运用动态规划模型解决最短路径问题
邮递员问题最短路径的解法

邮递员问题最短路径的解法1. 简介邮递员问题是指一个邮递员需要按照一定的顺序访问多个地点,并返回起始地点的问题。
邮递员需要选择一条最短的路径,以最小化总行驶距离或时间。
2. 问题描述邮递员问题可以具体描述为:给定一个地图,地图上有多个地点,每个地点都有一个坐标和一个编号。
邮递员需要从起始地点出发,依次访问所有地点,并最终返回起始地点。
3. 算法解法解决邮递员问题的算法有很多种,下面介绍两种常见的解法。
3.1. 蚁群算法蚁群算法是一种模拟自然界蚁群觅食行为的算法。
在蚁群算法中,每只蚂蚁都只能看到局部信息,通过蚂蚁之间的合作和信息交流,最终找到整个系统的全局最优解。
蚁群算法解决邮递员问题的基本步骤如下: 1. 初始化蚂蚁的位置,通常将蚂蚁放置在起始地点。
2. 蚂蚁按照一定的规则选择下一个要访问的地点,例如选择离当前位置最近且未访问过的地点。
3. 更新蚂蚁的位置和访问状态,标记已经访问过的地点。
4. 重复步骤2和步骤3,直到所有地点都被访问过。
5. 计算蚂蚁行走的路径长度,并保存最短路径。
3.2. 动态规划算法动态规划算法是一种通过拆分问题,定义问题的状态,以及定义状态之间的关系,从而逐步求解问题的算法。
动态规划算法解决邮递员问题的基本步骤如下: 1. 定义子问题:将整个问题拆分为多个子问题,每个子问题表示从起始地点出发,经过一部分地点,并最终返回起始地点的最短路径。
2. 定义状态:根据子问题的定义,确定状态的表示方法,例如使用一个二维数组来表示子问题的最短路径长度。
3. 状态转移方程:根据子问题之间的关系,建立状态之间的转移方程,例如使用动态规划的递推公式计算子问题的最短路径。
4. 解决子问题:按照子问题的顺序,依次计算每个子问题的最优值,并保存中间结果。
5. 求解原问题:根据子问题的最优值,计算原问题的最优值,并得到最短路径。
4. 算法比较蚁群算法和动态规划算法是两种常见的解决邮递员问题的方法,它们各有优缺点。
数学模型在求最短途径问题中的应用

科技 一向导
◇ 职业教育◇
数学模型在求最短途径问题中的应用
张 若 男 ( 州工业贸易学校 河南 郑州 郑
4 00 ) 5 0 7
【 要 】 日常生活和 生产中, 摘 在 我们 经常遇到 求最短路径的 问题 。 随着科技 的发展 , 学模 型已广泛应 用到社会 生活的各个领域 。 数 我们 可 以通过 建立动态规划数 学模 型解决求最短路 径问题 . 具有广泛的实际意义。本文的完成将 对于研 究交通诱导 系统的 实际应 用提供更 完整 的理 论 指导并具有一定的实用价值 。 【 关键 词】 数学模 型 ; 动态规 划 ; 最短路 径
例如 :
有一张城市地图 , 如下图所示 , 每个结点代表城市 , 边上 的加权值 道从城市 A到城市 B的众多路径中 。 选择哪一条路 径的路 途最短。经 ,, 济管理 中的货 物存贮 、 设备更新 、 资源分 配、 任务均衡 、 系统可靠性 等 表示城市 问距 离。在此介绍如何找 出某 人从 城市 A经城 市 B cD到 达城市 E的最短路径的方法 问题 . 都可 以运用 同样原理来解决 。 K= , K= I 2, K= 3, K= 4 随着科技 的飞速发展 , 计算机技术 、 网络技术 和通讯技术 已逐步 问题分析与求解 : 渗入到交通领域 随着计算机 的迅猛普及 以及信息技术 的发 展 . 地理 把 整个过程划分 4个 阶段 , K表示 , = , 34 用 K 12, ,. 信息系( eor i n r ao yt e . G ga hc f m t n S s s p I o i m 简称 G S 到 日益广泛和深 I得 ) K 1 = ( 阶段) A结 点到 B 第一 : 从 级结点∞1B ; , 2) 入的应用 交通 网络在城市发展 中占有至关重要 的地位 . 最短路径算 K2 = ( 阶段) B级结点 1 2) 第二 : 从 , 到级结点( 1c ) C , 2; 法是交通 网络分析 的核心 . 已成为 G S T中的一个研 究热点 。最 现 I— K3 = ( 阶段) c 第三 : 级结点( l c ) 从 c , 2 到级结点( 1 2 3; D, , ) D D 短路径 问题是 资源分配 、 路线设计及分析等优化 问题 的基 础 。网络分 K 4 四阶段) D级结点( 1 2 3 E结点。 =( 第 : 从 D, , ) D D 到 析是空 间分析 的一个重要方 面. 网络分析 中最基本最 关键的问题是最 显然 , 个结点间距离 一定 , d‘表示 , d = ,。 每两 用 () , 且 ( 0 ) 短路径 问题 。它是许 多领域 中选择最优 问题 的基 础 , 在交通 网络分析 中占有重要地 位 经典 的最短路径算法一 Djs r i t 算法是 目 ka 前多数 系 统解决 最短 路径问题 采用的理论基 础 目 提出的解 决此类 最短路 径的算 法有多种。 是总体来说这 些 前 但 算法 采用的数据结 构及其实现 方法 由于受 到当时计算机 硬件发展 水 平 的限制 . 将空 间存储 问题放 到了一个很 重要的位置 . 以牺牲适 当的 时间效率来换取空间节省。算法思想都 比较难于理解 , 实现起来 也比
