平面直角坐标系中的面积计算(专题)
平面直角坐标系中的面积计算专题

平面直角坐标系中的面积计算知识点一:已知点的坐标求图形面积类型一:平面直角坐标系中三角形的面积①三角形有一边在坐标轴上例1:平面直角坐标系中,A(4,-4), B(1,0),C(6,0). 求△ABC 的面积. x yO A (4,-4)B (1,0)C (6,0)例2:平面直角坐标系中,A(0,3), B(0,-3),C(2,1). 求△ABC 的面积. x y123–1–2123–1–2–3OCB A②三角形有一边平行于坐标轴例3:平面直角坐标系中,A(-2,3), B(-2,-3),C(2,1). 求△ABC 的面积.xy –1–2–3123–1–2–3123OA (-2,3)B (-2,-3)C (2,1)③三角形没有一边平行于坐标轴变式1.保持A 、C 不动,改变点B 的位置:B (0,-3), 求△ABC 的面积. x y –1–2–3–4123–1–2–31234OA (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B x y –1–2–3–4123–1–2–31234O A (-2,3)C (2,1)B练习:如图中,A 、B 两点的坐标分别为(2,3)、(4,1),求△ABO 的面积.类型二:平面直角坐标系中不规则多边形的面积例4:平面直角坐标系中,A(-3,-2),B(3,-2),C(1,3),D(-2,1),求四边形ABCD 的面积. xyO A (-3,-2)B (3,-2)C (1,3)D (-2,1)练习:如图,已知四边形ABCD 四个顶点的坐标分别是A (-5,2),B (1,5),C (5,-2),D (-4,-5).求四边形ABCD 的面积.知识点二:已知图形面积求点的坐标例5:(1)▲ABC 的两个顶点分别为A (2,3),B (-2,0),且▲ABC 的面积为9,若点C 在x 轴上,求点C 的坐标.(2)已知A (1,0),B (0,3),点P 在x 轴上,且▲PAB 的面积为6,求点P 的坐标.(3)已知O (0,0),B (3,2),点A 在坐标轴上,且6=∆OAB S ,求A 点的坐标.练习1.如图A (﹣4,0),B (6,0),C (2,4),D (﹣3,2).(1)求四边形ABCD 的面积;(2)在y 轴上找一点P ,使△APB 的面积等于四边形的一半.求P 点坐标.练习2.如图,已知A (﹣2,0),B (4,0),C (2,4),D (0,2)(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若S △APC =S △ABC ,求P 点的坐标.练习3.如图,已知三点A (0,1),B (2,0),C (4,3)(1)求三角形ABC 的面积;(2)设点P 在坐标轴上,且三角形ABP 与三角形ABC 的面积相等,求点P 的坐标.。
专题在平面直角坐标系中求图形的面积(四大题型)(原卷版)

1.上面题主要考查坐标与图形性质,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.
2.由于点的位置不明确,因此在解题时要注意分情况讨论.
【变式41】已知点A(1,0),B(0,2),点P在x轴的负半轴上,且△PAB的面积为5,则点P的坐标为( )
A.(0,﹣4)B.(0,﹣8)C.(﹣4,0)D.(6,0)
(2)直接写出A1,B1,C1三点的坐标;
(3)求△ABC的面积.
【例题3】(2022春•长安区校级月考)如图所示,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为( )
A.9B.10C.11D.12
解题技巧提炼
1、当四边形的其中有一边在坐标轴上(或与坐标轴平行)时,可以用分割法;
【变式45】(2022秋•渭滨区期末)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).
(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;
(2)若点D与点C关于y轴对称,则点D的坐标为;
(3)已知P为x轴上一点,若△ABP的面积为1,求点P的坐标.
【变式46】(2022•天津模拟)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.
【变式24】(2022春•雷州市期末)如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标;
(2)求出S△ABC.
【变式25】在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).
(1)请在如图所示的网格平面内画出平面直角坐标系;
平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
平面直角坐标系中如何求几何图形的面积

图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你能求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( )A 、1B 、2C 、3D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( )A 、(0,-2)B 、(2,0)C 、(4,0)D 、(0,-4)三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
平面直角坐标系中三角形面积的求法(例题及对应练习)

.;.例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
《平面直角坐标系》之知坐标,求面积习题(学生版)

