第十章第四节 t检验和z检验2014.

合集下载

一文搞懂Z检验,T检验,x2检验

一文搞懂Z检验,T检验,x2检验

一文搞懂Z检验,T检验,x2检验作者:Bob大叔,香港精益六西格玛黑带
三种检验方法的介绍
Z检验举例:
某产品,其装量服从N(2.1,0.012),即均值2.1,标准差0.01。

抽取15个样品,其测量值如下:
2.08 2.10 2.10
2.09 2.10 2.10
2.09 2.09 2.11
2.09 2.12 2.10
2.10 2.10 2.10
建立假设H0:μ=2.1,H1 μ≠2.1,由于σ已知,故选择Z检验
操作如下:
P=0.36>0.05,无法拒绝原假设H0, 所以认为取样的平均装量没有变化。

t检验举例:
某设备的OEE目标为70%,连续15天的OEE如下,请判断OEE是否已达到70%目标?
由于σ(标准差)未知,且为小样本,故而选择,t检验
建立假设:HO: μ=70%, H1>70%,
操作如下:
P=0.252>0.05,无法拒绝原假设,说明0EE并未大于70%。

X2检验举例:
已知某产品装量,符合N(μ,σ2)分布,μ未知,但是要求标准差不能超过0.01,随机抽取30个样品,请问标准差是否有变化?
由于μ未知,故而选择X2检验,
建立假设:H0:σ=0.01, H1:σ≠0.01
操作如下:
(weixin gongzhonghao: HK_BobUncle)
P=0.303>0.05, 无法拒绝原假设,说明标准差无变化。

假设检验与样本数量分析①——单样本Z检验和单样本t检验

假设检验与样本数量分析①——单样本Z检验和单样本t检验

X
32.03 + 32.14 + … + 31.87 15

1.9 2.0

0.029 0.023

0.028 0.022

0.027 0.022

0.0226 0.020

0.025 0.020

0.024 0.019

0.024 0.019

0.023 0.018
原假设 (零假设)即上述的可能,符号是H0
备择假设(与原假设对立的假设),符号是H1
如本例:假设外径尺寸 H0:(μ = 32) H1: (μ≠32) 确立检验水准: α——显著水平(通常取α=0.05)

显著水平α是当原假设正确却被拒绝的概率 通常人们取0.05或0.01 这表明,当做出接受原假设的决定时,其正确的可 能性(概率)95% 或99% 概率是0~1之间的一个数,因此小概率就是接近0的 一个数 英国统计家Ronald Fisher 把0.05作为标准,从此0.05 或比0.05小的概率都被认为是小概率
8 作出不拒绝零假设的统计结论,即外径尺寸 均值没有偏离目标Ф 32
<6>
单样本 Z 检验 单样本 t 检验
预备知识
接上页

假设检验的例子(1)
检验 α = 0.05
临界值 临界值

2
=0.025
拒绝范围

1 – α = 95%
不拒绝H0范围
2
=0.025
根据小概率原理,可以先假设总体参数的 某项取值为真,也就是假设其发生的可能 性很大,然后抽取一个样本进行观察,如 果样本信息显示出现了与事先假设相反的 结果(显示出小概率),则说明原来假定 的小概率事件(一次实验中是几乎不可能发 生)在一次实验中居然真的发生了,这是 一个违背小概率原理的不合理现象,因此 有理由怀疑和拒绝原假设;否则不能拒绝 原假设。 在给定了显著水平α 后,根据容量为n的样 本,按照统计量的理论概率分布规律,可 以确定据以判断拒绝和接受原假设的检验 统计量的临界值。 临界值将统计量的所有可能取值区间分为 两个互不相交的部分,即原假设的拒绝域 和接受域。

