盾构过程中土压力的计算与控制
土压平衡盾构土仓压力设定与控制方法

Yang Yongqiang
( Track Traffic Engineering Co. ,Ltd. of China Railway No. 1 Grract: Using the existing soil mechanics theory, the type of earth pressure between in front of excavation face and in soil warehouse is analyzed when the EPBM is working or out of service. By theoretical calculation and analysis,the method is put forward that how to set earth pressure in soil warehouse according to the geological conditions in front of excavation face and sedimentation requirements. It is also pointed out that when the soil inside of warehouse is consistent with that in front of excavation face,earth pressure in soil warehouse is difficult to equal to earth pressure in front of excavation face. Through theoretical analysis,the method of control earth pressure in soil warehouse is put forward in conjunction with the technical measures that how to control earth pressure by improving soil,injecting bubble or forming air pressure by high-pressure gas and strictly controlling the amount of unearthed. Key words: tunnels; shields; earth pressure balance shield; earth pressure in soil warehouse; setting; control
盾构施工土压力确定

(5-2)地层考虑,水平侧向力系数 q 取 1/3~1/2,初步确定采用深埋隧道土压力计算
土压。
地层的水平侧向力为:
σ = 水平侧向力 q×0.41×1.79Sω =(1/3~1/2)×0.41×1.792(1+0.1(6.3-5))kg/cm2
=0.049~0.074Mpa
由于全风化泥质粉砂岩以及残积土层的透水性差,在考虑地层水压力时 q 取 0.1,
σw 刀盘前=q ×γh=0.1×1×20=0.2 kg/cm2=0.02 Mpa
考虑 0.010~0.020Mpa 的压力值作为调整值来修正施工土压力,即σ调整=0.010~
0.020Mpa。 σ初步设定=σ水平侧向力+σ水压力+σ调整 =0.079~0.10 Mpa。 采用此土压力值,盾构穿越该区段的地表
59.7
0.30
55
0.43
220
稍密)
残积土(硬塑、
5-2
1.99 4.23
40.0
17.3
121
0.28
70
0.39
300
中密)
