第一章 时间序列分析简介
时间序列分析

时间序列分析时间序列分析是一种重要的统计方法,用于研究随时间变化的数据序列。
它可以帮助我们了解数据的趋势、季节性和周期性,预测未来的发展趋势,以及识别可能存在的异常情况。
本文将介绍时间序列分析的基本概念和步骤,并探讨其在实际应用中的重要性。
时间序列分析的目标是通过对历史数据的分析,找出其中的模式和规律,并将其应用于未来的预测。
在进行时间序列分析之前,首先需要对数据进行收集和整理。
收集的数据应该是按照时间顺序排列的,这样才能准确反映出数据的变化趋势。
整理数据的过程包括去除异常值、缺失值和季节性因素等。
时间序列分析的第一步是绘制数据的图表,以便直观地观察数据的变化趋势。
常用的图表类型包括折线图和柱状图。
接下来,需要对数据进行平稳性检验。
平稳性是指数据的均值和方差在整个时间范围内保持不变。
如果数据不平稳,需要对其进行差分处理,以消除趋势和季节性。
平稳性处理完成后,下一步是确定模型。
根据数据的特点和模式,选择合适的时间序列模型。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归移动平均滑动平均模型(ARIMA)和季节性自回归移动平均模型(SARIMA)等。
选择模型时,需要考虑模型的复杂度和适应数据的能力。
确定模型后,需要对模型进行参数估计和模型检验。
参数估计是根据历史数据来估计模型中的参数值,以使模型能够最好地拟合数据。
模型检验是通过对残差进行检验,检查模型是否能够很好地解释和预测数据。
常用的模型检验方法包括图形检验和统计检验。
最后,使用已经确定并验证的模型进行预测。
根据历史数据和模型的参数,可以预测未来一段时间内的数据情况。
在预测时,需要注意预测结果的置信区间和可靠性,并及时调整模型和预测方法。
时间序列分析在实际应用中具有广泛的应用价值。
它可以帮助政府和企业进行长期规划和决策,预测经济、销售和市场的发展趋势,优化资源配置和生产计划。
同时,时间序列分析也对个人金融投资有着重要的指导作用,可以帮助投资者了解市场动态和行业走势,制定合理的投资策略。
第一讲 时间序列分析

一、时间序列的含义
例1、国际航线旅客客票数.图1给出某国 际航空公司1949—1960年间客票月总数 (单位:千张)的时间序列曲线.直观上看, 每年有一次大的峰值和一次小的降值.并 且逐年不断增加。
一、时间序列的含义
例2,图2是我国铁路客流员的统计曲线,记录 了1971—1981年客票月总数.从铁路客流量的 时间序列曲线上可见,每年都有一次较大的峰 值,大约是在1、2月份,也就是每年的春节前 后有一次最大的峰值.
例如,对河流水位的测量。其中每一时 刻的水位值都是一个随机变量。如果以 一年的水位纪录作为实验结果,便得到 一个水位关于时间的函数xt。这个水位函 数是预先不可确知的。只有通过测量才 能得到。而在每年中同一时刻的水位纪 录是不相同的。
随机过程:由随机变量组成的一个有序序列称 为随机过程,记为{x (s, t) , sS , tT }。其中S 表示样本空间,T表示序数集。对于每一个 t, tT, x (·, t ) 是样本空间S中的一个随机变量。 对于每一个 s, sS , x (s, ·) 是随机过程在序数集 T中的一次实现。
80 60 40
20
Trend-cy cle for SA LE
S from SEA SO N, MO D_1
0
Seas factors fo r SA L
-20
JAN 1S9E9P01M9A90YJ1A9N911S9E9P21M9A92YJ1A9N931S9E9P41M9A9Y4J1A9N951S9E9P61M9A96YJ1A9N971S9E9P81M9A98YJ1A9N992S0E0P02M0A00YJ2A0N012S0E0P220E0S2 from SEA S ON, MOD_
下面的图2表示了去掉季节成分,只有 趋势和误差成分的序列的一条曲线。 图3用两条曲线分别描绘了纯趋势成分 和纯季节成分。图4用两条曲线分别描 绘了纯趋势成分和纯误差成分。这些 图直观地描述了对于带有几种成分的 时间序列的分解。
(整理)时间序列分析讲义__第01章_差分方程.

