机械制图中两直线的相对位置

合集下载

机械制图——第一章投影法和点、线、平面的投影

机械制图——第一章投影法和点、线、平面的投影
表示重影点时,看不见点的投影,其代号用圆括号括起来,例 如上面所述的C点的正投影看不见,可表示为a’(c’)。
两个空间的点,发生重影的条件: 两对坐标值相等,一对坐标值不相等.
Xa = Xc Za = Zc Ya > Yc
a'(c') Yc
Za/Zc C A
c" a"
c Ya
a Xa/Xc
a'(c') Za/Zc
(三)两点的相对位置
如图1-8所示,两个点的投影沿左右、前后、上下三个方向 所反映的坐标差,即这两个点对应投影面W、V、H的距离差, 能反映两点的相对位置;反之,若已知两点的相对位置和其中 一点的投影,也能作出另一点的投影。
两点的相对位置
A(XA,YA,ZA) 和 B(XB,YB,ZB) 两点的相对位置: 如:b’→ a’ : a’(△X=Xa-Xb ,△Z =Za-Zb )
投影法分为两类: 中心投影法 平行投影法(称平行光源)
二、中心投影法
如图所示,点 S(投射中心)射 出过A点射线,在 投影面 P形成 a点的投影图案, 该方法称为:
中心投影法。
三、平行投影法
如图所示,投射线(由平行光源)平行投射,在投影面P形 成的投影图案,称为平行投影法。
平行投影法又可分为:
正投影法:投影线(平行光源)垂至于投影面的投影法
例:过C点作水平线CD与AB相交。
c●
k
a
b d
a
d
先作正面投影
k c●
b
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
c′
O
a′
AC
d
a

机械制图-第2章-点-直线-平面投影习题答案

机械制图-第2章-点-直线-平面投影习题答案

2-33 过点A作正平线AM与△BCD平行并与△EFG 相交,求出交点K,并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-34 求两平面的交线MN并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-35 求两平面的交线MN并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案


( 是)

( 是)

( 是机)械制图-第2章-点-直线-平面投影 ( 否 )
习题答案
2-25 过点D作正平线DE平行于△ABC。
机械制图-第2章-点-直线-平面投影 习题答案
2-26 △ABC平行于直线DE和FG,补全△ABC的水平投影。
机械制图-第2章-点-直线-平面投影 习题答案
2-27 判断下列各图中的两平面是否平行。
2-30 求直线EF与△ABC的交点K并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-31 求直线EF与△ABC的交点K并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-32 过点A作直线AB与直线CD平行并与△EFG 相交,求出交点K,并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
机械制图-第2章-点-直线-平面投影 习题答案
2-6 在直线AB上取一点C,使其到H及V面的 距离相等。
机械制图-第2章-点-直线-平面投影 习题答案
2-7 标出交叉二直线上的重影点并判别可见性。
机械制图-第2章-点-直线-平面投影 习题答案
2-8 判断两直线的相对位置(平行、相交、交叉、垂直相交、 垂直交叉)并将答案填写在下面的括号内。
2-14 作直线EF平行于OX轴,并与直线AB、CD相交 (点E、F分别在直线AB、CD上)。

机械制图直线与点投影

机械制图直线与点投影

⒈ 两直线平行
V
d
c a
A C
a
b B
D
c
b
d
H
d b c
a
X
O
a
b
c
d
空间两直线平行,则其各同名投影必 相互平行,反之亦然。
例:判断图中两条直线是否平行。
① b
d
a
c
ac

b c
d
a
d b c
b
da
b d
a c
c a
d b
AB与CD平行。
对于一般位置直线, 只要有两组同名投影互 相平行,空间两直线就 平行。
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
⒉ 两直线相交
交点是两直
V c
b
k
线的共有点
a C A
d K
B D
X
O
a
d
c
k
b
H
c k a
b d
a
d
ck
b
若空间两直线相交,则其同名投影必
相交,且交点的投影必符合空间一点的投
影特性。
例1:过C点作水平线CD与AB相交。
第三章 直线与点投影
直线的投影
直线的投影仍为直线,特殊情况下为一点。
直线的投影
a b c(d)
直线的投影仍为直线,特殊情况下为一点。
直线对投影面的相对位置
一、特殊位置直线 1.直线平行于一个投 影面 (1)水平线 (2)正平线 (3)侧平线 3.从属于投影面的直线
2.直线垂直于一个投影 面
(1)铅垂线 (2)正垂线