二维数组最短路径问题

二维数组最短路径问题
二维数组最短路径问题可以使用动态规划来解决。
给定一个包含非负整数的m x n网格,要求找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
每次只能向下或者向右移动一步。
思路分析:
1.定义一个dp数组,dp[i][j]表示从左上角到达(i,j)位置的最小路径
和。
2.初始化dp数组的第一行和第一列与网格数组相同。
3.对于其他位置(i,j),从上方位置(i-1,j)和左方位置(i,j-1)到达(i,j)的最
小路径和为上方位置和左方位置的最小路径和与网格数组(i,j)的值之和。
4.最终的答案为dp数组的右下角位置的值。
代码实现:
def minPathSum(grid):
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[i][0] = dp[i-1][0] + grid[i][0]
for j in range(1, n):
dp[0][j] = dp[0][j-1] + grid[0][j]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[m-1][n-1]
时间复杂度为O(mn),空间复杂度为O(mn)^。
用动态规划模型求解最短路问题的研究

当‘
,
,
“ 发 点 只有一 个
‘
,
点
则‘
,
。
,
,
。
距离为
一 至此 , 可 得最优决 策 函数序列 气 , 其 中
人
飞 万 。‘
丙
算法 , 矩 阵算法 , 动态规划方法等
枷 算法可用 于计算 网络 图中某一点到各 点的最短距
离 , 但实 际问题 中有时需要求 网络 中所 有各点 之间 的最短 距离 , 如果 仍采用
加 算法分别计 算 ,
效率很低 矩 阵算法可用于 计算所 有节点之 间的最短路 径 , 但计算 量较大 , 适 于用计算机计算 动态规
二
,
,
…,
,
式 中 为 阶段变量 为阶段数 , 。分别 为第 阶段 的状态 变量和决 策变量
动态规划可 分为正 向思维法和逆 向思 维法 , 逆 向思 维法是 指从问题 目标状 态 出发倒 推 回初始状
态或边界状 态 的思维方法 , 而 正 向思维法则正 好与之相反 在运 用求解最短路问题时 , 则有两种解法
划方法主要是研究与解决多阶段决策过程 的最优化问题 , 是求最短路 问题的好算法 , 动态规划方法是
将求解分成多 阶段进行 , 求 出的不 但是全过程 的解 , 而 且包括后部子过程 的一族解 , 在某些情况下 , 实
际问题需要族解时 , 更显其优越性
动态规划所处理的问题 是一个 多阶段 决策间题 , 一 般由初始状态开始 , 通过对中间阶段决策 的选
收稿 日期 二双刃名一 一
— 作者简介 王 百级 盯
, 女 , 白城 师范 学院毅学 系讲 师 , 研 究方 向 橄分 方 权理 论 。
用动态规划模型求解最短路问题 的研究
动态规划实现最短路径问题

动态规划实现最短路径问题⼀、设计最短路径的动态规划算法 <算法导论>中⼀般将设计动态规划算法归纳为下⾯⼏个步骤: 1)分析最优解的结构 2)递归定义最优解的值 3)⾃底向上计算最优解的值 4)从计算的最优解的值上⾯构建出最优解⼆、最短路径的结构 从最优解的结构开始分析(我们假设没有权值为负的路径),对于图G<V,E>的所有结点对最短路径的问题,我们能知道⼀条最短路径的⼦路径都是最短路径。
假设⽤邻接矩阵W=w(ij)来表⽰输⼊带权图,考虑从结点i到结点j的⼀条最短路径p,如果p最多有m(m为有限值)条边。
若i=j,则p的权值为0⽽且不包含其他边。
若i ≠ j,可以将i到j的路径转换为i -> k、k->j。
