向量在几何中的应用

合集下载

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。

向量知识在平面解析几何中的应用

向量知识在平面解析几何中的应用

向量知识在平面解析几何中的应用近年来,向量知识在平面解析几何中的应用受到越来越多的关注。

解析几何是研究二维空间上的几何图形,其中向量知识通常是帮助理解和解决几何问题的重要工具。

举例来说,本文将重点介绍平面解析几何中向量知识的三个典型应用,包括表示几何对象、分析基本性质和构造几何图形。

首先,表示几何对象是平面解析几何中最基础、最重要的应用。

在几何学中,我们往往会用向量来表示一个几何对象,其中向量可以表示一个点、一条直线或一个平面。

例如,我们可以用向量P = (x, y)表示一个平面上的点P,而用向量A = (a, b, c)表示一条直线A,用向量N = (n1, n2, n3)表示一个平面N。

不仅如此,我们还可以用向量来表示几何对象之间的位置关系,其中向量和运算可以表示平面上点与点、点与直线、直线与直线的距离或垂直关系。

其次,分析基本性质是平面解析几何中常用的应用。

在平面解析几何中,我们可以利用向量知识来分析几何对象的基本性质,比如线段的长度、平行线间的距离或者大圆弧的弧长等等。

计算这些基本性质往往要求我们掌握向量的加减运算以及向量的点积与叉积。

同时,我们可以利用向量知识来确定点与点之间的距离、点在直线上的坐标、直线与直线的位置关系等等,这些知识的应用可以大大提高我们的解决能力。

最后,构造几何图形也是向量知识在平面解析几何中的重要应用。

一般来说,在解析几何中,我们往往要根据给定的构造要求绘制几何图形,这要求我们充分运用向量知识来确定各个图形的位置关系和几何性质。

例如,我们可以根据给定点P、Q和R,通过运用向量知识来构造三角形PQR,或者根据给定的直线ABC点,通过运用向量知识来构造向量AB和向量AC的夹角等等。

综上所述,向量知识在平面解析几何中有着重要的应用。

它不仅可以帮助我们更好地表示几何对象,分析基本性质,还可以用来构造几何图形,有效地指导我们解决几何问题。

因此,学习和掌握向量知识对于掌握平面解析几何是至关重要的。

向量的应用

向量的应用

向量的应用
向量是几何中重要的概念,也是数学中常常用到的工具,广泛应用于物理、工程、计
算机科学等各个领域。

下面将介绍一些向量的常见应用。

1. 平面几何中的向量应用:
在平面几何中,向量可以表示平面上的点、线段、三角形等。

我们可以用两个向量表
示平面上的一条直线,可以用三个向量表示一个平面,可以用向量的线段来表示一个位移
和距离等。

向量的叉积可以用来判断两个向量是否平行、垂直,以及求解平面上的面积
等。

2. 物理学中的向量应用:
在物理学中,向量被广泛应用于描述力、速度、加速度等物理量的大小和方向。

位移
向量可以用来表示物体的位置变化,速度向量可以用来表示物体的运动速度和方向,加速
度向量可以用来表示物体的速度变化率等。

通过向量的运算,可以方便地计算物体之间的
相对速度、加速度,以及其他相关的物理量。

4. 计算机科学中的向量应用:
在计算机科学中,向量被广泛应用于描述二维和三维图形的坐标和方向。

我们可以用
二维向量表示平面上的一个点的坐标,用三维向量表示空间中的一个点的坐标,用向量的
加法和减法进行坐标的变换和计算。

向量的点乘和叉乘可以用来计算向量之间的夹角、距
离和面积等。

向量是数学中非常重要的概念和工具,被广泛应用于物理、工程、计算机科学等各个
领域。

通过对向量的运算和应用,我们可以更方便地描述和计算各种物理量、几何关系和
图形形状等。

向量的应用不仅仅局限于上述几个领域,还有很多其他的应用,如信号处理、优化问题等,具有非常广泛的应用前景。

向量在高中数学中的作用

向量在高中数学中的作用

向量在高中数学中的作用向量是高中数学中一个重要的概念,它不仅能够帮助我们理解几何图形的性质,还能应用于物理、力学、几何等各个领域。

本文将探讨向量在高中数学中的作用,并介绍一些相关的应用。

首先,向量在几何图形的研究中起着关键的作用。

通过向量,我们能够描述一个点的位置、两个点之间的距离、两个线段的夹角等几何性质。