第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
时间序列分析基础知识

时间序列分析基础知识什么是时间序列分析时间序列是按照时间顺序排列的数据点序列,它在各个领域都有着广泛的应用,如经济学、气象学、金融学等。
时间序列分析就是利用统计技术对时间序列数据进行建模、预测和分析的过程。
通过时间序列分析,我们可以揭示数据中的潜在规律、趋势、周期性等重要信息。
时间序列数据的特点时间序列数据与横截面数据或面板数据有着明显的区别。
时间序列数据的主要特点包括趋势性、季节性、周期性和随机性。
趋势性:时间序列数据通常会呈现出长期的上升或下降趋势,反映了数据的总体变化方向。
季节性:某些时间序列数据会受到季节变化的影响,呈现出周期性的规律性变化。
周期性:除了季节性外,时间序列数据还可能存在其他周期性的变化,如经济周期等。
随机性:时间序列数据中随机噪声的存在使得数据并不完全规律可循,需要通过合适的模型来捕捉规律。
时间序列分析的基本步骤进行时间序列分析通常需要经历以下几个基本步骤:数据收集:首先需要采集相应领域的时间序列数据,保证数据的完整性和准确性。
数据预处理:对采集到的原始数据进行清洗、处理,包括去除异常值、填补缺失值等操作。
模型识别:根据时间序列数据的特点,选择合适的模型类型,如平稳模型、非平稳模型等。
参数估计:利用已选定的模型对数据进行参数估计,找出最符合实际情况的参数值。
模型检验:通过对模型残差和预测结果进行检验来验证模型是否合适,是否能够较好地拟合原始数据。
模型预测:基于已建立和验证的模型,对未来一段时间内的数据进行预测。
常用的时间序列分析方法统计方法统计方法是最早被应用于时间序列分析中的方法之一。
通过统计学原理对时间序列数据进行描述、估计和推断,常用的方法包括移动平均法、指数平滑法、自回归积分滑动平均模型(ARIMA)等。
机器学习方法随着人工智能和机器学习技术的发展,机器学习方法在时间序列分析中也得到了广泛应用。
包括支持向量机(SVM)、神经网络(NN)、随机森林(Random Forest)等算法被应用于时间序列预测与建模中。
第一章 时间序列分析简介知识讲解

1.3 时间序列分析方法
描述性时序分析 统计时序分析
频域分析方法 时域分析方法
5
描述性时序分析案例
德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
6
统计时序分析--频域分析方法
原理
假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动
发展过程
早期借助富里埃分析从频率角度揭示时间序列的规律 后来借助傅里叶变换,用正弦、余弦项之和来逼近某个函数 20世纪60年代,引入最大熵谱估计理论,克服了传统谱分析
多变量场合 C.Granger ,1987年,提出了协整(co-integration)理论,并因此 与Engle一起获得2003年的诺贝尔经济学奖。
非线性场合 汤家豪等,1980年,门限自回归模型
11
1.4 时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP,R语言,EViews 和SAS
《应用时间序列分析》
参考书目
应用计量经济学:时间序列分析[Applied Econometric Time Series],沃尔特·恩 德斯[Walter Enders],高等教育出版社 (译本)。
时间序列分析[Time Series Analysis],汉 密尔顿[James D. Hamilton],中国社会 科学出版社(译本) 。
8
基础阶段
G.U.Yule
1927年,AR模型
G.T.Walker
1931年,MA模型,ARMA模型
9
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》
时间序列分析法概述

时间序列分析法概述时间序列分析是指对时间序列数据进行统计建模和预测的一种方法。
时间序列数据是指按照一定时间顺序排列的数据,通常是在相等时间间隔下连续观测到的数据。
时间序列分析的目的是从数据中发现特定模式或趋势,并利用这些模式和趋势进行预测。
它通常用于经济学、金融学、气象学等领域,例如股票价格预测、销售量预测、天气预测等等。
时间序列分析方法主要包括以下几个步骤:1. 数据处理:首先需要对时间序列数据进行预处理,包括去除趋势、季节性和不稳定性等因素,以使数据满足稳定性和平稳性的假设。
这通常可以通过差分、平滑和变换等方式来实现。
2. 模型选择:根据时间序列数据的特性,选择合适的模型来进行建模和预测。
常用的模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
模型的选择通常需要借助统计指标和图形分析的方法来确定。