假设检验与样本数量分析①——单样本Z检验和单样本t检验

假设检验与样本数量分析①——单样本Z检验和单样本t检验

“估计外径尺寸为32mm,”
——这就是对产品的外径尺寸(总体特征)的假设

对假设是接受还是拒绝,如何作出判断?
——对这样一个过程统计上叫做假设检验


Fisher没有解释他为什么选择0.05
<4>
单样本 Z 检验 单样本 t 检验
预备知识
接上页
5
假设检验的例子(1)
1 建立检验假设 H0:外径尺寸均值为32mm (μ = 32)
1 – α = 0.95
拒绝零假设 不拒绝零假设 拒绝零假设
! 也可以查正态分布表(样本数据的概率 P ) P = P(Z< -0.31 及 Z> 0.31) = 0.378 ×2 = 0.756 P= 0.756 > α = 0.05
无法拒绝零假设H0 P(Z﹤-0.31 或Z> 0.31)= 0.378 ×2 = 0.756
= 31. 9913
4 假设检验类别 选择 Z 检验法
Z α/2(α=0.05)= Z 0.025=1.96
7 用算得的统计量与相应的临界值作比较 Z = 0.31< Z 0.025=1.96
<5>
单样本 Z 检验 单样本 t 检验
预备知识
接上页
假设检验的例子(1)
双侧检验示意图(显著水平α与拒绝域 )
拒绝范围
右侧检验
H0 :μ HІ : μ
1 1
≤μ 2 >μ 2
临界值
例: 某种瓶装啤酒的标称容积是640毫升。如果瓶装啤酒液体容积少 于640毫升,会使产品信誉受到损害;但是多于640毫升不仅会 使成本上升,还有可能造成安全隐患。因此质检部定期从生产 线上抽取一定数量的啤酒组成样本来检验其质量是否达到要求。

T检验

T检验
统计学意义。还不能认为阿卡波糖胶囊与拜唐苹 胶囊对空腹血糖的降糖效果不同。
33
? 若两总体方差不等(
2 1


2),
2
若变量变换后总体方差齐性 可采用
t 检验(如两样本几何均数的t 检验,就是将 原始数据取对数后进行t 检验);
若变量变换后总体方差仍然不齐 可
采用t ‘ 检验或Wilcoxon秩和检验。
2
t 检验,亦称student t 检验,有下述情况: 3、配对设计资料均数比较的t检验
目的:推断两个未知总体均数1 与 2 是否有差 别用配对设计。
3
对于大样本,也可以近似用Z检验或u检验。
4
t 检验 和 Z 检验的应用条件: 1. t 检验应用条件: 总体标准差未知,且样本含量n较小时(如n<60)
10
t检验结果判断标准
检验统计量t值与t
界值关系
t t 2,
t t 2,
双侧检验
P值大小 P
P>
统计学结论
按检验水准,拒 绝H0假设,接受H1 差别有统计学意义 按检验水准,不 拒绝H0假设,可认 为差别无统计学意

11
t检验结果判断标准
检验统计量t值与t
界值关系
t t,
t 检验
1
t 检验,亦称student t 检验,有下述情况:
1、样本均数X 与已知某总体均数 比较的t检验 目的:推断一个未知总体均数 与已知总体均
数 0是否有差别,用单样本设计。
2、两个样本均数 X与1 X2比较的t检验
目的:推断两个未知总体均数1与 2 是否有差 别,用成组设计。
27
适用范围:
完全随机设计两样本均数的比较 检验方法:依两总体方差是否齐性而定。

4第四章 假设检验、t检验和Z检验

4第四章 假设检验、t检验和Z检验

编号
1 2 3
干预前
12 9 10
干预后
15 12 16
差值(d)
3 3 6
d2
9 9 36
4
5 6
6
5 8
10
12 9
4
7 1
16
49 1
7
8 9 10
13
11 10 9
19
18 15 11
67 5 2Fra bibliotek3649 25 4
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 : d 0
两独立样本t检验
1.建立假设,确定检验水准
H 0 : 1 2 H 1 : 1 2
2.选定检验方法,计算检验统计量
t 3012 .5 2611 .3 (30 1) 280.1 (32 1) 302.5 1 1 ( ) 30 32 2 30 32
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H 0 : 0 H1 : 0
0.05
2.选定检验方法,计算检验统计量Z值
Z x 0 s/ n 142.6 130 31.25 / 210 5.843
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
度统计学意义。
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对 子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
d d d 0 d t Sd sd / n sd / n v n 1
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果

第十章 第四节 K-S单样本检验

第十章 第四节 K-S单样本检验

第四节Kolmogorov-Sirmov单样本检验一、Kolmogorov-Sirmow单样本检验Kolmogorov-Sirmov单样本检验是一种拟合优度性检验。

它的基本原理同Chi-Square检验,但比Chi-Square检验更为精确。

K-S检验是将一组样本值(观察结果)的分布和某一指定的理论分布函数(如正态分布,均匀分布,泊松分布,指数分布)进行比较,确定两者之间的符合程度。

这种检验可以确定是否有理由认为样本的观察结果来自具有该理论分布的总体。

简言之,这种检验包括确定理论分布下的累积频数分布,以及把这种累积频数分布和观察的累积频数分布进行比较(这里的理论分布系指零假设成立时所预期的分布),确定理论分布和观察分布的最大差异点,参照抽样分布并定出这样大的差异是否基于偶然。

