第1章集总参数电路中电压电流的约束关系

合集下载

简明电路分析基础_01a基本电路理论

简明电路分析基础_01a基本电路理论

parameter element)”(简称“集总元件”)来构成
模型。
电路分析基础——第一部分:1-1
集总参数元件:
11/15
理想电阻:只消耗电能(将电能转化为热或声、
光等其他能量形式)的元件 理想电容:只存储电能的元件 理想电感:只存储磁能的元件
电 压 源:以电压作为输出的电源
电 流 源:以电流作为输出的电源
电路分析基础——第一章第一节
电 路 分 析 基 础
电路分析基础——课程内容介绍
第一部分 电阻电路分析
• 一、集总电路中电压、电流的约束关系 • 二、运用独立电压、电流变量的分析方法 • 三、大规模电路分析方法概要 • 四、分解方法及单口网络
• 五、简单非线性电阻电路的分析
电路分析基础——第一部分:第一章
dw = u×dq 因此,吸收能量的速率,即吸收功率为 p(t) = dw/dt = u×dq/dt |i(t) = dq/dt
p(t) = u(t)×i(t)
(1-3)
电路分析基础——第一部分:1-2
功率方向:能量传输的方向。
13/16
功率参考方向:与电流、电压的参考方向是关联的。 与实际方向一致:结果为正,电 路吸收功率; 与实际方向相反:结果为负,电 路产生功率。 功率单位:瓦特,简称:瓦(W)。
6 电流源
电路分析基础——第一部分:1-2 1-2 电路变量 电流、电压及功率
1/16
电路分析需要一些表示为时间函数的变量的物理 量来衡量电性能。 这些电性能用这些变量来描述。 电路分析的任务是解出这些变量来。 最常用的变量是:电流、电压、功率。
电路分析基础——第一部分:1-2
2/16
电荷:带电粒子的在电方面反映出来的物理属性, 质子和电子都是基本的带电粒子,电子带负电荷, 质子带正电荷。 电量:物体所携带的电荷多少,用符号Q或q表示。 库仑:国际电量单位(国际代号C), 1库仑 (C) = 6.24×1018 个电子所具有的电量;

第1章 电压电流约束关系

第1章 电压电流约束关系

电 路 模 型
电路元件模型: 电路元件模型:实际元件理想化
–在一定条件下得出; 在一定条件下得出; –表征了实际元件的主要特性和物理现象 –是一种近似关系。 是一种近似关系。
电路模型:理想化的电路元件所构成 电路模型:
–电路理论:以电路模型为基础(R、L、C等) 电路理论:以电路模型为基础(R、L、C等 (R、L、C
§1-1
电路及集总电路模型
时变 非时变
电路的种类
线性电路 集总参数电路 电路 分布参数电路 非线性电路
集总参数电路:电路的几何尺寸远小于最高工作频率的波长。 集总参数电路:电路的几何尺寸远小于最高工作频率的波长。
光 (v) 速 波 (λ) = 长 频 (f ) 率
如:市电网的频率为50Hz,则 市电网的频率为50 50H 3×108 波 (λ) = 长 = 6×106 m= 6000 里 公
电压及其参考方向
电压( 电压(降):电路中a、b两点间的电压是单位正电荷由a点转移 电路中a 两点间的电压是单位正电荷由a 点所失去的能量。 到b点所失去的能量。 R dw A B uAB = _ + u dq 如:
A
i R
i =5A
A
i R
i = −5A
A
+ UR −
A
− UR +
U =5V
U = −5V
I0 5Ω Ω
+ U -
10I2 I2 10Ω Ω I1 10I1
6A 3Ω Ω 10A 1A 2Ω Ω Ω 4A 4Ω
I1
I2
电路的图
电路的图:在电路中以线段代替支路,以点代替节点,由线 电路的图:在电路中以线段代替支路,以点代替节点, 段和点组成的几何结构图形就称为电路的图。 段和点组成的几何结构图形就称为电路的图。 定向图:图中每条支路规定一个方向,所得的图称为定向图。 定向图:图中每条支路规定一个方向,所得的图称为定向图。 + Us − 2 3 ③ ④ ③ 4 ② 4 3 ④ ③ 5