三、⼀个给定的图 1)给定⼀个有向图 2)我们可以给出这个有向图的邻接矩阵四、C++实现1 #include <iostream>2 #include<fstream>3 #include<sstream>4 #include<vector>5 #include<string>6using namespace std;7const int Max_Num = 100;89 typedef struct Point {10int n; //点的个数11double p[Max_Num];12double q[Max_Num];13int root[Max_Num][Max_Num];14double w[Max_Num][Max_Num];15double e[Max_Num][Max_Num];16 }Point;1718 vector<Point> points;19 vector<string> res;20 vector<int> num;2122void file_read();23void createPoint();24void optimalBST();25void printRoot(Point P);26void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite);27 template <class Type>28 Type stringToNum(const string& str) {29 istringstream iss(str);30 Type num;31 iss >> num;32 iss.str("");33return num;34 }3536void file_read() {37string str2, str1 = "", result;38 ifstream fileRead("in.dat");39if (fileRead.is_open()) {40while (getline(fileRead, str2, '\n')) {41if (str2.find("") != -1) {42 str1.append(str2 + "");43 }44else {45 num.push_back(stringToNum<int>(str2));46if (str1 != "") {47 res.push_back(str1);48 }49 str1 = "";50 }51 }52 res.push_back(str1);53 fileRead.close();54 }55 }5657void createPoint() {58string temp;59 Point P;60for (int i = 0; i < res.size(); i++) {61 vector<string> temp_str; //存放按照空格分开后的数字62int n = num[i];63 stringstream input(res[i]);64while (input >> temp) {65 temp_str.push_back(temp);66 }67 P.n = n;68for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);69for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]);70 points.push_back(P);71 }72 }7374//根据书上的伪代码:接收概率列表p1....pn和q0.....qn以及规模n作为输⼊计算出e和root75void optimalBST(){76 Point P;77for(int i = 0; i<res.size(); i++) {78 vector<string> temp_str; //存放按照空格分开后的数字79int n = num[i];80string temp;81 stringstream input(res[i]);82while (input >> temp) {83 temp_str.push_back(temp);84 }85 P.n = n;8687for(int k = 0; k<=n; k++) P.p[k] = stringToNum<double>(temp_str[k]);88for(int k = n + 1; k<temp_str.size(); k++) P.q[k-(n+1)] = stringToNum<double>(temp_str[k]); 8990//初始化只包括虚拟键的⼦树91for (int i = 1;i <= P.n + 1;++i){92 P.w[i][i-1] = P.q[i-1];93 P.e[i][i-1] = P.q[i-1];94 }95//由下到上,由左到右逐步计算96for (int len = 1;len <= P.n;++len){97for (int i = 1;i <= P.n - len + 1;++i){98int j = i + len - 