3. 参数估计:在选择好模型之后,需要对模型的参数进行估计。
参数估计可以通过最大似然估计、最小二乘估计或贝叶斯估计等方法来实现。
估计得到的参数可以用于模型的建立和预测。
4. 模型诊断:对模型进行诊断,检查模型是否符合数据的统计特性和假设。
常用的诊断方法包括自相关函数(ACF)和偏自相关函数(PACF)的分析,以及白噪声检验等。
如果模型存在问题,则需要对模型进行修正或调整。
5. 模型预测:根据已经估计好的模型和参数,对未来的数据进行预测。
预测可以基于滚动窗口逐步预测,也可以直接进行多步预测。
常用的预测方法包括常规预测、指数平滑预测和季节性预测等。
总的来说,时间序列分析是一种基于时间序列数据的统计建模和预测方法。
通过对时间序列数据进行处理、模型选择、参数估计、模型诊断和模型预测等步骤,可以得到对未来数据的预测结果,并用于决策和规划。
然而,需要注意的是,时间序列分析方法需要满足一定的数据假设和模型假设,以及对模型的合理性和可靠性进行评估。
第一章时间序列分析概论1(中山大学)
• 遍历性的理论意义:一个遍历的宽平稳过程,可用 任意一个样本函数的时间平均代替平稳过程的统计 平均。
纯随机过程
定义: 如果随机过程X(t)是由一个不相关的随机变量序列 构成,即对于所有s≠t,随机变量Xs和Xt的协方差均 为零,即随机变量Xs和Xt互不相关,则称其为纯随 机过程。
纯随机性:
设随机过程{X(t),t∈T}对任意的t1,…,tn∈T和任意的h有 (X(t1 +h),X(t2 +h), …,X(tn +h) )和(X(t1),X(t2),…,X(tn))具有相同 的联合分布,记为 (X(t1 +h),X(t2 +h), …,X(tn +h) )=(X(t1),X(t2),…,X(tn)) 则称过程{X(t),t∈T}是严平稳的。
– R 、S-plus、Matlab、Gauss、TSP、Eviews和SAS
SAS (Statistical Analysis System)软件介绍
• 由美国北卡来罗纳州立大学(North Carolina State University)的两位教授(A. J. Barr and J. H. Goodnight) 共同开发。 • 专门用于数学建模和统计分析的软件系统。在数据处 理和统计分析领域,SAS系统被誉为国际上的标准软 件系统 。 • 人机对话界面不太友好,并且在编程操作时需要用户 最好对所使用的统计方法有较清楚的了解,非统计专 业人员掌握起来较为困难。
k =- k
0 m 1 m 1
非负定性:
1 0
m1 m2
0
m2
非唯一性 :一个平稳序列唯一决定了它的自相关函数, 但一个自相关函数未必唯一对应着一个平稳序列。
时间序列分析-第一章 时间序列PPT课件
本章目录
时间序列的分解 平稳序列 线性平稳序列和线性滤波 正态时间序列和随机变量的收敛性 严平稳序列及其遍历性 Hilbert空间中的平稳序列 平稳序列的谱函数 离散谱序列及其周期性
1
ppt精选版
§1.1 时间序列的分解
一.时间序列的定义: 时间序列:按时间次序排列的随机变量序列。
E ( X 2 ) a 2 2 E ( X Y ) E Y 2 E [ ( a X Y ) ] 0 于是,判别式 4 (E (X 2))2 4 E X 2E Y 20
取Yt Xt 时,有界性有Schwarz不等式得到:
kE (Y K 1 Y 1)E Y k 2 1 E Y 1 20
2.估计趋势项后,所得数据 {Xt Tˆt}
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
5
ppt精选版
减去趋势项后,所得数据{Xt Tˆt}
6
ppt精选版
2、季节项 { Sˆt }
7
ppt精选版
3.随机项的估计 R ˆtxt T ˆtS ˆt,t 1 ,2 , ,2.4
列。
22
ppt精选版
§1.2 平稳序列
一· 平稳序列
定义 如果时间序列{Xt}{Xt:t N }满足
(1) 对任何的 tN,EXt2
(2) 对任何的tN,EXt
(3) 对任何的 t ,s N ,E [ ( X t ) ( X s ) ] t s 就称是 X t 平稳时间序列,简称时间序列。称实数{ t } 为 X t 的自协方
(a,b,c)T(YY T)1YX
时间序列分析(第一章、第二章)
方法三: 二次曲线法
xt a bt ct 2 t ,
(a, b, c)T (YY T )1YX
t 1,2, ,24
xt 5948 .5 17.0t 1.6t 2
1. 二次项估计(趋势项)
数据和二次趋势项估计
2. 季节项、随机项
例二、美国罢工数(51-80年) (滑动平均法)
6500
杭州近三年房价走势
房地产业、房价
关乎国计民生的支柱产业 影响着城镇居民的住房消费 影响着水泥,钢铁,建材,冶金等相关
行业的发展 影响着地方政府财政收入 …………………………….