《电路分析基础》第一章:集总电路中电压(流)的约束关系

《电路分析基础》第一章:集总电路中电压(流)的约束关系

信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流

电路分析第1章 集总参数电路中电压电流的约束的关系-PPT精品文档

电路分析第1章 集总参数电路中电压电流的约束的关系-PPT精品文档
如果求出 i > 0 ,则 真实方向与参考方向一致 如果求出 i < 0 ,则 真实方向与参考方向相反
<1> 在电路分析中,电路中标出的电流方向都是参 考方向。如果没有方向,自己要设一个参考方向,在 图上标出,按所标参考方向进行计算。不设参考方向, 算出的结果没有意义。 <2>算得结果的正负配合参考方向就可确定真实方 向,但不要把参考方向改为真实方向。
2、作业要书写整洁,图要标绘清楚,答数要注明单位。
第一章 集总参数电路中电压、电流的约束关系
1.1 1.2 1.3 1.4
1.5 1.6 1.7 1.8
1.9 1.10
电路及集总电路模型 电路变量,电流,电压及功率 基尔霍夫定律 电阻元件 电压源 电流源 受控源 分压公式和分流公式
两类约束,KCL、KVL方程的独立性 支路分析
–+ B
否则计算结果没有意义.
电压、电流实际方向与参考方向相同为正值,相反为负值
例如:E=3V,若假定电路中U的参考方向为上“+”下“–” 则U=3V或UAB=3V
高电位端。
电压和电流的参考方向
电压、电流的参考方向:任意假定。
电流的参考方向用箭头表示;电压的参考方向除 用极性“+”、“–”外,还用双下标或箭头表示。
当电压、电流参考方向与实际方向相同时,其值
为正,反之则为负值。
R1
R2
U1
IU R3
例如: (1)图中 若I=3A,则表明电流的 实 际方向与参考方向相
= c = 3×108m/s =6×106m=6000km
f
50Hz
对于以此为工作频率的实验室电气电子设备而言,其尺寸远 小于这一波长,可以按集总电路处理。

电路分析第1章 集总参数电路

电路分析第1章 集总参数电路

2013-7-14
课件制作:高洪民
27
§1-1
电路及集总电路模型
也可分为有源元件和无源元件: (1)有源元件: 独立源:电压源,电流源。 受控源:电压控制电压源,电流控制电压源, 电压控制电流源,电流控制电流源 (2)无源元件: 电阻元件,电容元件,电感元件,耦合电感, 理想变压器。 (3)实际元件的模型: 一个实际元件在某种条件下都可以找到它的模型。 有些实际元件的模型比较简单,可以由一种理想元件构 成,有些实际元件的模型比较复杂,要用几种理想元件 来构成。
2013-7-14 课件制作:高洪民 2
1 学习本课程的目的和任务
21世纪是高科技发展的世纪,21世纪将是 知识经济占国际经济主导地位的世纪。面向21 世纪的高等教育质量目标,概括地说,就是注 意素质培养和能力培养,加强基础,拓宽专业, 造就研究型大学,培养全面适应新世纪的创新 性人才,满足21世纪对信息类专业人才的要求。
课件制作:高洪民 18
第一章 集总参数电路中电压、电流的约束关系
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10
2013-7-14
电路及集总电路模型 电路变量,电流、电压及功率 基尔霍夫定律 电阻元件 电压源 电流源 受控源 分压公式和分流公式 两类约束,KCL、KVL方程的独立性 支路分析:支路电压法和支路电流法
学习本课程的目的:
本课程是技术基础理论课,主要使学生获 得有关电路分析方面的基本理论、基本知识和 基本技能,为学习后续课程以及今后从事工程 技术工作打好基础。
2013-7-14 课件制作:高洪民 3
3 推荐参考书及资料来源
教材:李瀚荪,电路分析基础,高等教育出 版社,2006年5月.第4版 《电路原理》(上、下).江泽佳.高教出 版社.1992年.第三版 《电网络理论》(上、下).美.巴拉巴尼 安著.夏承铨等译.高等教育出版社.1982 年