1;99 P.e[i][j] = Max_Num;100 P.w[i][j] = P.w[i][j-1] + P.p[j] + P.q[j];101//求取最⼩代价的⼦树的根102for (int r = i;r <= j;++r)103 {104double temp = P.e[i][r-1] + P.e[r+1][j] + P.w[i][j];105if (temp < P.e[i][j])106 {107 P.e[i][j] = temp;108 P.root[i][j] = r;109 }110 }111 }112 }113 points.push_back(P);114 }115 }116117void printOptimalBST(int i, int j, int r, Point P, ofstream &fileWrite){118int root_node = P.root[i][j];//⼦树根节点119if (root_node == P.root[1][P.n]){120//输出整棵树的根121 fileWrite << "k" << root_node << "是根" << endl;122 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);123 printOptimalBST(root_node +1 , j, root_node, P, fileWrite);124return;125 }126127if (j < i - 1){128return;129 }else if (j == i - 1){//遇到虚拟键130if (j < r)131 fileWrite << "d" << j << "是" << "k" << r << "的左孩⼦" << endl;132else133 fileWrite << "d" << j << "是" << "k" << r << "的右孩⼦" << endl;134return;135 }136else{//遇到内部结点137if (root_node < r)138 fileWrite << "k" << root_node << "是" << "k" << r << "的左孩⼦" << endl; 139else140 fileWrite << "k" << root_node << "是" << "k" << r << "的右孩⼦" << endl; 141 }142 printOptimalBST(i, root_node - 1, root_node, P, fileWrite);143 printOptimalBST(root_node + 1, j, root_node, P, fileWrite);144 }145146//输出最优⼆叉查找树所有⼦树的根147void printRoot(Point P){148 cout << "各⼦树的根:" << endl;149for (int i = 1;i <= P.n;++i){150for (int j = 1;j <= P.n;++j){151 cout << P.root[i][j] << "";152 }153 cout << endl;154 }155 cout << endl;156 }157158int main(){159 file_read();160 optimalBST();161 ofstream fileWrite("out.dat");162 Point P ;163for(int i = 0; i<points.size(); i++) {164 P = points[i];165 printRoot(P);166 printOptimalBST(1,P.n,-1, P, fileWrite);167 }168 fileWrite.clear();169return0;170 } 上述代码是将给定的邻接矩阵从⽂件中读取 然后根据输⼊的邻接矩阵求出最短路径。
动态规划算法在路径规划中的应用

动态规划算法在路径规划中的应用路径规划在日常生活中随处可见,比如搜索最短路线、规划旅游路线、寻找交通路线等等。
其中,动态规划算法被广泛应用于路径规划领域,可解决诸如最短路径、最小花费路径等问题。
这篇文章将介绍动态规划算法在路径规划中的应用。
一、动态规划算法的基本原理动态规划算法是一种求解多阶段决策问题的优化方法。
它将问题分成多个子问题,并分别求解这些子问题的最优解。
最后通过不断合并子问题的最优解得到原问题的最优解。
其基本思想可以用以下三个步骤来概括:1.确定状态:将原问题分解成若干个子问题,每个子问题对应一个状态。
