匀速圆周运动物体机械能守恒问题新解
圆周运动问题分析

圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。
可见,圆周运动一直受到命题人员的厚爱是有一定原因的。
不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。
同时,也可以把常用的解题方法归结为两条。
1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。
只要受力分析找到合外力,再写出向心力的表达式就可解决问题。
2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。
特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。
注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。
另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。
基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。
【题型讲解】题型一 匀速圆周运动问题例题1:如图所示,两小球A 、B 在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A >r B ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几何关系,两小球运动的向心力相等,所受支持力相等。
两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rvmF 2=向,可得v A >v B ; 由公式2ωmr F =向,可得ωA <ωB ; 由公式ωπ2=T ,可得T A >T B ;A B图3-2-1A B 图3-2-2[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。
高中物理机械能及守恒定律专题及解析

高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
匀速圆周运动

匀速圆周运动匀速圆周运动是一种特殊的运动形式,在许多物理问题中都有很大的应用。
本文将对该运动形式进行详细的介绍,以便读者更好地理解。
1. 基本概念匀速圆周运动是指物体在一个平面内以恒定的速度绕着一个固定的圆周运动。
在该运动过程中,物体的运动轨迹为圆周,速度大小不变,只有速度方向不断改变。
这种运动形式具有周期性,即物体在一个周期内绕圆周运动一周,并回到起点。
周期与圆周运动的半径、物体速度有关。
在匀速圆周运动中,物体所受的向心力与圆周运动有密切关系。
向心力的大小等于质量乘以加速度,并向圆心方向作用。
物体能够维持圆周运动,是因为向心力与速度方向垂直,能够改变速度方向,而不改变速度大小。
当向心力消失时,物体将沿着其初始速度直线运动。
2. 对匀速圆周运动的图解分析对于匀速圆周运动,我们可以通过图解的方式来进行分析。
如图1所示,物体在圆周上运动。
在该运动过程中,速度方向与切线方向一致,而向心力方向与半径方向一致。
由于物体的速度大小不变,所以物体在圆周上的运动速度可以表示为:v=2πr/T其中,v表示物体的速度大小,r表示圆半径,T表示运动周期。
由于速度方向垂直于向心力方向,所以物体所受的向心加速度可以表示为:a=v²/r由牛顿第二定律可得,物体所受的向心力为:F=m·a=m·v²/r其中,m表示物体质量。
可以看出,向心力与圆周半径成反比,与物体速度平方成正比。
3. 匀速圆周运动中的能量守恒在匀速圆周运动的过程中,物体所受的向心力不做功,只改变速度的方向,而不改变速度的大小。
因此,匀速圆周运动中的动能守恒定律为:E=1/2·mv²其中,E表示动能,m表示质量,v表示速度大小。
又由于向心力不做功,所以匀速圆周运动中的势能守恒定律为:E=mgh其中,h表示物体与引力场的距离。
由于匀速圆周运动中没有引力场,所以势能守恒定律并不适用。
但是,如果考虑依靠引力场来产生向心力的情况,则动能和势能的和将守恒。
什么是机械能守恒举例说明机械能守恒的应用

什么是机械能守恒举例说明机械能守恒的应用知识点:什么是机械能守恒以及机械能守恒的应用一、什么是机械能守恒机械能守恒是指在一个封闭的系统中,不受外力或外力做功可以忽略不计的情况下,系统的机械能(动能和势能的总和)保持不变。
这里的机械能包括动能和势能,其中动能是指物体由于运动而具有的能量,势能是指物体由于位置或状态而具有的能量。
二、机械能守恒的原理机械能守恒的原理可以概括为能量不能被创造或消灭,只能从一种形式转化为另一种形式。
在封闭的系统中,没有外力做功,系统的总机械能(动能和势能之和)保持恒定。
这意味着,如果一个物体在运动过程中没有外力作用,它的动能和势能之间的相互转化不会改变它们的总和。
三、机械能守恒的应用1.自由落体运动:在真空中,一个物体从高处自由下落,没有空气阻力作用。
在这种情况下,物体的势能逐渐转化为动能,但总机械能(势能加动能)保持不变。
2.抛体运动:在忽略空气阻力的情况下,抛出物体(如抛物线运动),物体的机械能同样保持不变。
在抛体运动中,物体的势能和动能会根据其位置和速度发生变化,但总机械能保持恒定。
3.理想弹性碰撞:在理想弹性碰撞中,两个物体碰撞后,它们的机械能(动能和势能之和)在碰撞前后保持不变。
这意味着碰撞过程中,动能可能从一个物体转移到另一个物体,但总机械能不会改变。
4.滑梯:一个孩子在滑梯上滑下时,势能转化为动能。
在没有外力作用(如摩擦力)的情况下,孩子的总机械能保持不变。
5.摆钟:摆钟的摆动过程中,势能和动能之间的相互转化使摆钟保持恒定的周期运动。
在没有外力作用(如摩擦力和空气阻力)的情况下,摆钟的机械能保持不变。
通过以上知识点的学习,我们可以更好地理解机械能守恒的概念及其在实际中的应用。
在解决相关问题时,要善于运用机械能守恒原理,分析物体在不同状态下的能量转化,从而得出正确答案。
习题及方法:1.习题:一个物体从地面上方以初速度v0竖直下落,不计空气阻力。
求物体落地时的速度大小。
高一物理机械能及其守恒条件试题答案及解析