第一章(集总参数电路中u-i的约束关系)

第一章(集总参数电路中u-i的约束关系)

求任一集总电路中ab两点间电压值Uab的方法: 从a点出发沿任一路径到达b点,沿途各支路电压降的 代数和。默认a点为参考“+”,b点为参考“--”。
8、推广结论的应用
求任一集总电路中ab两点间电压值Uab的方法: 从a点出发沿任一路径到达b点,沿途电压降的代数和。 默认a点为参考“+”,b点为参考“--”。 a
知识回顾:
1、基尔霍夫定律:
KCL
研究对象:节点电流 内 容: 推广结论:任一理想封闭面
KVL 研究对象:回路电压 内 容: 推广结论:任一闭合路径
2、集总参数电路模型常用元件 电阻元件:无源元件 u 电导:G 单位西门子S
Ri
1
u Ri
i
G
电 压 源:有源元件
1
R
u
G

质:
§1-5 电压源(元件)(voltage source)
集总电路中主要的能量来源 :电压源、电流源、受控源 1、本质:从实际电源抽象出来的一种模型 2、性质: (1)端电压为恒定值Us或一定的时间函数us(t),与i无关 (2)电压值由自身性质决定,流经的电流由外电路决定 (3)有源元件 (4)与电压源并联的元件,端电压即为电压源的电压值 3、特性曲线(恒定电压源)
4、课程梗概(方法) 上册: 第一篇 电阻电路分析: 只含电阻元件和电源元件 第二篇 动态电路分析: 除电阻和电源外,还有动态元件。 下册:动态电路的相量分析和S域分析法(略)
第一篇 总论和电阻电路的分析
基本思想: 学习运用一定的分析方法,求解电阻电路中的任一变量
主要内容: 一个方向:关联、非关联参考方向 二类约束:基尔霍夫定律和元件的VCR 三种基本方法:网孔法、节点法、叠加法 四个元件:电阻、电压源、电流源、受控源

电路分析基础课件(第1章)

电路分析基础课件(第1章)

§1-1 电路及集总电路模型 (c)分布参数元件与集总参数元件 集总参数元件:理想电阻、理想电感、理想电 容、理想电源等。 集总参数电路:由集总参数元件构成的电路, 简称集总电路。
21
§1-1 电路及集总电路模型
一个电路应该作为集总参数电路,还是作为分 布参数电路,或者说,要不要考虑参数的分布 性,取决于其本身的线性尺寸与表征其内部电 磁过程的电压、电流的波长之间的关系。 一个实际电路器件,在不同条件下可以有不 同的电路模型。
a b
+
+
元件
41
u 2V
§1-2 电路变量 电流、电压及功率 参考极性不一定就是电压的真实极性。 当电压为正值时,该电压的真实极性与参考 极性相同。 当电压为负值时,该电压的真实极性与参考 极性相反。
a b
元件
a
b
元件
+
-
-
+
42
u 2V
u= - 2V
§1-2 电路变量 电流、电压及功率
19
§1-1 电路及集总电路模型 (b)分布概念 参数的分布性指,当实际电路的尺寸可以与电 路工作时电磁波的波长相比拟(即高频)时, 电路中同一瞬间相邻两点的电位和电流都不相 同。这样的元件称为分布元件,而这样的电路 参数叫做分布参数。
这说明分布参数电路中的电压和电流除了是时 20 间的函数外,还是空间坐标的函数。
9
§1-1 电路及集总电路模型
例如
理想化
理想电阻元件 (模型)
理想化、抽象化即模型化的过程。
电阻器包含有电阻、电感、电容性质,但 电感、电容很小,可忽略不计,可用一个 电阻元件作为它的模型。
同样,请例举3个以上其他,模型的例子....