2.确定状态转移方程:确定每个状态之间的转移关系。
3.确定边界条件:确定初始状态和结束状态。
动态规划算法通常包括两种方法:自顶向下的记忆化搜索和自底向上的迭代法。
其中,自顶向下的记忆化搜索依赖于递归调用子问题的解,而自底向上的迭代法则通过维护状态表来解决问题。
二、动态规划算法在路径规划中的应用路径规划是动态规划算法的一个重要应用场景。
动态规划算法可以用来求解最短路径、最小花费路径、最大价值路径等问题。
这里以求解最短路径为例,介绍动态规划算法在路径规划中的应用。
1.问题定义假设我们需要从城市A走到城市B,中途经过若干个城市。
每个城市之间的距离已知,现在需要求出从城市A到城市B的最短路径。
这个问题可以用动态规划算法来求解。
2.状态定义在这个问题中,我们可以用一个二元组(u, v)表示从城市u到城市v的一条路径。
因此,在求解最短路径问题时,我们需要进行状态定义。
通常情况下,状态定义成一个包含一个或多个变量的元组,这些变量描述了在路径中的某个位置、某种状态和其他有关的信息。
在这个问题中,状态定义为S(i,j),它表示从城市A到城市j的一条路径,该路径经过了城市集合{1, 2, …, i}。
3.状态转移方程状态转移方程描述了相邻状态之间的关系,即从一个状态到另一个状态的计算方法。
在求解最短路径问题时,状态转移方程可以定义为:d(i, j) = min{d(i-1, j), d(i, k) + w(k, j)}其中,d(i,j)表示从城市A到城市j经过城市集合{1, 2, …, i}的最短路径长度。
轴对称最短路径问题7种类型

轴对称最短路径问题7种类型
轴对称最短路径问题是一种经典的计算几何问题,其目标是在给定图形中找到从起点到终点的最短路径。
根据不同的条件和限制,轴对称最短路径问题可以分为以下七种类型:
1. 简单轴对称最短路径问题:给定一个轴对称图形,起点和终点分别位于对称轴的两侧,求最短路径。
2. 带有障碍物的轴对称最短路径问题:在轴对称图形中存在一些障碍物,起点和终点在障碍物两侧,求最短路径。
3. 多个起点和终点的轴对称最短路径问题:给定多个起点和终点,每个起点和终点都在对称轴的两侧,求所有起点到所有终点的最短路径。
4. 带有权值的轴对称最短路径问题:在轴对称图形中,不同的点或边具有不同的权值,求起点到终点的最短路径。
5. 动态规划解决轴对称最短路径问题:使用动态规划算法解决轴对称最短路径问题,将问题分解为子问题,逐步求解。
6. A*搜索算法解决轴对称最短路径问题:使用A*搜索算法,通过估价函数指导搜索方向,加速求解速度。
7. 双向搜索解决轴对称最短路径问题:从起点和终点同时进行搜索,通过比较两个方向的搜索结果得到最短路径。
以上七种类型是轴对称最短路径问题的常见分类,每种类型都有其特定的解决方法,需要根据具体问题的特点选择合适的方法进行求解。
动态规划在最短路径问题中的应用

动态规划在最短路径问题中的应用动态规划是一种解决复杂问题的方法,它将问题分解成更小的子问题,并通过保存子问题的解来避免重复计算,从而提高解决问题的效率。
最短路径问题是在图或者网络中找到从起点到终点的最短路径的问题,可以使用动态规划算法来解决。
本文将介绍动态规划在最短路径问题中的应用及其算法实现。
一、最短路径问题在最短路径问题中,我们需要在图或网络中找到从一个节点到另一个节点的最短路径。
最短路径可以通过边的权重来衡量,权重可以表示距离、时间、代价等。
最短路径问题有多种变体,其中最常见的是单源最短路径和全源最短路径。
单源最短路径问题是在给定一个起点的情况下,找到该起点到其他所有节点的最短路径。
最常用的算法是Dijkstra算法和Bellman-Ford算法。
二、动态规划原理动态规划通过保存子问题的解来避免重复计算,从而提高算法的效率。
它将问题分解成更小的子问题,并使用递推关系来计算子问题的解。
在最短路径问题中,我们可以使用动态规划来计算从起点到每个节点的最短路径。
首先,我们定义一个一维数组dist[]来保存从起点到每个节点的最短路径长度。
初始化时,dist[]的值为无穷大,表示路径长度未知。
然后,我们从起点开始逐步计算每个节点的最短路径长度。
具体的动态规划算法如下:1. 初始化dist[]为无穷大,起点的dist[]为0。
2. 对于每个节点v,按照拓扑顺序进行如下操作:2.1. 对于节点v的所有邻接节点u,如果dist[v] + weight(v, u) < dist[u],则更新dist[u]。
2.2. 拓扑顺序可以根据节点的拓扑顺序进行计算或者使用深度优先搜索(DFS)算法。