机械制图教程第10讲-直线的投影

机械制图教程第10讲-直线的投影

机械制图教程第10讲-直线的投影来这里学习机械技术前沿!课题:1、直线上点的投影2、两直线的相对位置3、直角投影定理课堂类型:讲授教学目的:1、讲解直线上点的投影特性2、讲解两直线各种相对位置(平行、相交、交叉)的投影特点3、讲解用直角投影定理教学要求:1、理解并掌握直线投影的定比性的解题方法2、会根据两直线的投影判断它们的相对位置,并熟练掌握两直线平行、相交的作图问题3、理解并掌握直角投影定理的特点和解题思路教学重点:1、两直线各种相对位置(平行、相交、交叉)的投影特点2、直角投影定理教学难点:利用直角投影定理图解空间几何问题教具:自制的三投影面体系模型教学方法:例题辅助讲解教学过程:一、复习旧课1、三种位置直线(包括七种类型)的投影特性。

尤其注意:实长和倾角的判断。

2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。

二、引入新课题上次课我们学习了三种位置直线的投影特性,本次课我们继续学习空间直线的其他投影特性。

三、教学内容(一)直线上点的投影1、直线上点的投影点在直线上,则点的各个投影必定在该直线的同面投影上,反之,若一个点的各个投影都在直线的同面投影上,则该点必定在直线上。

举例:如图2-27所示直线AB上有一点C,则C点的三面投影c、c′、c″ 必定分别在该直线AB的同面投影ab、a′ b′、a″b″ 上。

图2-27 直线上点的投影2、直线投影的定比性直线上的点分割线段之比等于其投影之比,这称为直线投影的定比性。

在图2-27中,点C在线段AB上,它把线段AB分成AC 和CB两段。

根据直线投影的定比性,AC:CB = ac:cb = a′ c′:c′ b′ = a″c″:c″b″ 。

3、讲解例题(例2-6)如图2-28(a),已知侧平线AB的两投影和直线上K点的正面投影k′,求K点的水平投影k 。

(a)题目(b)解法1 (c)解法2图2—28 求直线上点的投影(二)两直线的相对位置两直线的相对位置有平行、相交、交叉三种情况。

机械制图课件:第5章 相对位置

机械制图课件:第5章 相对位置
b
b
a
a
c
c
m
m
n
n
k
k
2. 判断直线的可见性
特殊位置线面相交,根据平面的积聚性投影,能直接判别直线的可见性。
k
b
b
a
a
c
c
m
m
n
n
k
例1 求直线MN与平面ABC的交点K并判别可见性。
空间及投影分析:
平面ABC是一铅垂面,其水平投影积聚成一条直线,该直线与mn的交点即为K点的水平投影。
V
P
A
K
L
D
C
B
E
H
a
a
d
c
b
d
c
b
e
e
k
n
k
n
X
O
定理2:若一直线垂直于属于平面的水平线的水平投影;直线 (逆) 的正面投影垂直于属于平面的正平线的正面投影、则 直线必垂直于该平面。
a
c
a
c
n
n
k
f
d
b
d
b
f
k
V
P
A
K
L
D
C
B
E
H
X
O
a
c
a
c
n
n
m
f
d
b
d
b
f
m
例6 平面由 BDF给定,试过定点M作平面的垂线。
要讨论的问题:
① 求两平面的交线
方法:
⑴ 确定两平面的两个共有点。
⑵ 确定一个共有点及交线的方向。
② 判别两平面之间的相互遮挡关系,即: 判别可见性。

机械制图-点、直线、平面的投影

机械制图-点、直线、平面的投影
特殊位置点的应用
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。

机械制图第3章

机械制图第3章

一、点在三视图中的投影标记
为了标记空间点及其投影,规定空间点用 大写字母表示,空间点的投影用小写字母表示。 如图3-1所示,空间点用A、B、C 、S表示。 点的主视图也称为正面投影,用 a’ 、b’ 、c’ 、 s’ 表示 。点的俯视图也称为水平投影,用 a、 b、c 、s表示。点的左视图也称为侧面投影, 用 a” 、b” 、c” 、s” 表示。



二、直线的投影 1. 各种位置直线的投影特性:各种位置直线的投影特 性今后进行形体线面分析的基础。 2. 直线上的点:直线上的点具有两个特性:①从属性: 点在直线上,点的投影在直线的同面投影上;②定比 性:点分线段之比等于点的投影分线段的投影之比。 三、平面的投影 1. 平面的表示法:有几何元素表示法和迹线表示法; 2. 各种位置平面的投影特性:各种位置平面的投影特 性今后进行形体线面分析的基础。
第三章 点、直线、面的投影
导读: 本章主要介绍立体上各种点、线、面的投影特 性。介绍它们的投影规律和作图方法,初步建立空 间概念,为进一步学习物体的三视图打下基础。 学习目标: 通过本章学习,读者应掌握立体上各种点、线、 面的投影的投影规律。
第一节 点的投影
点是构成空间形体最基本的要素。空 间两点确定一直线,不在一直线上的三点 确定一平面,若干个面又构成形体。为便 于分析物体三视图中点、线、面的投影关 系,常需要在三视图中标出物体某些特殊 点的投影标记。
投影面平行线的投影特性:


