无线电波传播2电离层中的电波传播
(第六章)电波传播概论

式中,h1和h2的单位为米。 视距传播时, 电波是在地球周围的大气中传播的, 大气对电波
产生折射与衰减。 由于大气层是非均匀媒质, 其压力、温度与湿 度都随高度而变化, 大气层的介电常数是高度的函数。
天线 与电波传播
在标准大气压下, 大气层的介电常数εr随高度增加而减小,
并逐渐趋近于1, 因此大气层的折射率n= 随高度的增加而减 小。若将大气层分成许多薄片层, 每一薄层是均匀的, 各薄层的 折射率n随高度的增加而减小。这样当电波在大气层中依次通过 每个薄层界面时, 射线都将产生偏折, 因而电波射线形成一条向 下弯曲的弧线, 如图 6-4 所示。
② 当工作波长λ和两天线高度h1和h2都不变时, 接收点场强随
两天线间距的增大而呈波动变化, 间距减小,波动范围减小,如 图6-7所示。
天线 与电波传播
图 6 – 6 接收点场强随天线高度的变化曲 图 6 –7 接收点场强随间距d的变化曲 线
天线 与电波传播
③ 当两天线高度h1和h2和间距d不变时, 接收点场强随工作波
图 6 – 8 接收点场强随工作波长λ的变化曲线
天线 与电波传播
6.3 天波传播
天波传播通常是指自发射天线发出的电波在高空被电离层 反射后到达接收点的传播方式, 有时也称电离层电波传播, 主要 用于中波和短波波段。
1. 电离层概况
电离层是地球高空大气层的一部分, 从离地面60km的高度 一直延伸到1000 km的高空。由于电离层电子密度不是均匀分 布的, 因此, 按电子密度随高度的变化相应地分为D, E, F1, F2四 层, 每一个区域的电子浓度都有一个最大值, 如图 6- 9所示。 电 离层主要是太阳的紫外辐射形成的, 因此其电子密度与日照密 切相关——白天大, 晚间小, 而且晚间D层消失; 电离层电子密 度又随四季不同而发生变化。 除此之外, 太阳的骚动与黑子活 动也对电离层电子密度产生很大影响。
电离层无线电波传播

电离层无线电波传播dianliceng wuxian dianbo chuanbo电离层无线电波传播radio wave propagation in the ionosphere无线电波在电离层中传播的规律及其应用的研究,早先着重于电波在电离层F2层电子密度峰值以下区域的传播问题,人造卫星上天以后,扩展到穿越整个电离层区域的传播规律问题。
基本理论电离层由自由电子正离子负离子、分子和原子组成,是部分电离的等离子体介质。
带电粒子的存在影响无线电波的传播,其机制是带电粒子在外加电磁场的作用下随之振动,从而产生二次辐射,同原来的场矢量相加,总的效果表现为电离层对电波的折射指数小于1。
由于自由电子的质量远小于离子的质量,一般电子的作用是主要的,只要考虑电子就够了。
但如电波频率较低而接近于离子的等离子体频率时,离子的影响也不能忽略。
由于地磁场的存在,带电粒子也受它的影响,所以电离层又是各向异性的(见磁离子理论)。
电离层的形成和结构特性是受太阳控制的,因此它既随时间又随空间变化。
在这样复杂的介质中,分析无线电波传播问题必须建立相对简化的物理模型并根据电波的频率采用相应的理论和方法。
对于电离层电波传播,介质的折射指数是一个最根本的参数,实验证明相当有效。
为人们普遍接受的磁离子理论表达的折射指数的公式称为阿普尔顿-哈特里公式,它是电离层电子密度和电波频率的函数,所以又被称为色散公式,而电离层则是一种色散介质。
对于短波和波长更短的电波传播问题,可以采用近似的射线理论,对长波和超长波则一般需要采用波动理论,有时可将地面和电离层底部之间看作一个同心球形波导。
折射和反射电离层的折射指数主要取决于电子密度和电波频率,电子密度愈大或电波频率愈低,折射指数愈小。
因为电离层的折射指数小于1,电波在电离层中受到向下折射,在垂直投射的情况下,折射指数等于零时,电波不能传播,产生“反射”。
在一定值的电子密度情况下,使折射指数为零的频率称为电波的临界频率,在地磁场的影响可以忽略时,这一频率就等于电子的等离子体频率。
无线电波的传播方式

无线电波的传播方式电离层对电波传播的影响面对二十多个业余波段,究竟该用哪一段?春夏秋冬阴晴雨雪对通信会有什么影响?当你对这些问题打算亲自体验一番之前,应该对无线电波的传播规律及各业余波段的特点等等先做些“调查研究”,这样才能事半功倍。
一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
无线电波的传播方式