6 岩石全风化带 1.95 3.93
37.0
16.7
125
0.25
100
0.33
350
7 粉土(强风化) 1.92 3.16
70.5
30.4
220
4.2 盾构穿越建筑物密集群地段
q—根据围岩级别确定的水平侧压力系数,具体见表 1:
表1
围岩分类
Ⅰ~Ⅱ
水平侧压力系数 q
0
2.2 浅埋隧道的土压计算
水平侧压力系数表
Ⅲ
Ⅳ
1/6
1/6~1/3
Ⅴ 1/3~1/2
土仓压力控制方法汇总

压力舱内土体状态控制方法一、工程概况本标段区间隧道全部采用土压平衡式盾构掘进,土压平衡是利用盾构机切削的泥土充满密封仓并保持适当的土压力来平衡开挖面的土体,从而达到对盾构正前方开挖面进行支护的目的。
平衡压力的设定是土压平衡盾构施工的关键,维持和调整设定的压力值又是盾构推进操作中的重要环节,其中包括推力、推进速度和出土量三者的相互关系,对盾构施工轴线和地层变形量的控制起主导作用。
因此,盾构推进过程中,要根据不同地质泥土厚度、地面建筑情况并结合地表隆陷监测结果及时调整设定土仓压力,推进速度要保持相对平稳,控制好每次的纠偏量,减少对土体的扰动,为管片拼装创造良好条件。
同步注浆量要根据推进速度、出碴量和地表监测数据及时调整,将施工轴线的地层变形控制在允许的范围内。
二、土压平衡工作原理土压平衡盾构的开挖土舱由刀盘、切口盘、隔板及添加剂注入系统组成。
将刀盘切削下来的碴土填满土舱室,在切削刀盘后面装有使土舱室内土砂强制混合的搅拌臂。
借助盾构推进油缸的推力通过隔板进行加压,产生泥土压,这一压力通过碴土及刀盘作用于整个作业面,使作业面稳定,同时用螺旋输送机排土,螺旋输送机排土量与盾构推进量相适应,掘进过程中始终维持开挖土量与排土量平衡,维持土舱内土压力稳定在预定范围内。
土舱内的土压力通过土压传感器进行测量,为保证预定的土压力可通过控制推进力、推进速度、螺旋输送机转速来控制,控制原理见土舱土压力控制示意图。
当土舱内的土压力V地表面矿地下水位w水压力P E土压力P E p B土舱压力p+p=pwEEPB图1土舱土压力与地层水土压力平衡大于地层土压力和水压力时,地表将会隆起;当土舱内的土压力小于地层土压力和水压力时,地表将会下沉;因此土舱内的土压力应与地层土压力和水压力平衡。
三、土舱内初始土压力值计算(理论值)3.1计算模型在饱和粘性土及粘性土层,盾构的荷载按全土柱进行计算。
盾构周围负荷分布状态见下图。
图2隧道负荷分布状态(周围)3.2 计算依据① 《土压系列盾构施工法》② 《上海市轨道交通杨浦线(M8线)一期工程土建III 标工程地质勘测报告》。
土压平衡盾构机土压力计算汇总课件

目录
• 土压平衡盾构机概述 • 土压力计算基本理论 • 土压平衡盾构机土压力计算 • 土压平衡盾构机土压力控制 • 土压平衡盾构机土压力计算实例
01
土压平衡盾构机概述
定义与特点
定义
土压平衡盾构机是一种隧道掘进设备 ,通过盾构机的切削和推进作用,实 现隧道挖掘和衬砌。
根据地质勘察资料和施工经验,预先 设定切口水压和排土压力的参考值, 并在推进过程中根据实际情况进行调 整。
实时反馈控制
通过传感器监测盾构机切口水压和排 土压力,以及地表沉降和隆起等参数 ,实时反馈到控制系统,对切口水压 和排土压力进行调整。
土压力控制技术
压力传感器技术
在盾构机刀盘、切口水压和排土 压力处安装压力传感器,实时监 测土压变化,为控制系统提供反
被动土压力影响因素
与土的容重、土的厚度、土的摩擦角和内摩擦角等因素有关。
静止土压力计算
静止土压力计算公式
P_s = γ * h * tan(φ)
静止土压力作用位置
在盾构机下方的土体中产生静止土压力,用于平衡下方土体的重量 。
静止土压力影响因素
与土的容重、土的厚度、土的内摩擦角等因素有关。