重点强化专题:知坐标,求面积重点强化1有一边在坐标轴上(或平行于坐标轴)的三角形的面积1.已知:在图中,已知点A、B、C的坐标,分别求三角形ABC的面积.(1)A(﹣1,0),B(3,0),C(4,﹣3);(2)A(2,0),B(0,1),C(0,4).重点强化2三条边均不在坐标轴上(且不平行于坐标轴)的三角形的面积2.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高.方法2:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标A(﹣1,4),B(2,2),C(4,﹣1),请你选择一种方法计算△ABC的面积,你的答案是S=.3.△ABC中,A(﹣1,4),B(﹣4,﹣1),C(1,1),求△ABC的面积.4.已知点A(1,4)、B(3,﹣1),C(﹣4,﹣2),求以A、B、C三点为顶点的三角形的面积.5.如图,在直角坐标系中,描出四个点A(﹣3,﹣2),B(2,﹣2),C(﹣2,1),D(3,1),连接AB,DC,CA.(1)观察图形,线段AB和线段CD有什么数量关系和位置关系?(2)在线段AB上任意取一点P,则线段CP的最小值是多少?(3)求四边形ABCD的面积.6.如图,请在平面直角坐标系中描出下列各点:A(1,3),B(3,1),C(﹣3,1),D(﹣1,﹣1).(1)连接AB,CD,两线段有怎样的位置关系?(2)线段CD可由线段AB经过怎样的变化得到?(3)连接AC,BD,求四边形ABDC的面积.7.在图中A(2,﹣4)、B(4,﹣3)、C(5,0),求四边形ABCO的面积.8.已知:四边形ABCD各顶点坐标为A(﹣4,﹣2),B(4,﹣2),C(3,1),D(0,3).(1)在平面直角坐标系中画出四边形ABCD;(2)求四边形ABCD的面积.(3)如果把原来的四边形ABCD各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少?9.如图,每个小正方形的边长为单位长度1.(1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标;(2)点C与E的坐标什么关系?(3)直线CE与两坐标轴有怎样的位置关系?难点突破知面积,求坐标10.已知点A(1,0)、B(0,2),点P在x轴负半轴上,且三角形PAB的面积为5,求点P的坐标.11.已知点A(1,0),B(0,2),若点P在y轴负半轴上,且△PAB的面积为5,求点P的坐标.12.如图所示,点A的坐标为A(0,a),将点A向右平移b个单位得到点B,其中a,b满足:(3a﹣6)2+|a+b﹣5|=0.;(1)求点B的坐标并求△AOB的面积S△AOB=2S△AOD?若存在,求出D点的坐标;(2)在x轴上是否存在一点D,使得S△AOB若不存在,说明理由.13.如图,在平面直角坐标系中,已知S△ABO=8,OA=OB,BC=12,点P的坐标是(a,6).(1)求△ABC三个顶点的坐标;(2)连接PA、PB,并用含字母a的式子表示△PAB的面积;(3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,求出点P的坐标.。
平面直角坐标系中三角形面积的计算

平面直角坐标系中三角形面积的计算设直角坐标系中的三角形的三个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3)。
我们可以利用向量的性质和行列式的方法求出三角形的面积。
首先,我们计算向量AB和向量AC的坐标分量分别为(u,v)和(w,z)。
则有:u=x2-x1v=y2-y1w=x3-x1z=y3-y1然后,根据向量的性质,可以计算向量AB与向量AC的叉积的大小,即面积的两倍:2*面积=,u*z-v*w最后,我们可以通过取绝对值并除以2来得到三角形的面积,即:面积=,u*z-v*w,/2这就是通过向量的方法计算三角形面积的基本公式。
下面我们通过一个具体的例子来演示一下计算三角形面积的过程。
设直角坐标系中的三角形的三个顶点分别为A(2,3),B(5,6),C(8,1)。
我们将依次计算向量AB和向量AC的坐标分量:u=5-2=3v=6-3=3w=8-2=6z=1-3=-2然后,根据公式面积=,u*z-v*w,/2,我们计算:面积=,3*(-2)-3*6,/2=,-6-18,/2=24/2=12所以,三角形ABC的面积为12平方单位。
除了向量方法,我们还可以使用行列式的方式来计算三角形的面积。
具体步骤如下:1.将三个顶点的坐标按照行列式的顺序排列,构成一个3×3的矩阵:x1y1x2y2x3y32.计算矩阵的行列式的值。
3.取行列式的绝对值并除以2,即为三角形的面积。
以上就是使用行列式方法计算三角形面积的基本步骤。
总结起来,平面直角坐标系中三角形的面积可以通过向量或行列式的方法进行计算。
这些方法都是基于向量叉积的性质和行列式的性质进行推导和计算的。
无论是哪一种方法,核心思想都是通过计算向量叉积的大小来获得三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系中的面积计算
一、
例1:平面直角坐标系中,A(4,-4),B(1,0),C(6,0). 求△ABC的面积.
例2:平面直角坐标系中,A(0,3),B(0,-3),C(2,1). 求△ABC的面积.
x
变式1.若A、B两点的坐标和△ABC的面积均保持不变,且C点坐标为(2,y),求y.
变式2.若A、B两点的坐标保持不变,△ABC的面积为9,且C点坐标为(x,1),求x的值.
二、
例3:平面直角坐标系中,A(-2,3),B(-2,-3),C(2,1). 求△ABC的面积.
x
三、
变式1.保持A 、C 不动,改变点B 的位置:B (0,-3), 求△ABC 的面积.
x
y
–1–2–3–4
1
23–1
–2–31
2
3
4
O
A (-2,3)
C (2,1)
B x
y
–1–2–3–4
1
2
3–1
–2–31
2
3
4
O
A (-2,3)
C (2,1)
B x
y
–1–2–3–4
1
2
3–1
–2–31
2
3
4
O
A (-2,3)
C (2,1)
B
变式2.保持A 、C 不动,再次改变点B 的位置:B (3,-3), 求△ABC 的面积.
x
y
–1–2–3
1
23–1
–2–31
2
3
4
O
A (-2,3)
C (2,1)
B (3,-3)
x
y
–1–2–3
1
2
3–1
–2–31
2
3
4
O
A (-2,3)
C (2,1)
B (3,-3)
例4:在平面直角坐标系中,已知A(-5, 4),B(-2, -2),C(0, 2).若点P 在坐标y 轴上,
且△PBC 和△ABC 的面积相等.求点P 的坐标.
思考题:
1.平面直角坐标系中,A(-3,-2),B(3,-2),C(1,3),D(-2,1),求四边形
ABCD 的面积.
2.已知点O(0,0),B(1,2),点A 在坐标轴上,且2OAB S ∆=,求满足条件的点A 的坐标. 坐标轴上,且2=∆OAB S ,求满足条件的点A 的坐标.。