例如,在平面几何中,我们可以用向量表示一个点的坐标,通过两个点的坐标向量相减可以得到它们之间的线段向量,从而计算出它们的长度、方向等信息。

同时,向量还能够帮助我们确定几何图形的对称中心、镜像轴等特征,以及解决一些与几何图形相关的问题。

其次,向量在物理学中的应用也非常广泛。

在力学领域,向量可以表示物体的位移、速度、加速度等物理量。

通过求解向量方程,我们可以得出物体在不同时刻的位置、速度和加速度之间的关系,从而揭示出物体的运动规律。

在力学问题中,可以通过向量的几何性质解决一些力和力的合成、分解问题,求解物体受力的大小、方向等。

此外,在静力学的分析中,向量也是一个重要的工具,可以用来分析物体的平衡条件、滑动条件等。

此外,向量还可以用于解决数量关系的问题。

例如,在线性代数中,我们可以用向量的线性组合、线性相关性等概念解决一些向量空间的性质和线性方程组的求解问题。

向量的内积和叉积可以用来求解两个向量之间的夹角、平行关系以及面积、体积等量的计算。

此外,向量还可以用于表示一些数量关系的模型,例如经济学中的边际效应模型、物理学中的力场模型等。

在数学建模中,向量也起着重要的作用。

通过将问题抽象为向量的形式,我们可以使用向量运算、向量的变化规律等方法进行问题的建模和求解。

例如,在最优化问题中,我们可以将目标函数表示为向量,利用向量的方向、长度等性质寻找最优解。

在图论和网络分析中,向量可以用于表示节点之间的连通关系、距离关系等,从而帮助我们分析网络结构和解决一些与网络相关的问题。

除此之外,向量还在计算机科学中发挥着重要的作用。

向量空间的基本性质及其在几何力学等领域的应用

向量空间的基本性质及其在几何力学等领域的应用

向量空间的基本性质及其在几何力学等领域的应用向量空间是线性代数中的重要概念,具有广泛的应用。

本文将介绍向量空间的基本性质,并探讨其在几何力学等领域的应用。

一、向量空间的定义与基本性质向量空间是指由向量组成的集合,满足一定的运算规则和代数性质。

具体来说,向量空间需满足以下条件:1. 封闭性:对于任意两个向量u和v,它们的和u+v仍然属于向量空间。

2. 数乘性:对于任意向量u和标量c,它们的乘积cu仍然属于向量空间。

3. 零向量:向量空间中存在一个零向量,满足对任意向量u,u+0=u。

4. 加法逆元:对于任意向量u,向量空间中存在一个加法逆元-v,使得u+(-v)=0。

5. 结合律、分配律和交换律:向量的加法和数乘运算满足结合律、分配律和交换律。

在向量空间中,还有一些基本的性质:1. 唯一性:零向量是唯一的,而任意向量的加法逆元也是唯一的。

2. 零向量的性质:对于任意向量u,u+0=u和0+u=u成立。

3. 数乘的性质:对于任意标量c,c乘以零向量得到的结果仍然是零向量。

二、向量空间在几何力学中的应用几何力学是力学的一个重要分支,研究物体的形状、运动和相互作用。

向量空间在几何力学中有着广泛的应用,以下将介绍其中几个典型的应用案例。

1. 力的合成在几何力学中,经常需要求解多个力的合成,即将多个力合并成一个力的过程。

向量空间提供了一个方便的工具,可以将力表示为向量,并利用向量的加法运算求解合成力。

2. 力矩的计算力矩是力围绕某个点或轴产生的旋转效应,它在刚体力学和机械工程中有着重要的应用。

通过将力矩表示为向量,并运用向量空间的数乘运算和叉乘运算,可以方便地进行力矩的计算和分析。

3. 坐标系变换在几何力学中,常常需要进行坐标系的变换,以便研究不同参考系下的物体运动和物理量变化。

向量空间的基本性质可以帮助我们理解坐标系变换中的向量变换规律,从而更好地描述和分析物体的运动和相互作用。

4. 线性方程组的求解线性方程组是几何力学中常见的数学模型,通过解线性方程组可以求解物体的平衡状态、运动轨迹等重要信息。

向量在立体几何中的几点应用

向量在立体几何中的几点应用

向量在立体几何中的几点应用向量在立体几何中的几点应用在数学中,向量是一个有大小和方向的量,它在几何中的应用非常广泛。

在立体几何中,向量也有着重要的应用,下面就来谈谈它的一些应用。

1.向量的叉积向量的叉积在立体几何中有着广泛的应用。

它定义了一个向量和一个法向量,这使得它适用于区分面积和体积,这是立体几何中很重要的概念。