04
土压平衡盾构机土压力控制
土压力控制原理
土压力平衡
土压平衡盾构机通过控制切口水压和螺旋输送器的排土压力,使开挖面土压与盾 构周围土压保持平衡,以减少地表沉降和隆起。
土压力分布
土压力在盾构机推进过程中是动态变化的,根据地质条件、推进速度和切削刀具 状态等因素,合理调整切口水压和排土压力,确保土压力的稳定。
土压力控制策略
预设值控制
特点
土压平衡盾构机具有对地层适应性较 强、施工效率高、对周围环境影响较 小等优点,广泛应用于地铁、铁路、 公路等隧道工程建设。
最新土压平衡盾构土舱压力控制技术

土压平衡盾构土舱压力控制技术土压平衡盾构土舱压力控制技术提要:近年来,随着大量盾构隧道工程的兴建,土压平衡式盾构机使用也越来越广泛。
本文结合工程实际,就土压平衡式盾构土舱压力控制技术有针对性地进行探讨。
关键词:土压平衡、土舱压力、土体状态1 前言在土压平衡式盾构的施工法中,为了确保开挖面的稳定,需要适当地维持压力舱压力,一般,如果压力舱压力不足,会引起前方地基沉降,发生开挖面的涌水或坍塌的危险就会增大。
如果压力过大,又会引起刀盘扭矩或推力的增大而发生推进速度的下降或喷涌等问题。
因此,设置合理的施工土舱压力,提高盾构隧道在施工过程中的稳定性,对于控制地表沉降、提高掘进速度、降低掘进成本有着非常重要的意义。
2 土压平衡盾构的工作原理土压平衡盾构的开挖土舱由刀盘、切口盘、隔板及添加剂注入系统组成。
将刀盘切削下来的碴土填满土舱室,在切削刀盘后面装有使土舱室内土砂强制混合的搅拌臂。
借助盾构推进油缸的推力通过隔板进行加压,产生泥土压,这一压力通过碴土及刀盘作用于整个作业面,使作业面稳定,同时用螺旋输送机排土,螺旋输送机排土量与盾构推进量相适应,掘进过程中始终维持开挖土量与排土量平衡,维持土舱内土压力稳定在预定范围内。
土舱内的土压力通过土压传感器进行测量,为保证预定的土压力可通过控制推进力、推进速度、螺旋输送机转速来控制,控制原理见土舱土压力控制示意图1:P w+P E=P EPB图1 土舱土压力与地层水土压力平衡当土舱内的土压力大于地层土压力和水压力时,地表将会隆起;当土舱内的土压力小于地层土压力和水压力时,地表将会下沉;因此土舱内的土压力应与地层土压力和水压力平衡。
3 土舱压力引起地基沉降或隆起以上海地铁M8线延吉中路站~黄兴路站区间下行线施工中反映出的土舱压力和地表沉隆之间关系进行说明:盾构推进施工前,提前在盾构通过的轴线上方设置地面变形监测点,每隔5m一个,盾构施工前测定初始值。
推进39环时,覆土厚度11.8m,计算土舱压力0.22Mpa,实际设定为0.26Mpa,推进时,反映的土舱压力和地表沉隆之间关系如下图所示:由以上图分析可知,土舱压力设定值与计算值有较大差别,盾构前方地面隆起较大,说明土舱压力设定值偏大,而实际的土压力小于设定值。
盾构穿越复杂地质过程中的渣土改良及参数控制

盾构穿越复杂地质过程中的渣土改良及参数控制摘要:目前盾构法已在地铁施工中得到了广泛的应用,以深圳地区为例,地铁四期工程建设中90%以上的隧道采用了盾构法施工。
本文针对深圳某地铁区间穿越孤石、基岩突起、无基础民房土压平衡盾构掘进,采用泡沫、膨润土及克泥效等添加剂进行渣土改良,并根据多年在深圳地铁施工中的经验对参数进行合理控制,获得较为理想的效果,可为类似地层盾构隧道施工提供参考或借鉴。
关键词:盾构;孤石;上软下硬;民房1引言目前,我国不仅各一线城市正在修筑地铁,各二三线城市也均有地铁在建设或施工的规划。
在地铁施工中隧道施工是危险较大的施工功法,矿山法、新奥法在施工中不仅环境恶劣,而且施工速度慢,不满足城市快速发展的工期要求。
而盾构法不仅施工速度快,而且同时兼具安全性、经济性、环保性等特点。