在两端点等距的投影面上(在直线所平 行的投影面上),投影反映线段的实长, 且该投影反映该直线对另外两个投影面 的倾角大小。 在另外两个投影面上,线段的投影为缩 短的线段,且分别平行于两条相应的投 影轴(构成直线所平行的投影面的两条 投影轴)。

《机械制图》教案——第二章-3 直线、平面的相对位置关系

《机械制图》教案——第二章-3 直线、平面的相对位置关系

直线、平面的相对位置关系教学目的要求:研究直线与平面以及平面与平面的相对位置关系在投影图中的投影特性和基本作图方法。

包括:平行、相交和垂直。

教学重点难点:相交关系的作图方法与步骤,及可见性的判断,线、面相对位置综合作图。

学时:3§ 1平行关系1.1直线与平面平行几何条件:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面,反之亦然。

投影:如果直线的投影与平面内任意一直线的同面投影平行,在空间则直线与平面平行。

根据此定理,我们可以在投影图上判断直线与平面是否平行,并解决直线与平面平行的作图问题。

作图:如图5-1所示,已知b’d’∥e’f’,bd∥ef,且BD是ABC平面上的一直线,因此,直线BD∥ΔABC。

图5-1例1:过点K作一水平线,使之平行于ΔABC(图5-2)解:①在ΔABC上作一水平线AD。

(先作正面投影 aˊdˊ∥X)②过K点作直线KL∥AD。

(kl∥ad,kˊlˊ∥aˊdˊ)直线KL即为所求。

图5-2例2:过点K作一铅垂面(用迹线表示),使之平行于直线AB解:由于铅垂面的H投影为一直线,所以作铅垂面平行于直线AB,则P H必平行于ab。

1)过k作P H∥ab,与X轴交于P X点。

2)过P X点作P V⊥X轴,则P平面即为所求。

图5-31.2平面与平面平行几何条件:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。

投影:一个平面内任意两条直线的投影分别与另一个平面内两条相交直线的同面投影对应平行,则这两个平面平行。

作图:由于AB∥A1B1,BC∥B1C1,所以平面ABC∥平面A1B1C1,如图5-4所示图5-4两平行平面的同面迹线一定平行,反之,如果两平面的两对同面迹线分别相互平行,则不能确定两平面是相互平行的。

在图5-5中两平面平行,在图5-6中两平面不平行。

图5-5图5-6§2相交关系求直线与平面的交点和两平面的交线是解决相交问题的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d’ cO
方法一作第三投影(略)方法二Fra bibliotek定比性。(略)
方法三:
假定AB、CD平行,则ABCD 共 面,AD 和BC 必相交,
d
作图:
结论: AB、CD 两交叉直线。
本节结束
分析:
a’
f’
若使 EF ∥ AB, 须 ef ∥ ab ;
b’
e’f’∥a’b’ 。
X
e’ O 作图:
b
e
a
f
解题完毕
▪ 空间两直线二相交、,两其同直面投线影相必相交交,且交点的
投影符合点的投影规律。
c’
V
Z c'
b’
k'
a’
b' k' B
C a'
d’ X
O
d' X
K
b
D d
k
O c
A
a
b
d Y
§3-4 两直线的相对位置
一、两直线平行 二、两直线相交 三、两直线交叉
▪ 两直线在空一间平、行两则它直们的线各平组同行面投影必平行
平行 即若AB∥CD
则ab∥cd ; a’b’∥c’d’ 。
V
d' X
Z
a’
c’
A
b’ B
D
CO
b
d
c
a
d’ X
d Y
a’ c’
b’
O b
a c
平行
例1 过点E(e、一e’)、作两直线直∥A线B。平行
k
c a
▪ 既不平行也三不相、交两的空直间两线直交线称叉为交叉。
投影图上的交点是重影点。
不符合投影规律
V
c' Z
b'
(2’ ) 1‘
C
d' B
a' Ⅲ
X

O
b
Ⅰ D
d
Ⅳ Ac
3(4 ) a
b’
(2’) 1‘
3’
c’
d’
4’ a’
X
O
b
2
Yd
1
c 3(4) a
判断两直线的相对位置 例1 判断AB 、EF 两直线的相对位置。
e’
X e
a’ k’ f’
b’
b
b’
k k’ a a’ f
相交
分析:
判断方法:
方法一作第三投影(略)
O
方法二按定比性。
结论: 由于 a’k’ :k’b’ = ak :kb
所以 AB、 EF 相交。
解题完毕
判断两直线的相对位置 例2 判断AB 、CD 两直线的相对位置。
a’
b’ X
a b
交叉
c’
分析: 平行? 交叉? 判断方法:
相关文档
最新文档