电路课件第1章集总参数电路中电压、电流的约束关系

电路课件第1章集总参数电路中电压、电流的约束关系

电压源与电流源的等效变换
总结词
电压源和电流源是电路中的两种基本元件,它们可以通过一定的等效变换相互转换。
详细描述在一定条件下,一个源自压源可以等效转换为电流源,反之亦然。这种等效变换对于简化电路分析非常有用,尤其 是在处理含有电源元件的复杂电路时。通过等效变换,可以将电路中的元件进行简化,从而更容易地求解电路中 的电压和电流。
欧姆定律
总结词
欧姆定律是集总参数电路中电压和电流的基 本关系,它指出在纯电阻电路中,电压和电 流成正比,电阻是它们比例的倒数。
详细描述
欧姆定律是电路分析的基本定律之一,它适 用于集总参数电路中的纯电阻元件。根据该 定律,在纯电阻电路中,电压和电流成正比 ,电阻是它们比例的倒数。也就是说,当电 压增加时,电流也会相应增加,反之亦然。 这一原理不仅适用于直流电路,也适用于交 流电路。
电路ppt课件第1章集 总参数电路中电压、电
流的约束关系
CONTENTS 目录
• 集总参数电路的概述 • 电压的约束关系 • 电流的约束关系 • 电路分析方法 • 实际应用案例
CHAPTER 01
集总参数电路的概述
定义与特点
定义
集总参数电路是指在实际电路中 ,凡具有两个或两个以上端点的 电路元称为元件,而不论这些元 件的大小、长短和形状如何。
电路的基本定律
欧姆定律
流过电阻元件的电流与电阻元件两端 的电压成正比,与电阻成反比。
诺顿定理
任何有源二端线性网络都可以等效为 一个理想电流源和一个电阻的串联。
基尔霍夫定律
在集总参数电路中,流入节点的电流 之和等于流出节点的电流之和,即 KCL定律;在任意回路上,电压降等 于电压升,即KVL定律。
戴维南定理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压的方向: 实际方向:电位降低的方向。 参考方向:自己任意规定的电压方向。
若u>0,表示实际方向和参考方向相同; 若u<0,表示实际方向和参考方向相反。
书中电路图标的电压都是参考方向。
电压(降)的参考方向 参考方向 U
假设的电压降低之方向
+