在计算立体几何的体积时,有时需要利用向量的叉积。

例如,在计算一个四棱锥的体积时,可以用其底面上的两个向量构成一个平面向量,然后将这个平面向量与第五个顶点所在的向量做叉积,便可以得到该四棱锥的体积。

这个方法非常简单,而且不需要用到具体的高度或底面积这样的参数,因此,在计算体积时十分方便。

另一个例子是,在求解两条直线的交点时可以使用向量的叉积。

如果已知两个直线所在的平面,可以将它们所在的向量取叉积,便可以得到一个垂直于两条直线所在平面的向量,从而可以得到它们的交点。

这个方法也非常简单,而且不需要求解方程组,因此在计算交点时比较方便。

2.向量的点积向量的点积在立体几何中也有着很重要的应用。

它可以用来计算向量的夹角,从而在计算三角形的面积或四面体的体积等问题时十分方便。

例如,在计算三角形的面积时,可以用两个边向量之间的夹角及其对顶点到该边的距离来计算。

这就用到了向量的点积。

在计算四面体的体积时,我们可以用面积乘以高度来计算,而面积可以使用向量的叉积计算,高度可以用向量的点积计算。

这种方法比基本的平行六面体法更直观,更方便。

3.平面与直线的向量表示在立体几何中,我们经常需要对平面和直线进行求交、平移、旋转等处理。

而这些处理都可以使用向量的表示法来简化。

例如,在求解平面与直线的交点时,如果已知平面和直线的法向量,我们就可以用向量的点积求出它们之间的夹角,从而计算出交点。

这个方法比纯粹的代数方法更加便捷、直观。

再例如,在计算平面和直线的平移时,可以用向量的加减法来表示平移后的位置。

这种向量的表示法非常简单、直观,因此在计算中能够提高效率。

《向量在几何证明中的应用》 讲义

《向量在几何证明中的应用》 讲义

《向量在几何证明中的应用》讲义一、向量的基本概念在数学的广阔天地中,向量是一个极其重要的概念。

简单来说,向量是既有大小又有方向的量。

它可以用有向线段来表示,线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

比如,一个物体在平面上的位移,力的作用方向和大小,速度的快慢和方向等,都可以用向量来描述。

向量通常用小写字母加上箭头来表示,如\(\vec{a}\)、\(\vec{b}\)等。

向量的大小称为模长,记作\(|\vec{a}|\)。

如果向量的模长为 1,则称为单位向量。

两个向量的方向相同或相反,且模长相等,就称这两个向量相等。

二、向量的运算1、加法向量的加法遵循三角形法则和平行四边形法则。

三角形法则:将两个向量首尾相连,从第一个向量的起点指向第二个向量的终点的向量就是这两个向量的和。

平行四边形法则:以两个向量为邻边作平行四边形,从公共起点出发的对角线所表示的向量就是这两个向量的和。

2、减法向量的减法是加法的逆运算。

\(\vec{a} \vec{b} =\vec{a}+(\vec{b})\),即将\(\vec{b}\)取反后与\(\vec{a}\)相加。

3、数乘一个实数\(k\)与向量\(\vec{a}\)相乘,得到的向量\(k\vec{a}\)的模长为\(|k|\times|\vec{a}|\),方向:当\(k > 0\)时,与\(\vec{a}\)同向;当\(k < 0\)时,与\(\vec{a}\)反向。

4、点乘(数量积)两个向量\(\vec{a}\)和\(\vec{b}\)的数量积\(\vec{a}\cdot \vec{b} =|\vec{a}|\times|\vec{b}|\times\cos\theta\),其中\(\theta\)为两个向量的夹角。

数量积的结果是一个标量。

它有着广泛的应用,比如可以用来计算向量的模长、判断向量的垂直关系等。

三、向量在几何证明中的优势向量为几何证明带来了新的思路和方法,具有以下显著优势:1、简洁直观通过向量的运算,可以将复杂的几何关系转化为简单的代数运算,使证明过程更加简洁明了。

浅谈向量在几何中的应用

浅谈向量在几何中的应用
求直线 AB 与平面 A B , D所成 的角的正弦值 。
维 的高强 度转换 。 避开 添加辅 助线 。 代之 以 向量计 算 , 立体 几何 使
问题 变得 思路顺 畅、 运算简单 。


