 1的距离22323==∙=→→→nnAP d(2)直线到平面的距离。

思路:先证明直线与平面平行,然后在直线上找到一点,求它到平面的距离就是直线与平面的距离。

例题略。

(3)平面到平面的距离。

思路:先证明两个平面平行,找到夹在两个平面之间的一条线XYZ段,写出与该线段共线且等长度的向量→a ,将向量→a 向两个平面公共的一个法向量→n 投影,射影的长度就是两个平面的距离。

→→→∙=nna d例: 已知正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,F 为D D 1的中点。

证明:求平面AF C 1与平面BED 的距离。

解:设正方体ABCD-A 1B 1C 1D 1 的边长为1建立如图示的空间直角坐标系D-XYZ ,则 F (0,0,2)、 D (0,0,0)、=(0,0,2)找到平面AF C 1与平面BED 公共的一个法向量为)2,1,1(--=→n (过程略) 4-=∙→→n DF 6=→n所以平面AF C 1与平面BED 的距离36264==∙=→→→nnDF d(4) 异面直线间的距离思路:先求两条异面直线的一个公共法向量,再求两条异面直线上两点的连结线段在公共法向量上的射影长.设b a ,是异面直线,n 是b a ,公共法向量,点,,b F a E ∈∈则异面直线b a 与之间的距离d =例:如图,已知ABCD 是正方形,⊥PD 平面ABCD ,1==AB PA ,F E ,分别是PD PB ,的中点,求异面直线AE 与CF 之间的距离。

解:以D 为原点,建立空间直角坐标系,(),0,0,1,,C z y x DP DC DA 轴,则轴,轴,为 ()()()1,0,0,0,1,0,0,1,1P A B ⎪⎭⎫ ⎝⎛-21,21,21E ,⎪⎭⎫ ⎝⎛21,0,0F ,=∴AE ⎪⎭⎫⎝⎛-21,21,21,⎪⎭⎫ ⎝⎛-=21,0,1,⎪⎭⎫ ⎝⎛--=0,21,21,()z y x ,,=是异面直线AE 与CF 的公共法向量,则n ⊥CF 即+-x 210=z ;n ⊥AE 即21x 21-y +z 21=0.所以n =()2,3,1,所以异面直线AE 与CF 之间的距离714142===d .3、向量在证明垂直关系的应用。

(1)证明直线间的垂直关系。

思路:分别找到与两条直线共线的向量→→b a ,、证明→→∙b a =0。

例题略。

(2)证明直线与平面垂直关系。

思路:证明与直线共线的向量是平面的一个法向量。

例:直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M. 求证CD ⊥平面BDM ;证法一:如图,以C 为原点建立坐标系.(Ⅰ)B (2,0,0),B 1(2,1,0),A1(0,1,1),D ()21,21,22,M (22,1,0),),21,21,0(),1,1,2(),21,21,22(1-=--==DM B A CD则,0,01=⋅=⋅DM CD B A CD ∴CD ⊥A 1B ,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM. (3)证明平面间的垂直关系。

思路:只要证明两个平面的法向量互相垂直。

例题略。

4、向量在证明平行关系的应用。

(1)证明直线间的平行关系。

思路:证明两条直线所在向量共线,并说明无公共点。

(2)证明直线与平面的平行关系。

思路:证明直线所在的向量与平面的一法向量垂直。

例:如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB=2,AF=1,M是线段EF 的中点.求证AM ∥平面BDE ;证: (Ⅰ)建立如图所示的空间直角坐标系.XYZA (0,2,2)、M ()1,22,22、E (0,0,1),D (0,0,2)、B (0,2,0)AM =()1,22,22--BD =(0,2,2-) ED =(1,0,2-) 设平面BDE 的法向量为),,(z y x n =→,有0,01=∙=∙AD 即 04=x ,02=-z x 取2=x ,则2,2==z y平面BDE 的一个法向量为)2,2,2(=→n而 ,0=∙ ⊄AM平面BDE , 所以AM ∥平面BDF.(3)证明平面之间的平行关系. 思路:证明两个平面有公共的法向量.例: 已知正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,F 为D D 1的中点。

证明:平面AF C 1∥平面BED证明: 设正方体ABCD-A 1B 1C 1D 1的边长为1建立如图示的空间直角坐标系D-XYZ ,则 F (0,0,21)、A (0,1,0) C1(1,0,1)D(0,0,0) B(1,1,0)E(1,0,21)=(1,1,0)= (1,0,21) =(0,-1, 21) 1AC =(1,-1,1)设平面BDE 的法向量为),,(z y x n =→,有0,0=∙=∙ 即 0=+y x ,021=+z x 取1=x ,则2,1-=-=z y平面BDE 的一个法向量为)2,1,1(--=→n而 ,0=∙,01=∙AC 向量→n 也是平面AF C 1的法向量 所以 平面AF C 1∥平面BED 5、 向量在求四面体体积中的应用。

思路:从一个顶点引出三个向量(模等于所在的棱的长度)→→→c b a ,,,则),,(61→→→=c b a V 四面体(→→→c b a ,,)表示向量的混合积。

例:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中111112EDA F V ED A F --=的体积,求三棱锥立如图示的空间直角坐标系F (1,0,0)、A1(0,2,2))2,2, )1,2,1(= )2,0,1(1-=FD 1661),,(6111=⨯==→→→FD FE FA 上面简单地介绍了向量在立体几何5大方面中的应用,从中可以看出向量法的优势在于不用添加辅助线、思路比较固定,劣势在于运算量较大,一些难以建立空间坐标系的题目很难用向量法。

相关文档
最新文档