本文针对深圳某地铁穿越孤石、基岩突起、无基础民房平衡盾构掘进,采用泡沫、膨润土及克泥效等添加剂进行渣土改良,获得较为理想的改良方案,并根据多年在深圳地铁施工中的经验对参数进行合理控制,可为类似地层盾构隧道施工提供参考或借鉴。
2工程概况深圳某地铁区间隧道总长约650米,区间最大坡度为28.34‰,隧道拱顶最小埋深为12.86m~20.18m,位于城中村下方,地表建筑物密集,主要为多层及低层房屋,局部残损破败严重,施工控制要求高。
据勘察报告可知,区间穿越地层主要为花岗岩地层,大部分为全风化和强风化花岗岩,局部为中风化和微风化花岗岩,地层中存在孤石及基岩隆起(如图1所示)。
区间详勘共钻孔49处,其中21处存在球状风化体,2处基岩隆起;孤石直径1-5m不等,基岩最大侵入隧道5.7m,长度32.1m。
微风化花岗岩饱和单轴抗压强度最大为114.2Mpa ,平均值为87.2Mpa。
根据其赋存介质的类型,区间地下水主要有二种类型:一是松散岩类孔隙水,主要赋存于第四系松散岩土层中;另一类为基岩裂隙水,主要赋存于块状强风化、中等风化带中,略具承压性。
土压平衡盾构土仓压力设定与控制

土压平衡盾构土仓压力设定与控制土压平衡盾构是一种用于地下隧道开挖的先进施工技术。
在盾构机挖进土体的过程中,为了保证人员和设备的安全,需要通过设定和控制土仓压力来保持平衡。
本文将介绍土压平衡盾构土仓压力的设定与控制的方法。
一、土压平衡盾构土仓压力设定的目标土压平衡盾构土仓压力设定的目标是在盾构机挖进土体的过程中,保持土压平衡,即土压力与地下水压力之间的差值不超过一定范围。
这样可以有效控制土体的变形和沉降,保证隧道的稳定施工。
二、土压平衡盾构土仓压力设定的方法1. 理论计算法:根据盾构机的挖进速度、土体性质和地下水压力等参数,通过理论计算得出合理的土仓压力设定值。
这种方法相对简单,但需要精确的参数输入和土质性质的准确评估。
2. 经验法:根据历次相似工程经验,结合地质勘察结果,设定合适的土仓压力。
这种方法适用于类似地质条件下的盾构施工,但需要经验丰富的专业人员进行判断。
3. 反馈控制法:利用传感器测量土仓压力和地下水压力,通过实时反馈控制系统对土仓压力进行调整。
这种方法可以根据实际情况灵活调整土仓压力,但需要高精度的传感器和快速响应的控制系统。
三、土压平衡盾构土仓压力控制的方法1. 主动控制:根据土仓压力设定值,通过改变土仓内部的工作压力来控制土仓压力的变化。
这种方法可以实现对土仓内部的土体压力进行主动调节,但需要有稳定的供土系统和准确的土压力控制装置。
2. 被动控制:在土仓内设置排土管,通过调节排土管的开闭程度来控制土仓压力的变化。
这种方法相对简单,但需要准确把握土仓内外土体的平衡关系,以防止排土管过度开启引起土层失稳。
3. 水封控制:在土仓与盾尾之间设置水封装置,通过调节水封压力来控制土仓压力的变化。
这种方法可以实现对盾尾处土仓压力的有效控制,但需要稳定的供水系统和精确的水封装置。
四、土压平衡盾构土仓压力设定与控制的注意事项1. 土仓压力设定值应根据实际地质条件和施工需求进行合理确定,避免过大或过小造成隧道沉降或土体塌陷。
盾构土压力计算范文

盾构土压力计算范文首先,盾构土压力的计算需考虑到多种因素,包括土体类型、土体密度、盾构施工的深度等。
在进行计算前,需要明确以下几个基本概念:1.盾构土压力:指盾构施工中土体对盾构壁面施加的压力。
2.盾构机推力:指盾构机在施工中向前推进所需的推力。
3.土重:指单位体积土体的重量,在计算中一般采用土体干容重来表示。
根据经验公式,可以计算出盾构土压力的近似值。
一般情况下,盾构土压力可以由以下公式计算得出:P=Kp*δ*H其中,P表示盾构土压力,Kp为压力系数,δ为土体干容重,H为盾构掘进深度。