高一物理机械能及其守恒条件试题答案及解析1.在下列所述实例中,若不计空气阻力,机械能守恒的是A.石块自由下落的过程B.在竖直面内做匀速圆周运动的物体C.电梯加速上升的过程D.木箱沿粗糙斜面匀速下滑的过程【答案】A【解析】物体机械能守恒的条件是只有重力或者是弹力做功,根据机械能守恒的条件逐个分析物体的受力的情况,即可判断物体是否是机械能守恒.石块自由下落的过程,只受重力,所以石块机械能守恒,故A正确。
在竖直面内做匀速圆周运动过程中动能不变,重力势能在变化,所以机械能不守恒,B错误。
电梯加速上升的过程,动能增加,重力势能增加,故机械能增加,故C错误。
木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,所以机械能减小,故D错误。
【考点】考查了机械能守恒2.下列说法正确的是()A.物体机械能守恒时,一定只受重力作用B.物体处于平衡状态时机械能一定守恒C.若物体除受重力外还受到其他力作用,物体的机械能也可能守恒D.物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功【答案】CD【解析】物体机械能守恒的条件是受重力与弹力,故A中说一定只受重力作用是不对的;物体处于平衡状态时也可能是竖直向上或向下做匀速直线运动,我们知道此时的机械能是不守恒的,故B也不对;物体除受重力外,如果还受弹力的作用,则它的机械能也是守恒的,故C是正确的;如果物体的动能与重力势能的和增大,则必定有重力以外的其他力对物体做功是正确的,故D也对。
【考点】机械能守恒的条件。
3.神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段【答案】BC【解析】根据机械能守恒的条件,只有重力(或引力)做功时机械能守恒。
飞船升空的阶段,燃料要对火箭产生动力,对火箭做正功,火箭的机械能增加;飞船在椭圆轨道上绕地球运行的阶段,只有地球引力做功所以机械能守恒;返回舱在大气层外向着地球做无动力飞行阶段,也是只有地球引力做功,机械能守恒;降落伞张开后,返回舱下降的阶段,除重力做功外还有空气阻力做功,所以机械能减少。
机械能守恒和圆周运动的结合

欢迎来到本次演讲!我们将探索机械能守恒与圆周运动的奇妙联系,以及在 这一领域内的一些令人惊叹的应用。
机械能守恒的定义
机械能守恒是指在一个闭合系统中,机械能(动能和势能之和)的总量保持不变。这个概念是我们理解圆周运 动的基础。
圆周运动的基本概念
圆周运动是物体绕着一个固定轨道做匀速运动,如行星绕太阳运动。这种运 动的特点是速度的大小不变,但方向不断改变。
机械能守恒和圆周运动的联系
在圆周运动中,机械能守恒的原理发挥了重要作用。它使我们能够更好地理 解和分析物体在圆周运动过程中的能量转换。
圆周运动中的重力势能和动能 的转换
在圆周运动中,重力势能可以转换为动能,反之亦然。这一转换过程是圆周 运动中能量守恒的关键。
机械能守恒在圆周运动中的应 用
通过理解机械能守恒的原理,我们可以解释许多圆周运动现象,如摩天轮的 运动和卫星绕地球的轨道。
圆周运动中的角速度和角加速 度
角速度是描述物体在圆周运动中旋转快慢的指标,而角加速度则是描述旋转 加速度的指标。它们与机械能守恒密切相关。
结论和要点
通过机械能守恒理论的运用,我们能够更好地理解和分析圆
专题三圆周运动_机械能守恒中的连接体问题