股市是经济的晴雨表 从股市本身看,我国股市的确有自己的
特点 股票是一种高风险的资本投资
………………………………
《应用时间序列分析》
何书元 编著 北京大学出版社
概率统计学科中应用性较强的一个分支 广泛的应用领域:
金融经济 气象水文 信号处理 机械振动 …………
Wolfer记录的300年的太阳黑子数
太阳黑子对地球的影响
会出现磁暴现象 会引起地球上气候的变化 会影响地球上的地震 会影响树木生长 会影响到我们的身体 ………………………
),
m
(4.10)
其中 . m ( jk )mm , i 2
a a
j j ji
定理4.4成立.
注:当 {a j} l2 时结论仍成立.
§1.5 严平稳序列及其遍历性
严平稳与宽平稳关系
遍历性
宽平稳遍历性例子
严平稳遍历定理
例 5.1
线性平稳列的遍历定理
(1)正态白噪声 (2)Poisson白噪声 (3)独立同分布的白噪声
参考书: 1. 时间序列的理论与方法 田铮 译
时间序列分析
时间序列分析时间序列分析是一种用来研究时间相关数据的统计方法。
它可以帮助我们了解时间序列的趋势、周期性和季节性,以及预测未来的发展趋势。
在此,我将介绍时间序列分析的基本原理、常用模型和实际应用。
时间序列分析的基本原理可以总结为以下几个步骤:收集时间序列数据、检验序列的平稳性、拟合适当的模型、进行模型诊断、进行预测和模型评估。
首先,收集时间序列数据是进行时间序列分析的前提。
时间序列数据是按照时间顺序排列的一组观测值,例如经济指标、股票价格或气温记录等。
接下来,我们需要检验时间序列的平稳性。
平稳性是指时间序列在统计特征上不随时间变化而变化的性质。
平稳时间序列的均值和方差是恒定的,并且自相关系数不随时间而变化。
然后,我们可以选择适当的时间序列模型来拟合数据。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。
在拟合模型之后,我们需要进行模型诊断来检验模型的拟合优度。
模型诊断的目标是检查模型的残差是否符合模型假设。
常用的诊断方法包括检查残差的自相关性、偏自相关性和正态性等。
最后,我们可以利用拟合好的模型进行预测。
预测是时间序列分析中最常用的应用之一,可以帮助我们预测未来的发展趋势。
常用的预测方法包括滚动预测和动态预测等。
时间序列分析具有广泛的应用领域。
在经济学中,时间序列分析被广泛应用于金融市场的预测、货币政策的研究以及宏观经济的分析等。
在气象学中,时间序列分析可以帮助我们预测天气的变化和气候的长期趋势。
在医学领域,时间序列分析可以用来研究疾病的发展趋势和预测疾病的传播范围。
总之,时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据的特征,预测未来的发展趋势,并从中获得有用的信息。
在实际应用中,研究人员需要根据具体问题选择合适的模型和方法,并进行模型诊断和评估。
通过深入研究时间序列分析,我们将能够更好地理解时间序列的本质,为实际问题提供更准确的预测和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 引言
最早的时间序列分析可以追溯到7000年前的古埃及。
古埃及人把尼罗河涨落的情况逐天记录下来,通过长期的观 察使他们发现尼罗河的涨落非常有规律,并依据尼罗河的涨 落创造了闻名世界的“太阳历”。
天狼星现身、大河开始泛滥的那一天就是新年的第一 天,至次年天狼星出现在同一位置为一年,恰好是 365天。一年分为三个季节,分别是泛滥季、播种季、 收割季,每一季又分为4个月,每月30天,年终另加5 天作为祭祀神灵的节日。由于掌握了尼罗河泛滥的规 律,使得古埃及的农业迅速发展,从而创建了埃及灿 烂的史前文明。
提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变量、同
方差场合的线性模型
完善阶段
异方差场合 Robert F.Engle,1982年,ARCH模型 Bollerslov,1985年GARCH模型
多变量场合 C.Granger ,1987年,提出了协整(co-integration) 理论