空间 向量在 平行 、 垂直 问题 中的应用
例 1 :在四棱 锥 P 一 B D 中 ,底面 A C -A C B D是正 方形 ,侧棱 P D上底 面 A CD P = C, B 。 D D E是 P 的中点 。作 E P C F - B交 P J B于 点 F 1 明 P /平面 E B; ) 明 P _ 。() 证 A/ D (证 2 Bj平面 E D F 。 解析 : 立空间直 角坐标 系 , 建 D为坐标 原点 。 D = .1 连结 设 C a ) (
这 表 明 P /G。 E A/ E 而 Gc 平 面 E DB且 P 平 面 E . A / 面 A DB P /平
A M上A1 M 为垂足。 B D, D上A C。平 面 AACC1 上平面 AB C.平 面 AACC1 平 面 AB ACl. D 平 面 A,CC . n C= -B . A ’ AM 平 面 c
、 3 ,D I . R △A 1 中 , AD =" / A = 在 t AD 1A . M 1 n0= T I A = s 6  ̄ _ , P 上 E 由 知E 上 B 且E C p ・ o要 一 | 0. B D , 已 F P , Fl - f : -
A1 A =

, A D} =C 1 t =/ 1 = A = a A A .n D

. . .
/A1A=— 一即 二面 角 A一 D A的大 小是 —" 。( )由 ( ) _ D " T I ,B — 1 1 一 2 1 作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量在几何中的应用
向量是数学研究的一种重要工具,向量的方法是使用向量的代数方法去解决立体几何问题的一种便捷的方法,立体几何中的证明问题,空间距离问题、空间角问题,常遇到添辅助线困难,计算量大的问题,若能合理灵活应用向量法,则在很大程度上避免高强度的思维、高难度的推理,使立体几何问题变得思路顺畅,问题迎刃而解。

下面我们来看向量在几何中的应用。

一、证明平行、垂直问题


⑶平面的法向量,若,则平面
以此作为理论依据,来证明平行、垂直问题。

例:在单位立方体ABCD桝1B1C1D1中,点E是BC的中点,点F是A1B1的中点,点G是CD上的动点。

⑴求证:D1E⊥C1F。

⑵试确定点G的位置,使得D1E⊥平面AB1G。

⑶试确定点G的位置,使得C1F//平面AB1G。

解:以D为坐标系的原点,建立如图1所示的坐标系。

设DG=y
则:A(1,0,0)B1(1,1,1)
C1=(0,1,1)
E(,1,0)F(1,,1)D1(0,0,1)G(0,y,0)

⑴由∴(也可选择基向量来证明)
⑵由∴D1E⊥AB1
要使D1E⊥平面AB1G,只须D1E⊥AG,由

故,当G为CD的中点时,D1E⊥平面AB1G。

⑶由⑴、⑵可知,D1E⊥C1F,D1E⊥平面AB1G,且C1F平面AB1G,∴C1F//面AB1G
故:G为CD的中点,C1F//平面AB1G。

二、求空间角的问题
⑴异面直线所成的角:异面直线所成的角可转化对应的向量所成角问题,但要注意角的范围,异面直线所成的角的范围:O<≤,而向量的夹角的范围:O≤≤
由,求异面直线所成的角。

⑵直线与平面所成的角,利用直线的方向向量与平面的法向量夹角的余角[图2](或夹角的补角的余角[图3])。

⑶二面角:转化两平面的法向量的夹角[图4]或夹角的补角[图5]
注:有时可判断是锐二面角还是钝二面角。

例:如图ABCD是直角梯形,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=。

⑴求异面直线SB与CD所成的角。

⑵求SC与平面SAB所成的角。

⑶求面SCD与面SAB所成的二面角。

解:以A为坐标系的原点,建立坐标系,如图6所示
则:A(O,O,O)B(1,0,0)
C(1,1,0)
D(0,,0)S(0,0,1)
则:是平面SAB的法向量
⑵面SAB
⑶设面SCD的法向量
则:
取则x0=-1
三、求空间距离问题
1、异面直线的距离:如图7,设a、b是异面直线,向量是a、b的公垂线的方向向量,点A、B分别是直线a、b上任一点,则异面直线a、b的距离
d=||AB|·cos|
=
2、点到平面的距离:如图8,设点P是平面外任意一点,是平面的一个法向量,则点P到平面的距离
例:如图,ABCD是直角梯形,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=。

⑴求异面直线SD与AC的距离。

⑵求A到平面SCD的距离。

解:以A为坐标系原点,如图9所示,建立坐标系
则A(0,0,0)B(1,0,0)
C(1,1,0)
D(0,,0)S(0,0,1)

⑴令:=(x0 y0 z0)由

取z0=1 则x0=-2 y0=2
∴异面直线SD与AC的距离
⑵令由
取z0=1,则x0=-1 y0=2
∴是平面SCD的法向量
∴A到平面SCD的距离
向量在立体几何中的应用体现了数形结合的思想,培养了解决问题的能力,贯彻了新课程标准,实践了新高考,向量法应用性广、操作性强。

相关文档
最新文档