机械能守恒中的连接体问题【解题步骤】1.准确选择研究对象2.判定机械能是否守恒3.应用机械能守恒处理连接体问题例1:如图,在光滑的水平桌面上有一质量为M的小车,小车与绳的一端相连,绳子的另一端通过光滑滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h,由静止释放砝码,则当其着地前的一瞬间(小车未离开桌子)小车的速度为多大?练习Word文档1、一根细绳绕过光滑的定滑轮,两端分别系住质量为M和m的长方形物块,且M>m,开始时用手握住M,使系统处于如图示状态。
求Array(1)当M由静止释放下落h高时的速度(2)如果M下降h刚好触地,那么m上升的总高度是多少?2、如图所示,一固定的三角形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。
一柔软的细线跨过定滑轮,两端分别与物块A和B连接,A的质量为4m,B的质量为m。
开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。
物块A与斜面间无摩擦。
设当A沿斜面下滑S距离后,细线突然断了。
Word文档求物块B上升的最大高度H。
3、如图光滑圆柱被固定在水平平台上,质量为m1的小球甲用轻绳跨过圆柱与质量为m2的小球乙相连,开始时让小球甲放在平台上,两边绳竖直,两球均从静止开始运动,求当甲上升到圆柱最高点时甲的速度。
Word文档例2.长为L质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,如图所示.轻轻地推动一下,让绳子滑下,那么当绳子离开滑轮的瞬间,求绳子的速度?练习Word文档1、如图所示,一粗细均匀的U形管装有同种液体竖直放置,右管口用盖板A密闭一部分气体,左管口开口,两液面高度差为h,U形管中液柱总长为4h,现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为多少?Ah2.如图所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,已知小车的质量为M,小桶与沙子的总质量为m,把小车从静止状态释放后,在小桶下落竖直高度为h的过程中,若不计滑轮及空气的阻力,下列说法中正确的是A.绳拉车的力始终为mgB.当M远远大于m时,才可以认为绳拉车的力为mgC.小车获得的动能为mghD.小车获得的动能为Word文档Word 文档例题3.如图所示,质量分别为2m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,求:当A 到达最低点时,A 小球的速度大小v ;匀速圆周运动一、物理量之间的转换例1、如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:,,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为__________,角速度之比为__________,周期之比为__________。
高三物理用机械能守恒解圆周运动问题专题辅导