统计时序分析
频域分析方法 时域分析方法
频域分析方法
原理
假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动
发展过程
早期的频域分析方法借助富里埃分析从频率的角度揭示时间 序列的规律
后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数
20世纪60年代,Burg 引入最大熵谱估计理论,进入现代谱 分析阶段
人机对话界面不太友好,并且在编程操作时需要用户 最好对所使用的统计方法有较清楚的了解,非统计专
业人员掌握起来较为困难。
EViews 软件介绍
美国GMS公司1981年发行第1版的Micro TSP 的Windows版本,通常称为计量经济学软件包。
与SAS相比,Eviews操作灵活简便,可采用多 种操作方式进行各种计量分析和统计分析,数 据管理简单方便。Eviews的界面比较友好,使 用简便。
第一章
时间序列分析概论
本章结构
引言 时间序列的定义 时间序列分析方法简介 时间序列分析软件
1.1 引言
四大文明古国: 中国、印度、
巴比伦、埃及
尼罗河
很久以来,尼罗河河谷一直是棉田连绵、稻花飘香。在撒哈 拉沙漠和阿拉伯沙漠的左右夹持中,蜿蜒的尼罗河犹如一条 绿色的走廓,充满着无限的生机。
1.2 时间序列的定义
随机序列:按时间顺序排列的一组随机变量
, X1, X 2 ,, X t , 观察值序列:随机序列的 n 个有序观察值,称之为序
列长度为 n 的观察值序列
x1, x2, , xn
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
1.1 引言
GDP即国内生产总值,它是对一国(地区)经济 在核算期内所有常住单位生产的最终产品总量的 度量,常常被看成反映一个国家(地区)经济状 况的重要指标。本例给出我国1978年—2007年 GDP数据(单位:亿元)的时间序列图。
1.1 引言
2005年7月21日中国启动人民币汇率改革以来, 不断完善汇率形成机制,人民币对美元汇率总体 呈现小幅上扬态势。本例给出了1997年1月— 2008年9月美元对人民币汇率的月度数据(单位: 元)时序图。
基础阶段 核心阶段 完善阶段
基础阶段
G.U.Yule(尤尔)
1927年,AR模型
G.T.Walker (沃克)
1931年,MA模型,ARMA模型
核心阶段
G.E.P.Box和 G.M.Jenkins (博克斯—詹金斯 )
1970年,出版《Time Series Analysis Forecasting and Control》
SAS(Statistical Analysis System)软 件 介绍
由美国北卡来罗纳州立大学(North Carolina State University)的两位教授(A. J. Barr and J. H. Goodnight)共同开发。
专门用于数学建模和统计分析的软件系统。在数据处 理和统计分析领域,SAS系统被誉为国际上的标准软 件系统 。在SAS系统中有一个专门进行计量经济与时 间序列分析的模块:SAS/ETS。SAS/ETS编程语言 简洁,输出功能强大,分析结果精确,是进行时间序 列分析与预测的理想的软件。
2、何书元 2003年 应用时间序列分 析,北京大学出版社
3、James D.Hamilton 1994 《Time Series Analysis》
4、Paul S.P. Cowpertwait和 Andrew V.Metcalfe 2009 《Introductory Time Series with R》
特点
非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性
时域分析方法
原理
事件的发展通常都具有一定的惯性,这种惯性用统计的语言 来描述就是序列值之间存在着一定的相关关系,这种相关关 系通常具有某种统计规律。
目的
寻找出序列值之间相关关系的统计规律,并拟合出适当的数 学模型来描述这种规律,进而利用这个拟合模型预测序列未 来的走势
欢迎同学来选修时间序列分析!