在公式中,压力系数Kp的取值与土体类型有关。
一般来说,Kp的取值范围在0.6-1.0之间,具体数值需要根据实际情况进行确定。
土体干容重δ可以通过室内试验获得,或者通过经验值进行估算。
例如,当土体类型为黏土时,一般可以取δ=18.5kN/m3;当土体类型为砂土时,可以取δ=16.5kN/m3盾构掘进深度H即为盾构壁面与地面的垂直距离,为施工中一个重要的参数。
通过以上公式的计算,我们可以得到盾构土压力的近似值。
然而,在实际工程中,由于实际情况相对复杂,单纯依靠公式得出的结果可能存在一定的误差。
因此,在实际工程中,一般会进行更为精确的计算,考虑更多的因素。
这包括盾构机的推力、推进速度、土体的变形特性等等。
在计算中可能涉及到更复杂的力学理论,需要进行更为详细的工程力学分析。
总之,盾构土压力的计算对于盾构施工过程中的安全性和效率起着至关重要的作用。
通过明确计算公式、考虑各种因素并进行精确计算,可以更加准确地估计盾构土压力,为盾构工程的顺利进行提供重要参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盾构过程中土压力的计算与控制
土压平衡盾构机工作面土压力及计算在城市市区内进行地铁、上下水管道、电力、通信、
输气、共同沟以及地下道路的隧道工程中,具有施工机械化程度高、对周围环境影响小、施工快速等优势的盾构施工技术近年来得到广泛应用。
盾构施工中,开挖面的稳定是通过压力舱的支护压力得以实现的,开挖面支护压力过大会造成地表隆起,而压力过小,容易导致地表沉陷甚至坍塌。
土压平衡盾构机工作面土压力及计算土压平衡式盾构机主要由盾体、刀盘、螺旋输送机、推进装置等构成。
施工过程中,推进液压缸驱动盾构机向前推进,刀盘切削下的泥土充满密封仓和螺旋输送机壳体内的全部空间,形成一定的土压来平衡开挖面土层的水土压力,以此来保持开挖面土层的稳定和防止地表变形,开挖下来的泥土通过螺旋输送机排出盾体。
一、土压力的控制和分类
1.控制:土压平衡盾构利用开挖的泥土支撑挖掘面,通过调节盾构推进速度和螺旋机转速和出土量来控制土仓的土压。
使土仓中的土压力与地下水土压力相平衡,以防止开挖崩塌和将地表沉降限制在允许范围内。
2.分类:静止土压力、被动土压力、主动土压力。
(重点)
2.1主动土压力:挡土结构物向离开土体的方向移动,致使侧压力逐渐减小至极限平衡状态时的土压力,它是侧压力的最小值。
2.2被动土压力:挡土结构物向土体推移,致使侧压力逐渐增大至被动极限平衡状态时的土压力,它是侧压力的最大值。
土压平衡盾构机工作面土压力及计算
2.3 静止土压力:
土体在天然状态时或挡土结构物不产生任何移动或转动时,土体作用于结构物的水平压应力
二、土压力平衡
主动土压力<土仓压力<被动土压力
•盾尾注浆的分类:
三、土压力的计算(重点)
根据土力学原理,可以将盾构机的刀盘近似为挡土墙,然后根据挡土墙理论分析掘进工作面的压力分布特性。
如图l 所示,根据土力学理论,天然土体内垂直静止土压力为
σz =γz (1)
(1)式中σz 为垂直静止土压力,γ为土的容重,z 为埋置深度。
而垂直于侧面的法向应力为静止侧压力
σx =k 0 γz (2)
(2)式中σx 为水平静止土压力,k 。
为土的静止侧压力系数,对于砂土可取经验值0.34~0.45,黏性土0.50~0.70,或者按照半经验公式计算
k 0 =1一sinψ(3)
(3)式中ψ为土的有效内摩擦角。
(4)容重=密度*g,单位是KN/立方米
•
11
平均土压力=(上部土压力+下部土压力/2)*1.3
计算土压力时依据断面图依上到下分层逐个计算
注:盾构施工土压力是个动态管理,要根据现场实际测量增大或减少土压力。