+
参考方向 U

+
实际方向
实际方向
+
U >0
U<0
1.2 电路变量
1.2.1 电流
定义: 电荷有规则的定向运动。 电流的方向 实际方向—— 正电荷运动的方向。
电子流
大小:单位时间内通过导体横截面的电荷量。
dq(t ) [库仑] i(t ) [安培] dt [秒]
1 kA=103 A 1 A=103 mA=106 μA
电路分析中的假设正方向(参考方向)
电路中电位参考点可任意选择;参考点一经选定,电路中 各点的电位值就是唯一的;当选择不同的电位参考点时, 电路中各点电位值将改变,但任意两点间电压保持不变。
电压和电流的关联参考方向:
————电流、电压所选的参考方向一致时,称
为关联参考方向或关联方向。 一般采用关联方向,并在电路图上只标 明电流或电压的参考方向。
问题的提出:在复杂电路中难于判断元件中物理量
的实际方向,电路如何求解?
电流方向 AB? 电流方向 BA?
A
I题前先设定一个正方向,作为参考方向; (2) 根据电路的定律、定理,列出物理量间相互关 系的代数表达式;
(3) 根据计算结果确定实际方向: 若计算结果为正(i>0) ,则实际方向与假设方向相同 ; 若计算结果为负(i<0) ,则实际方向与假设方向相反。
定义:a、b两点间的电压等于单位正电荷从a点移 至b点时电场力所作的功。
dw(t ) [焦耳] u(t )[伏特] dq(t ) [库仑]
1 kV=103V
1 V=103 mV=106 μV
大小:
uab=ua-ub
uab也称为a、b间的电位差。
ua和ub分别为a、b两点的电位。 电位——在电路中选定一点o作为参考点,规 定其电位uo为零,则a点与参考点o之间的电压 就作为a点的电位。
书中电路图标的电流都是参考方向。
电流参考方向的两种表示:
用箭头表示:箭头的指向为电流的参考方向。
A
i
B
用双下标表示:如 iAB , 电流的参考方向由A指向B。
A
iAB
B
电流的参考方向与实际方向的关系:
i A
参考方向
i
参考方向
实际方向
B
A
实际方向
B
i =5A
i = - 5A
1.2.2 电压
第1章
重点:
电路元件和电路定律
(circuit elements) (circuit laws)
1. 电压、电流的参考方向
2. 电路元件特性
3. 基尔霍夫定律
1.1 电路及集总电路模型
1.1.1 实际电路 ——————由各种电气器件相互联接构成,并具有一 定功能的连接整体。 电路的基本功能: (1) 实现电能的产生、传输、分配和转换; (2) 完成电信号的产生、传输、变换和处理。
(2) 以c点为电位参考点
Uc 0
a
b
Wac 8 12 U ac U a U c 5V q 4 Wbc 12 U b U c U bc 3V q 4
Uab Ua Ub 5 3 2 V
c
结论
Ubc Ub Uc 3 0 3 V
若 P 0 吸收功率或消耗功率(起负载作用)
电阻消耗功率肯定为正
若 P0
输出功率(起电源作用)
电源的功率可能为正(吸收功率) ,也可能为负(输出功率)
例: 下图中,已知U=-7V,I=-4A,试求元件A的吸收 功率。
解: U、I为关联方向, p=UI=(-7)×(-4)=28W A吸收功率28W。
i
a b
u
两者的参考方向相反时,称为非关联参 考方向或非关联方向。
i
a b
u
写法: 交流:用小写字母i(t)、u(t)或i、u表示。 直流:用大写字母I、U表示。
例 电路如图所示,图中矩形框表示电路元件。已知电流I1=
-1A,I2=2A,I3=-3A, 其参考方向如图中所标; d为参考点,电位 Ua=5V,Ub=-5V,Uc=-2V。求
c
Ub 0

(1)
以b点为电位参考点
Ua 2 V
Wab 8 U ab 2 V Ua Ub q 4 Wcb Wbc 12 U cb U c U b 3 V q q 4
Uc Ub Ucb 3 V Ubc Ucb 3 V

(1)电流I1、I2、I3的实际方向和电压Uab、Ucd的实际极性。
(2) 若欲测量电流 I1 和电压 Ucd 的数值,则电流表和电压表应 如何接入电路?
实际方向
实际方向
1.2.3 能量和功率
电压与电流取关联参考方向
dw u dq dq u dt uidt dt
功率——能量对时间的导数
dw p ui dt
例 在图1.10中,已知元件B的产生功率为
120mW,U=40V,求I。
电压参考方向的三种表示方式: (1) 用箭头表示
U
(2) 用正负极性表示
+
(3) 用双下标表示
U
A
UAB
B

a
b
已知:4C正电荷由a点均匀移动至b点 电场力做功8J,由b点移动到c点电场 力做功为12J, (1) 若以b点为参考点,求a、b、c点 的电位和电压Uab、U bc;
(2) 若以c点为参考点,再求以上各值
单位:瓦特(W)
功率:
设电路任意两点间的电压为 U ,流入此 部分电路的 电流为 I, 则这部分电路吸收的功率为: I U
a
b
R
P U I
如果U I取非关联 参考方向?
电压电流取关联参考方向
a
b
I U R
P = –UI
功率有正负?
电压电流取非关联参 考方向
功率有正负
从 P 的 + 或 - 可以区分器件的性质,或是电源 ,或是负载。
图 1.1 实际电路
1.1.2 电路模型
为了简化分析,对实际电路采用“模型化”方
法处理。
理想元件 ———— 将实际电路器件理想化(模型化), 即在一定条件下突出其主要电磁性质,忽略其次要因素。 在数学上有明确的定义。
电路模型————由理想元件组成的电路,即实际电路 的电路模型。
图 1.2 电路模型
相关文档
最新文档