无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
无线电波传播理论

电离层传播模型需要考虑电离层 的结构、成分、电子密度等参数 ,以及电离层对电波的吸收和反 射等作用。
地面对无线电波的吸收
地面对无线电波的吸收是指电波在传 播过程中,由于地面物质的吸收作用 而导致的能量损耗。
VS
地面对无线电波的吸收与地面的物质 成分、湿度、温度等因素有关,不同 的地面类型对电波的吸收程度不同。
对流层传播模型
对流层传播模型适用于电波在对流层中的传播,由于对流层的气象条件复杂多变,电波传播受到大气 折射、散射、吸收等因素影响。
对流层传播模型需要考虑大气温度、湿度、气压等参数,以及气象条件对电波传播的影响。
电离层传播模型
01
电离层传播模型适用于电波在电 离层中的传播,电离层对电波的 折射、反射、散射等作用会影响 电波的传播路径和强度。
、雷达等领域。
无线电波的产生与传播
产生
无线电波可以通过电子运动、振荡器 、天线等设备产生。
传播
无线电波在传播过程中会受到多种因 素的影响,如大气、地形、建筑物等 ,其传播方式和距离也会因此而有所 不同。
02 无线电波传播方式
直射传播
直射传播是指无线电波直接从发射天线沿直线到达接收设备 ,不经过其他介质或物体的反射、折射或散射。直射传播的 路径损耗较小,信号质量较好,但受地形、建筑物等遮挡物 的影响较大。
自由空间传播模型
自由空间传播模型适用于电波在自由 空间中的传播,其假设电波在均匀介 质中沿直线传播,不受地球曲率、大 气折射等因素影响。
自由空间传播模型的公式为:$d = frac{c}{2pi f sqrt{epsilon}}$,其中 $d$为电波传播距离,$c$为光速,$f$ 为电波频率,$epsilon$为介电常数。
无线电波传播特性与频段的划分

无线电波传播特性与频段的划分
1.3 无线电管理
2、无线电管理的内容
(1)无线电台设置和使用管理 设置、使用无线电台(站)的单位或个人,必须
提出书面申请,办理设台审批手续,领取电台执 照。
(2)频率管理 国家无线电管理机构对无线电频率实行统一划分
和分配。频率使用期满,需要继续使用,必须办理 续用手续。
天 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (4)散射传播 :包括对流层散射传播和电离层散射传播两种模
式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (5)地空传播:穿透电离层的直射传播模式称为地空传播 模式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性
高频电子技术
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分 按频率高低划分的称为频段,按波长划分的称为波段。
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分
各个频段无线电波的应用范围也有所不同,下 表给出了不同频段无线电波的主要应用。
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 1、无线电波的传播模式:
2、介质对无线电波传播的影响 (1)金属对于无线电波的屏蔽作用
金属是良导体,电磁波在金属中传播时会感应 出传导电流,这一电流在金属中流动时发热,电 磁波能量转化为热能,无线电波很快衰减。因此, 无线电波不能在金属等良导体介质中传播。根据 这个道理,用金属板围成一个密闭的房间,外面 的无线电信号就无法进入这个房间,这表明金属 对于无线电波有屏蔽作用。
管理的主要内容有以下三个方面:Biblioteka 无线电波传播特性与频段的划分
电离层物理与电波传播2

时间常数
在复杂的问题中,估计和比较两种不同的过程的时间常数,可以判断哪 种过程起控制作用。 比如,在电离层中,化学过程和扩散过程都具有潜在的重要性。不过, 在某些高度上,化学过程比输运过程慢得多,对这样的区域,可以只考 虑输运过程而忽略化学过程,在顶部电离层,情况大致如此;反之,化 学过程输运过程的时间常数相比,化学过程的时间常数短得多,可以只 考虑化学过程而忽略程输运过程,在 E 层和 F1 层,情况大致是如此。 影响电离层中化学反应速率的因素有多种。一般地讲,参与反应的成分 和密度与反应速率直接有关。此外,参与反应的成分的运动速率和温度 或碰撞频率也影响反应速率。获得反应速率定量的信息相当困难。
z 是约化高度, z ( h hm,o ) / H 。 将 ne( z )对 z 求导数,忽略 的高度变化,可以得到,当
ez cos
时,电子密度取极大值 nm nm,o cos1 / 2 ,
可见,电子密度极大以 cos1 / 2 的形式随天顶角变化。一个具有 这样性质的层称作 -Chapman 层。 在电离层中,E 层和 F1 层的属性最接近 -Chapman 层。
q=(1+)eNeNe=(1+)eNe2 由此可见,存在负离子时,生成率平方根仍然正比于平衡态电子密度, 仅仅数量上有变化。因子(1+)(e+i)常常称为等效复合系数。=0 对应不存在负离子的情况。
E 层和 F1 层
E 层电子密度峰值大约出现在 105 到 110km 高度。
E 层的形成与穿透较深、吸收不是很强的那部分太阳辐射有关。在
无线电波段划分及传播方式