教师:刘欣 电邮:liuxin@ 办公室:理学院 450
平时成绩与考试:
平时成绩=考勤+作业 关于点名: 请假: 考试:
使用教材:
王燕, 应用时间序列分析(21世纪统计学系 列教材) ,中国人民大学出版社, 2008年第二版
参考教材:
1、G.E.P.Box和 G.M.Jenkins 1970年, 出版《Time Series Analysis Forecasting and Control》
1.1 引言
喝完酒之后回想起自己的遭遇你心中涌出一丝 燥动,于是你走上街头:
1.1 引言
本例描述了1951年—1980年,美国每年发生的罢 工次数序列,该图显示了这些数据一种不规律的 上下波动。
1.1 引言
本例描述1958年1月—1990年12月澳大利亚的电 力Байду номын сангаас啤酒和巧克力的供应量数据序列(多元时间 序列):
特点
理论基础扎实,操作步骤规范,分析结果易于解释,是时间 序列分析的主流方法
时域分析方法的分析步骤
请按套路 出牌
考察观察值序列的特征 根据序列的特征选择适当的拟合模型 根据序列的观察数据确定模型的口径 检验模型,优化模型 利用拟合好的模型来推断序列其它的统计性
质或预测序列将来的发展
时域分析方法的发展过程
1.1 引言
按照时间的顺序把随机事件变化发展的过程记 录下来就构成了一个时间序列。对时间序列进 行观察、研究,找寻它变化发展的规律,预测 它将来的走势就是时间序列分析。
1.1 引言
1820年—1869年的太阳黑子数依时间画在下 图中。该图中,横轴是时间指标t(在这里的t 以年为单位),纵轴表示在时间t内太阳黑子 个数的观测值,这种图称为时间序列图。
1.1 引言
也许你有像他同样的梦想
1.1 引言
于是你
1.1 引言
本例给出了1990年12月19日—2008年11月6日上 证A股指数日数据(除去节假日,共4386个数据) 时序图。
1.1 引言
经历08年之后你成了纯技术派高手
1.1 引言
从此你终日与酒相伴
1.1 引言
本例给出1980年1月—1991年10月澳大利亚红酒 的月度销量(单位:公升)时序图。
非线性场合 汤家豪等,1980年,门限自回归模型
瑞典皇家科学院8日宣布,将2003年诺贝尔经济学奖 授予美国经济学家罗伯特·恩格尔(Engle)和英国经济 学家克莱夫·格兰杰(Granger),以表彰他们在经济学 时间数列分析方面所作出的贡献。
1.4 时间序列分析软件
常用软件S-plus、Matlab、Gauss、TSP、 Eviews、SAS和R软件。
1.1 引言
居民消费价格指数(Consumer Price Index), 英文缩写CPI,是反映与居民生活有关的产品及 劳务价格统计出来的物价变动指标,通常作为观 察通货膨胀水平的重要指标。本例给出了我国 1985年—2007年的CPI年度数据时间序列图 。
1.1 引言
GDP即国内生产总值,它是对一国(地区)经济 在核算期内所有常住单位生产的最终产品总量的 度量,常常被看成反映一个国家(地区)经济状 况的重要指标。本例给出我国1978年—2007年 GDP数据(单位:亿元)的时间序列图。
1.3 时间序列分析方法
描述性时序分析 统计时序分析
描述性时序分析
通过直观的数据比较或绘图观测,寻找序列中 蕴含的发展规律,这种分析方法就称为描述性 时序分析
描述性时序分析方法具有操作简单、直观有效 的特点,它通常是人们进行统计时序分析的第 一步。
描述性时序分析案例
德国业余天文学家施瓦尔发现太阳黑子的活动具 有11年左右的周期