三、算法实现下面是使用动态规划算法解决最短路径问题的示例代码:```// 定义图的邻接矩阵和节点个数int graph[MAX][MAX];int numNodes;// 定义dist[]数组来保存最短路径长度int dist[MAX];// 定义拓扑排序和DFS算法需要的变量bool visited[MAX];stack<int> s;// 动态规划算法求解最短路径void shortestPath(int startNode) {// 初始化dist[]数组为无穷大for (int i = 0; i < numNodes; i++) {dist[i] = INT_MAX;}dist[startNode] = 0;// 拓扑排序或DFS计算每个节点的最短路径长度 for (int i = 0; i < numNodes; i++) {if (!visited[i]) {DFS(i);}}// 输出最短路径长度for (int i = 0; i < numNodes; i++) {cout << "Node " << i << ": " << dist[i] << endl; }}// 深度优先搜索void DFS(int node) {visited[node] = true;for (int i = 0; i < numNodes; i++) {if (graph[node][i] != 0 && !visited[i]) {DFS(i);}}s.push(node);}```以上示例代码演示了使用动态规划算法求解最短路径问题的基本原理和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用动态规划模型解决物流配送中的最短路径问题王嘉俊(盐城师范学院数学科学学院09(1)班)摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。
运费不但与运量有关,而且与运输行走的线路相关。
传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。
文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。
关键词:动态规划,数学模型,物流配送,最优路径1 引言物流配送是现代化物流系统的一个重要环节。
它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。
在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。
物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。
[1]经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。
我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。
遗憾的是,模糊偏好解本身就不完全是客观的。
文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。
为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。
动态规划是解决多阶段决策过程最优化问题的一种数学方法。
1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。
动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。
由于决策过程的时间参数有离散的和连续的情况,故决策过程分为离散决策过程和连续决策过程。
[2]这种技术采用自底向上的方式递推求值,将待求解的问题分解成若干个子问题,先求解子问题,并把子问题的解存储起来以便以后用来计算所需要求的解。
简言之,动态规划的基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优。
多阶段决策问题是根据问题本身的特点,将其求解的过程划分为若干个相互独立又相互联系的阶段,在每个阶段都需要做出决策,并且在每个阶段的确定后再转移到下一个阶段,在每一个阶段选取其最有决策,从而实现整个过程总体决策最优的目的。
[2,4]适合用动态规划方法求解的问题是一类特殊的多阶段决策问题,具有“无后效性”的多阶段决策问题,一般具有以下特点:(1)可以划分为若干个阶段,问题的求解过程就是对若干个阶段的一系列决策过程。
(2)每个阶段有若干个可能状态。
(3)一个决策将你从一个阶段的一种状态带到下一个阶段的某种状态。
(4)在任一个阶段,最佳的决策序列和该阶段以前的决策无关。
(5)各阶段状态之间的转换有明确定义的费用,而且在选择最佳决策时有递推关系(即动态转移方程)。