这就是说,若观察的结果的确是从理论分布抽取的随机样本,则抽样分布将指出这种观察到的差异程度是否随机出现的。

1二、Kolmogorov-Sirmov单样本检验方法1.K-S单样本检验步骤(1)在数据输入之后,依次单击Analyze→Nonparametric Tests→ 1-Sample K-S →打开One-Sample Kolmogorov-Sirmov Test对话框;(2)在原变量栏选择所要检验的分布到Test Variable List栏;(3)在Test Distribution栏选择理论分布函数复选项:●Normal复选项:如选择此项,则检验变量是否服从正态分布,系统默认;●Uniform复选项:如选择此项,则检验变量是否服从均匀分布;●Poisson复选项:如选择此项,则检验变量是否服从泊松分布;●Exponential复选项:如选择此项,则检验变量是否服从指数分布。

(4)单击“Option”按钮,打开Options对话框:●Statistics栏:在此栏可选择Descriptive复选项,则会输出观测的均值、最小值、最大值、标准差等描述统计;选择Quartiles复选项:则输出观测的四分之一分位数、二分之一分位数和四分之三分位数。

t检验和Z检验

t检验和Z检验

药物治疗
1
? =
药物治疗合 并饮食疗法
2
推断
甲组
n1=12
XX1 =15.21
乙组 n2=13 X 2=10.85
t 检验——问题提出
▪ 根据研究设计,t检验有三种形式:
➢单个样本的t检验 ➢配对样本均数t检验(非独立两样本均数t
检验)
➢两个独立样本均数t检验
第一节 单个样本t检验
▪ 又称单样本均数t检验(one sample t test),适 用于样本均数与已知总体均数μ0的比较,目的是 检验样本均数所代表的总体均数μ是否与已知总 体均数μ0有差别。
▪ 配对设计主要有三种情况:
(1)将受试对象按某些混杂因素(如性别、年龄、窝别 等)配成对子,每对中的两个个体随机分配给两种处理 (如处理组与对照组); (2)同一受试对象或同一标本的两个部分,随机分别进 行不同处理(或测量)。 (3)同一受试对象自身前后对照。
配对t检验原理
▪ 配对设计的资料具有对子内数据一一对应的特征, 研究者应关心是对子的效应差值而不是各自的效 应值。
表 5-1 12 名儿童分别用两种结核菌素的皮肤浸润反应结果(mm)
编号
标准品 新制品 差值 d
d2
1
12.0
10.0
2.0
4.00
2
14.5
10.0
4.5
20.25
3
15.5
12.5
3.0
9.00
4
12.0
13.0
-1.0
1.00
5
13.0
10.0
3.0
9.00
6
12.0
5.5
6.5
42.25

z检验与t检验的区别

z检验与t检验的区别

z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。

它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数平均数的差异是否显著。

当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。

Z检验的适用条件:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本标准误;
(3) 样本来自正态或近似正态总体。

若Z值大于临界值,则认为为二者有差异,否则认为没差异。

T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是对各回归系数的显著性所进行的检验,(--这个太不全面了,这是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。

t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等)未知,一般检验用T检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)有一个参数 ,当 ,t分布u分布
假设检验基本步骤
(1)建立假设
H0: (无效假设) 总体参数相等 H1: (备择假设) 总体参数不等
(2)确定检验水准
通常 = 0.05
(3)选定检验方法和计算检验统计量
如:u、t、F、X2 等
(4) 确定P值,作出推断结论 P≤时,则拒绝H0,接受H1 P>时, 则不拒绝H0
1、样本均数与总体均数比较
例 据大量调查知,健康成年男子脉搏的 均数为72次/分,某医师在山区随机调查了25 名健康男子,其脉搏均数为74.2次/分,标准 差为6.0次/分,能否认为该山区成年男子的脉 搏高于一般人群?
分析两均数不等的原因有两种可能性:
(1)仅仅由于抽样误差所致; (2)除抽样误差外还由于环境条件的影响。
舒张压mmHg
治疗前
治疗后
96
88
112
108
108
102
102
98
98
100