用机械能守恒解圆周运动问题 浙江 杨航通 物体在竖直平面内做圆周运动时,重力势能和动能之间相互转化,在某些特定的情景中运动物体的机械能守恒,这时就可以应用机械能守恒定律来解决这些圆周运动问题。
例1.如图1所示,半径为r 、质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直于盘面的光滑水平固定轴O 。
在盘的最右边缘,固定一个质量为m 的小球A 。
在O 的正下方离O 点2r 处,固定一个质量也为m 的小球B 。
放开盘,让其自由转动。
试计算: 〔1〕当A 球转到最低点时,两小球的重力势能之和减少了多少?〔2〕A 球转到最低点时的线速度是多少?〔3〕在转动过程中,半径OA 向左偏离竖直方向的最大角度是多少?解析:〔1〕根据重力对物体做的功等于物体重力势能的减少量来解。
在A 转到最低点的过程中,重力对A 做正功,A 的重力势能减少,重力对B 做负功,B 的重力势能增加。
所以,两球重力势能减少量为ΔE p =mgr-21mgr=21mgr 〔2〕设A 球转到最低点时线速度为v ,而v=ωr ,如此B 球的线速度为2v 。
根据A 球减少的机械能等于B 球增加的机械能,以过最低点的水平面为零势能面,如此有mgr-21mv 2=21mgr+21m 〔2v 〕2 所以,A 球转到最低点的速度为v=gr 54。
〔3〕如图2所示,设当圆盘转速为零时,OA 向左偏离竖直方向的最大角度为θ。
以A 球从开始运动到向左偏离竖直方向最大角度这一过程为研究对象。
根据系统中A 球减少的机械能等于B 球增加的机械能,故有mgrcos θ=21mgr+21mgrsin θ 从而可得5sin 2θ+2sin θ-3=0所以,最大偏角为:θ=sin -10.6 =37°。
例2.半径为R=0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A ,如图3所示。
一质量m=0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,试判断小球能否通过最高点M ,假设最后小球落在水平地面上的N 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.匀速圆周运动物体机械能守恒问题新解
摘 要:重新解答了匀速圆周运动物体的机械能守恒问题,得出了在地面上和相对于地面做匀
速运动的小车上,匀速圆周运动物体机械能都守恒的新结论.
关键词:匀速圆周运动物体;动能;势能;机械能守恒
中图分类号:O 313.1 文献标识码:A
质量为m 的钢球(视为质点),在长为R 的轻绳的牵制下,在光滑水平地面上绕地面上的o 点做匀速量值为v 的圆周运动,有一小车相对于地面以恒速量值u 沿光滑水平地面运动,在忽略各种阻力时,试问在地面(地球质量视为充分大,故稳定地保持为惯性系)和小车上观察,钢球的机械能是否守恒,并说明理由.
解:在地面上观察时,以点o 为坐标原点,以过点o 且平行于小车运动的方向为x 轴正向,建立平面直角坐标系如图1所示.
向心力J 是保守力,在静止系向心力势能为0.证明如下:设o 为极点,射线ox 为极轴,o 到钢球的矢量r 为极径,θ为极角,则有:
⎰s J 0⋅d s =⎰-s J 0)(cos 2πd s =-⎰s
00d s =-0(s -0)=0-0⋅s =0. 定义0⋅s 为向心力J =m R
2
v n 在s 处的势能,记做E pJ (s ),则有E pJ (s )=0⋅s =0.向心力势能只与位置s 有关,且满足“保守力做的功等于保守力势能减少量”的原则,故圆周运动物体受到的向心力是保守力. 设在地面上观察时,钢球从t=0时刻在x 轴正向与圆周交点处开始沿圆周转动,t 时刻转过的角度、
图1 匀速圆动物体机械能守恒问题新解
线速度、动能、势能、机械能分别为:θ,v ,E k (t ),E p (t ),E (t );在小车上观察时,t 时刻的线速度、动能、势能、机械能分别为:v 1,E 1k (t ),E 1p (t ),E 1(t );则在地面上观察(即以地面为静止系)时有:
E k (t )=
21m v 2;E p (t )=0;E (t )=E k (t )+E p (t )=21m v 2+0=2
1m v 2. 所以,在地面上观察时,钢球的机械能守恒,守恒值为21m v 2. 在地面系看来匀速圆周运动机械能守恒,向心力是一个保守力,旋度为0,旋度不依赖于坐标系,所以在小车系看来也是保守力,这里进一步验证了这个问题.
在小车上观察时:
直觉判断:
因为当质点的运动速度为垂直于x 轴时,我们规定此时静止系与运动系的势能相等,与地面系比较可以得出质点的动能增加21m (-u )2=2
1mu 2, 所以,在小车参照系上观察时,质点的机械能为:
E 1(t )=E (t )+
21mu 2= 21m v 2+2
1mu 2(常数). 所以,在小车参照系上观察时,质点的机械能守恒,守恒值为21m v 2+21mu 2. 数学推导:
由物理学知识知道,在匀速圆周运动中旋转角是时间t 的单值函数,因此也可以用旋转角表示机械能.
v 1x =v x -u =-v sin θ-u ,21x v =2x v +2u -2u v x ;v 1y =v y ,21y v =2y v ;
21v =21x v +21y v =2x v +2u -2u v x +2y v =v 2+u 2+2u v sin θ.E 1k (t )= E 1k ′(θ)=21m 21v =21m v 2+2
1mu 2+mu v sin θ. v =t
s d d =t R θd )d(=t θR d d ,d t =v θR d . 0-E 1p (t )= -E 1p ′(θ)=-m ⋅R 2v (cos θ)(-u )d t =mu ⋅R
2v (cos θ)v θR d =mu v cos θd θ, E 1p (t )= E 1p ′(θ)=-⎰θ
mu 0
v cos θd θ=-m u v (sin θ-sin 0)=-m u v sin θ.
E 1(t )=E 1k (t )+E 1p (t )= E 1k ′(θ)+E 1p ′(θ) =
21m v 2+21mu 2+m u v sin θ-m u v sin θ=21m v 2 +2
1m 2u . 所以,在小车上观察时,钢球的机械能守恒,守恒值为21m v 2+21m 2u .当u =0时两个坐标系重合,守恒值相等,符合玻尔的对应原理.
在本题中的约束力是弹力,弹力是保守力,进一步验证了这个问题,不过在这里轻绳的劲度系数认为是
无穷大,忽略形变.
定理:质点做圆周运动的约束力是一个保守力,可以改变动能和势能,但是不改变质点的机械能.
说明:前面我们分析了单一一个保守力做功时,机械能守恒定律满足力学相对性原理,分为重力、弹力(弹簧弹力、匀速圆周运动的约束力)、万有引力,其实静摩擦力也是保守力(因为静摩擦力在一个惯性系内不做功,在另一个惯性系内可能做功,我们也可以按照保守力来处理),此时机械能守恒定律也满足力学相对性原理,我们不再分析,有兴趣的读者自己分析即可.
Brand-new explanation of mechanical energy conservation of object
moving in even speed around circle
Abstract:It refurbished the issue of mechanical energy conservation of the object moving in uniform speed around circle, which straightforwardly led to conclusion, no matter we take reference frame of the earth itself or the cart moving in uniform speed to the earth, the mechanical energy of the object moving in uniform speed around circle is always conservative.
Key words:the object moving in uniform speed around circle;kinetic energy;potential energy;conservation of mechanical energy。