[3]2 动态规划模型在现实生活的生产运输中,往往出发地与目的地之间有多种路线可供选择,不同的路线所花费的时间与费用也不同,时间与费用决定着企业的发展,这就需要选择最短的路径来提高效率。
为了解决这个问题,将动态规划的理论与方法运用于生产运输中,节约了时间,为:企业的发展提供了契机。
建立这个规划模型的具体步骤如下:○1划分阶段:把所给问题的过程,恰当的划分为若干个相互联系的部分,以便于求解,其中每个部分叫阶段。
通常用k表示阶段变量○2确定状态变量及其取值范围:状态表示在任一阶段所处的,它既是该阶段的起点,又是前一阶段的终点。
通常一个阶段有若干个阶段。
描述状态的变量称为状态变量。
参数s表示第k阶段的状态变量。
该阶段所有可能状态的全体称为ks。
状态变量要能描述决策过程演变的状态,又要满足无后效状态集合,记为k性的要求,而且维数要尽可能地少。
○3确定决策变量及其取值范围:在某一阶段,当状态给定后,往往可以作出不同的决定,从而确定下一阶段的状态,这种决定称为决策。
描述决策的变量称为决策变量,用()k k u s 表示第k 阶段当状态为k s 时的决策变量,它是状态变量k s 的函数。
决策变量的取值范围称为决策集合,通常用()k k D s 表示第k 阶段状态为k s 时的允许决策集合。
显然有()()k k k k u D s s ∈。
○4建立状态转移方程:状态转移方程描述由一个状态到另一个状态的演变过程。
因为某一阶段的状态变量及决策变量取定后,下一阶段的状态就随之而定。
用()1,k k kT s u s +=表示k 阶段与k+1阶段状态的变换规律○5指标函数和最优指标函数值:阶段指标(又称阶段效益)是衡量该阶段决策效果的数量指标,它是整个系统效益的一部分,是阶段状态和阶段决策的函数。
用(),k k k d s u 表示在第k 阶段由状态k s 和执行决策()k k u s 所得的效益。
指标函数(又称目标函数)是衡量所实现过程优劣的一种数量指标,它表示系统执行某一策略所产生的效益,它是定义在过程(可以是全过程,也可以是后部子过程)上的数量函数,用,k n f 表示:(),,111,,,,,,1,2,k n k n k k k k n f f s u s u s k n +++==当初始状态给定时,过程的策略就确定了,因而指标函数也就确定,故指标函数是初始状态和策略的函数,即:[],,,(),k n k nk k k f f s P s =指标函数,k n f 的最优值,称为最优指标函数值,记为()k kf s ,它表示从第k 阶段由状态k s 出发到过程结束时所获得的最优指标函数值。
在最短路线问题中,,k nf 表示从第k 阶段的点k s 至终点G 的距离,()k kf s 表示由点k s 到G 的最短距离,用(),k k kd s u 表示在第k 阶段由点k s 到点()1k k ku s s +=的距离。
最后得到动态规划的一般模型为:()())()()({}()111,,0,,1,1,k k k k kk k k k k k u D s k k f s opt d s u f u s f s k n n +∈++⎧=+⎪⎨⎪==-⎩()k kf s 为从状态k s 出发到终点的最优效益,“opt ”是optimization (最优化)的缩写[]23 实例分析为进一步说明该方法的有效性和实用性,先将该方法运用于某物流配送网络中:设某物流配送网络图由9个配送点组成,点0A 为配送中心,9A 为终点,试求自9A 到图中任何配送点的最短距离。
图中相邻两点的连线上标有两点间的距离[]1首先根据网络图以及上面的建模方法我们可以将运输过程划分成三个阶段,分别为:第一阶段0A ,第二阶段1357,,,A A A A ,第三阶段2468,,,A A A A ,显然两点之间直线路径小于折线路径 阶段变量用k 表示;状态变量k A 表示k 阶段初可能的位置; 决策)(kkf A 表示k 阶段初可能选择的路线;由后向前逐步推移计算最优路径:当k=3时,由2468,,,A A A A 到9A 只有一条路线,故()32f A =16,()34f A =8,()38f A =4,()36f A =14当k=2时,出发点有1357,,,A A A A 三个,若从1A 出发,只有一个选择,至2A ,所以()21f A =27从3A 出发,有两个选择,至24,A A ,所以())()()()(232322323434,516min min 18108,d A A f A f A d A A f A ⎧⎫++⎫⎧⎪⎪⎪===⎨⎬⎨⎬++⎪⎩⎭⎪⎪⎭⎩从5A 出发,有两个选择,至46,A A ,所以())()()()(254342525636,168m