100
92
差值d
8 4 6 4 -2 4 4 8
同一受试对象处理前后结果比较。 同源配对
12名妇女最大呼气率分别用两法测得的结果(L/min)
被测者编号 ⑴ 1 2 3 4 5 6 7 8 9 10 11 12
注意:统计分析是 在H0前提下进行的
H0: = 0 (72次/分)
H1: > 0
单侧: = 0.05
t X 0
S/ n
74.2 72 1.833 6.0 / 25
=74.2
此图为从 0总体中抽样(n=25)得 到的样本均数分布图
=n- 1=25 -1=24 查t界值表(P302),得单侧 t0.05,24 = 1.711 因: t =1.833> t0.05,24 所以:P < 0.05
x
/ n
则 u 服从标准正态分布 N(0,1)
实际工作中, 往往未知,s 代替, 此时
就不是u代换,而是 t 代换。
t X X
Sx S/ n
无数t点所组成的分布,称t分布。
t 分布的特征: (1)以 0 为中心,两侧对称的单峰分布 (2)与 u 分布比较,峰值较低,两边上翘
2.根据研究目的只要求分析一侧。 无明确要求,通常要用双侧检验
SPSS演示
单样本t检验 例9-15 P.306
例9-15 已知某小样本中含CaCO3的真值是20.7mg/L。现用某 法重复测定该小样本15次,CaCO3含量(mg/L)分别为: 20.99,20.41,20.62, 20.75,20.10,20.00,20.80,20.91, 22.60,22.30,20.99,20.41,20.50, 23.00,22.60。问该 法测得的均数与真值有无差别?
第九章 数值变量资料的统计分析
温医公卫学院黄陈平
第四节 t检验和u检验
t检验和u检验应用及资料要求 样本均数与总体均数比较 配对设计两样本均数比较 成组设计两样本均数比较 假设检验应注意的问题 课堂讨论
均数的抽样误差与标准误
某变量值总体分布
X1
n
X2
抽样 .
XK
样本含量n相同的 样本均数总体分布
Wright法 ⑵ 490 397 512 401 470 415 431 429 420 275 165 421
Mini法 ⑶ 525 415 508 444 500 460 390 432 420 227 268 443
观察指标测自同一受试对象或标本。
• 异源配对
观察指标测自不同受试对象或标本, 但不同受试对象或标本配成对子,每对除处 理因素不同外,其它非处理因素一致或基本 一致。
统计分析是比较配对差值与总体均数 0 的 差别进行的
例9-16
表9-10 高血压患者用某药治疗前后舒张压变化情况
病人编号
1 2 3 4 5 6 7 8
H 0: μ= μ0 H 1: μ≠ μ0
α= 0.05
计算得: x x 21.3
n
x2 (x)2 / n
s
0.98
n1
t X 0 21.3 20.7 1.70
S n 0.98 15
v=n-1=14
查表 t0.10, 14=1.761
∵ t <t0.10, 14, ∴ P>0.10,
结论:按照 = 0.05水准,拒绝H0 ,故可认 为该山区健康成年男子脉搏高于一般人群。
上例如用双侧检验,查表得双侧 t0.05, 24 = 2.064
则: t =1.833< t0.05,24 , P > 0.05。 结论相反。
单侧检验效率要高于双侧检验。
如何选择单侧或双侧检验?
1.主要根据专业知识而定。 如某指标只高不低或只低不高。
第四节 t 检验和u检验
t-test或称Student’s t-test; u-test或称Z-test
应用: 用于两均数比较的假设检验;
资料要求: (1)资料随机取自正态总体 (2)两总体方差齐性(相等)
除上述条件外,u检验还要求: 样本含量比较大(如n≥50), 或n虽小但σ已知
(很少见)。 (t分布逼近u分布,或本身呈u分布)
x 2
N

2
x

x
K
n
2
S xx n 1
标准差计算式
S
S
x
n
标准误计算式
增大样本含 量可减少抽 样误差
u分布与t 分布
若X或 X服从正态分布 N( , 2),则可作正
态变量 X或 X的 u 代换。
u x
u x x
Test Value = 20.7
df 14
Sig. (2-tailed) .111
95% Conf idence
Mean Interval of the Dif f erence
Dif f erence Low er
Upper
.43200
-.1130
.9770
2、配对设计的两样本均数比较
• 同源配对
按α= 0.05水准, 不拒绝H0,尚不能认为该法测得的均数与真 值有无差别。
caco3
One -Sam ple Statistics
N 15
Mean
Std. Error Std. Deviation Mean
21.1320
.98416
.25411
caco3
t 1.700
One -Sam ple Tes t
相关文档
最新文档