无线电波段划分及传播方式频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。
电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。
无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段.根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别.光速÷频率=波长无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波短波1,000,000~10,00010,000~1,0001,000~100100~~1010~11~0。
10.1~0。
010.01~0。
001甚低频低频中频高频甚高频特高频超高频极高频3~30KHz30~300KHz300~3,000KHz 3~30MHz30~300MHz 300~3,000MHz 3~30GHz30~300GHz超短波米波分米波厘米波毫米波电波主要传播方式电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。
传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。
根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。
当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。
那些走直线的电波就过不去了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
h( f p )
2 0
h' (
f
p
sin
)d
(6-41)
arcsin f f p
(2)克尔索(Kalso)方法
令
2 0
h' (
f
p
sin
)d
h' ( f p sin i )i
i
i 取 0 到 π/2内的多个间隔时,多项式
有最佳近似。
引入 fi f p sin i
得到
h( f p )
Ionogram’s characteristics
例:设电离层中,对于h > h0 的高度处的等离子
体频率为fp2= (h-h0), 是常数,试计算出电离
层的虚高h‘,真高hr和相 高hp,并比较它们的大 小。
相高 < 真高 < 虚高
三、垂直电离图分析
1、模型法(比较法)
以抛物模型为例。
Nm Ne Nm
• The frequencies at which this occurs are called the critical frequencies. The critical frequency of each layer is scaled from the asymptote, and the virtual height of each layer is scaled from the lowest point on each curve
6 Nmax
跳距、高/低角射线
5 4
This page reports the real time ionograms recorded in Gibilmanna by the new Advanced Ionospheric Sounder (AIS). The critical frequency foF2 and MUF(3000)F2 are scaled by Autoscala program. The AIS and Autoscala were developped at the INGV. This page is updated every 15 minutes.
(2)谐振
等离子体谐振 磁回旋谐振
fp
1
2
Nee2
0 me
fH
1
2
eB0 me
上混合He
§6.4 斜向传播
斜向传播——无线电波以同垂直方向成一定角 度(非零)斜向入射到电离层后的传播称为斜向 传播。
可用频段——能利用电离层进行斜向传播的无 线电波的频率范围。其上限由电离层的最大电子 密度决定,下限由D区吸收、噪声电平和干扰等 因素决定。
§6.3 垂直传播中的几个问题
二、电离层垂直探测
1、探测原理
1) 0 点为反射点 2) 与N, f 等量有关 3) h' 1 c
2 4)h' ~ f
2、频高图
h' ~ f的函数 曲线称为频高图。
Ionospheric Station of Gibilmanna
Latitude 37.9 N XXXX Longitude 14.0 E Istituto Nazionale di Geofisica e Vulcanologia (INGV)
hm Ym
h
2
或
2
Ne Nm
1
hm Ym
h
Nm : 最大电子浓度 hm : 最大电子浓度对应的高度 Ym : 层的半厚度
由推导的结果可得:
hm h' f 0.834 fc
以及
hm
1 2
Ym
h' (0.648 fc )
1 hm 2 Ym h' (0.925 fc ) 即
Ym h' (0.925 fc ) h' (0.648 fc )
Characteristics
• Each ionospheric layer shows up as an approximately smooth curve, separated from each other by an asymptote at the critical frequency of that layer.
2、空间分辨率与频率分辨率
• 近地轨道上卫星的水平速度近似为5-10km/s • 脉冲重复频率为30Hz的顶探器,在两脉冲之间时 间间隔内可移动160-330m.
3、顶部电离层图
(1)低截止频率与等离子体频率的关系
o波
f p fos
x波
f p f xs ( f xs fH )
z波
f p fzs ( fzs fH )
• The upwardly curving sections at the beginning of each layer are due to the transmitted wave being slowed by, but not reflected from, underlying ionisation which has a plasma frequency close to, but not equal to the transmitted frequency. For frequencies approaching the level of maximum plasma frequency in a layer, the virtual height tends to infinity, because the pulse must travel a finite distance at effectively zero speed.
2、直接积分法
(1)积分反演表达式
h'( f )
hr 0
'dh(
f
p
)
(6-38)
h'( f ) hr
hr 0
(
'
1)dh(
f
p
)
hr
Nr '1 dN
0 dN
dh
(6-39)
可将 μ’ 的主要特性表示为:
'
M
1
Ne
Nr
1
2
(6-40)
通常M=1,这时,方程(6-38)是阿贝尔方 程,其解是
1 n
n i 1
h'( fi )
(6-42)
再由公式
Ne
4
2 0 me
e2
f p2 1.24 1010 f p2
计算出Ne随高度的变化值,即得到电离层 的电子浓度剖面。
[m3 ]
例:用直接反演法求电子浓度。
四、顶部电离层探测
1、顶部电离层探测的内容
主要探测电离层峰到卫星(或火箭)探测器之间 的空间的电子浓度分布。