in m in 19154,d A A f A f A d A A f A ⎧⎫++⎫⎧⎪⎪⎪===⎨⎬⎨⎬++⎪⎩⎭⎪⎪⎭⎩从7A 出发,有两个选择,至68,A A ,所以())()()()(276362727838,114min min 151214,d A A f A f A d A A f A ⎧⎫++⎫⎧⎪⎪⎪===⎨⎬⎨⎬++⎪⎩⎭⎪⎪⎭⎩最短路线是769A A A →→当k=1时,出发点有0A 一个,若从0A 出发,至1A ,所以()10f A =31 若从0A 出发,至3A ,所以()10f A =25 若从0A 出发,至5A ,所以()10f A =27 若从0A 出发,至7A ,所以()10f A =24由上面计算得到最优路径()10f A =24,最优路径为0769A A A A →→→由本实例我们可以总结出动态规划的优越性所在: (1)求解过程,结果清晰明了; (2)能得到一组解,有利于分析结果; (3)易于确定全局最优解;4 结论用动态规划解决多阶段决策问题可以提高效率,而且思路清晰简便,同时易于实现,虽然使用动态规划方法也有一定的限制,如状态变量必须满足无后效性,不考虑路况,天气等不确定因素对行程的影响,并且只适用一些维数相对较低的问题等。
但是可以看到,动态规划的应用是很广的,已成功解决了许多实际问题,具有一定的实用性。
本文将动态规划思想运用到求解物流配送中的最短路径问题中,其优点在于思路清晰,方法简便,理论可靠,在实际运用中取得了良好的效果。
但是本文只考虑了一个起点的应用实例,在实际中有可能存在多个起点的情况,因此我们可以考虑将其进行改进,使之更好的运用在实际中,为企业的发展提供更多的帮助。
Using the dynamic programming model isused to solve the shortest path problemlogistics distributionWangjiajunAbstract: with the rapid development of modern society, the logistics distribution became connected each production base hub, transportation cost problem has become the key to the development of the enterprise.Freight volume, and not only from about transportation and walking routes related. Traditional transport problems did not consider the traffic network, under the condition of the known freight rate only find out optimal scheduling solutions, not asked the optimal walk path.This paper put forward "Internet logistics distribution problem", volume in unknown rate, the case, will determine the transportation process is divided into several stages, in each phase of the selection of the optimum strategy, finally found the whole process of the overall optimum target, save enterprise spending.Keywords: dynamic planning, mathematical model, the logistics distribution, optimal path[参考文献][1]蒋琦玮,陈治亚物流配送最短径路的动态规划方法研究[J].系统工程,2007,25(4):27-29[2]戴朝寿,孙世良数学建模简明教程[M].高等教育出版社,2007.7[3]孙晓燕,李自良,彭雄凤,傅亚力,梁志强利用动态规划法求解运输问题的最短路径.机械设计与制造,2010,2[4]陈理荣数学建模导论,1999[5 ]韩世莲,李旭宏,刘新旺.物流运输网络模糊最短路径的偏好解[J ].交通运输学报,2005,5(2):122~126.[6 ]周程,物流配送路径优化策略研究[J ].武汉理工大学学报,2005,29(5):797~800.。