(完整版)必修五-解三角形-题型归纳
(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
必修5解三角形知识点归纳总结

第一章解三角形一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 —=—=—=2R (其中R 是三角形外接圆的半径) sin A sin B sinC a + b + c a b c = = = . sin A + sin B + sin Csin A sin B sin C 2)化边为角: a : b : c = sin A : sin B : sin C . a sin A b sin B a sin Ab sin B ,c sin C ,csin C 3)化边为角:a = 2R sin A , b = 2R sin B , c = 2R sin Csin A a sin B b sin A a • —— •sin B b ' sin C c ' sin C c 'abc sin A =——, sin B =——, sin C =—— 2 R 2 R 2 R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理a =空A ;-=把B b sin B c sin C a sin A = ------- ;求出b 与c c sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理a =竺4求出角B,由A+B+C=180o 求出角C,再使用正 b sin B弦定理a = sn A 求出c 边 c sin C 4.△ABC 中,已知锐角A,边b,则①a < b sin A 时,B 无解;②a = b sin A 或a > b 时,B 有—个解③b sin A < a < b 时,B 有两个解。
2.变形:1) 4)化角为边: 5)化角为边:如:①已知A :60。
必修五-解三角形-题型归纳

一.构成三角形个数问题1.在AABC中,已知a二x,b二2,B=45°,如果三角形有两解,则x的取值范围是()A2<x<2^2B x<2迈C近<x<2D.<x<22.如果满足ZABC二60,AC=12,BC=k的厶ABC恰有一个,那么k的取值范围是3.在AABC中,根据下列条件解三角形,其中有两个解的是()A.£?=Sj£i=10;A.=45^B.£?=60;i=S1;B=60=+-1C.a=l b=5?,4=8D=D.£7=14,h二20,卫二心二.求边长问题4.在A ABC中,角A,B,C所对边a,b,c,若a二3,C二1200,A ABC的面积S二,贝产=()4A.5B.6C.©39D.75.在△ABC中,a二1,B二45o,S二2,则b=A ABC三.求夹角问题6.在AABC中,ZABC二上,AB42BC二3,则sinZBAC=()v10<103帀A.10B.5C.10D.57.在△ABC中,角A,B,C所对的边分别a,b,c,S为表示△ABC的面积,若acosB+bcosA=csinC, S二(b2+c2-a2),贝yZB=()4A.90°B.60°C.45D.30°四.求8.已知△ABC中,内角A,B,兀C所对的边长分别为a,b,c•若a=2b cosA,B=—△ABC的面积等于(A.—8B.—619.锐角AABC中,角A、B、C的对边分别是a、b、c,已知cos2C二—「4 (I)求sin C的值;(II)当a=2,2sin A=sin C时,求b的长及AABC的面积.10.如图,在(1)求AD边的长;(2)求AABC的面积.兀11.(本小题满分12分)已知A ABC中,角A,B,C对边分别为a,b,c,已知c=2,C=丁.(1)若AABC的面积等于j3,求a,b(2)若sinC+sin(B一A)=2sin2A,求AABC的面积.A.等腰直角三角形 C.等腰三角形B.直角三角形 D.等腰或直角三角形兀12.在AABC 中,角A,B,C 对边分别为a,b,c 已知C =-.若a=2,b =3,求AABC 的外接圆的面积;五.判定三角形形状问题13.在A ABC中,a,b,c分别为角A ,B ,C所对边,若a=2b cos C,则此三角形一定是(111 14.A A BC 中三边上的高依次为右,:,则A ABC 为()13511A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形15.在AABC 中,若0<tan A-tan B <1,那么AABC 一定是() A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定Ba +c16. 在△ABC 中,cos 2二,(a,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为22c()A.正三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形word 格式-可编辑-感谢下载支持321.如图,在AABC 中,血Z B =一,AB =8,点D 在BC 边上,且CD =2cos Z ADC =1.7ab17.在AABC 中,如果=,则该三角形是cosBcosAA.等腰三角形B.直角三角形C.等腰或直角三角形D.以上答案均不正确六.综合问题18.在锐角厶ABC 中,a,b,c 是角A,B,C 的对边,且J3a =2csin A . (1)求角C 的度数;_.3:'3 (2)若c=、门,且△ABC 的面积为一-—,求a +b 的值。
(完整版)必修5_解三角形知识点归纳总结,推荐文档

2)三角形三边关系:
两边之和大于第三边:
,
,
;
两边之差小于第三边:
,
,
;
3)在同一个三角形中大边对大角: A B a b sin A sin B
4) 三角形内的诱导公式:
sin( A B) sin C, cos( A B) cos C, tan( A B) tan C,
tan
(3)tan(α±β)=1 ∓ tan αtan β.
6) 二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α.
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
(3) sin2 1 cos 2 ; cos2 1 cos 2
2
2
7) 三角形的五心:
A
2
B
tan(
2
C 2
)
sin(
2 cos(
C) 2 C)
cos(C ) 2
sin(C )
22
2
5) 两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β.
(2)cos(α±β)=cos αcos β∓sin αsin β. tan α ± tan β
sin A sin B sin C
2.变形:1)
abc
a b c .
sin A sin sin C sin A sin sin C
2)化边为角: a : b : c sin A : sin B : sin C ;
a sin A ; b sin B ; a sin A ; b sin B c sin C c sin C
例:已知边 a,b,A,
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
必修五解三角形常考题型

必修五解三角形常考题型1.1 正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC 中,已知A:B:C=1:2:3, 求a :b :c.例2在ABC 中,已知c= 2+ 6 ,C=30°,求a+b 的取值范围。
考察点2:利用正弦定理判断三角形形状例3 在△ABC中, 2a ·tanB=2b ·tanA ,判断三角形ABC的形状。
例 4 在△ABC中,如果lg a lgc lgsin B lg 2 ,并且B 为锐角,试判断此三角形的形状。
考察点 3:利用正弦定理证明三角恒等式 例 5 在△ABC 中,求证222222a b b c c acos A cos B cos B cos C cos C cos A0 .例 6 在△ABC 中,a,b,c 分别是角 A,B,C 的对边, C=2B ,求证2 2c b ab .考察点 4:求三角形的面积例 7 在△ABC 中,a,b,c 分别是三个内角 A,B,C 的对边,若B 2 5a 2,C,cos , 求425△ABC 的面积 S.例 8已知△ ABC 中a,b,c 分别是三个内角 A,B,C 的对边,△ABC 的外接圆半径为 12,且求△ABC 的面积 S 的最大值。
C,3考察点5:与正弦定理有关的综合问题例9 已知△ABC的内角A,B 极其对边a,b 满足a b a cot A b c ot B, 求内角 C例10 在△ABC中,A,B,C所对的边分别为a,b,c, 且c=10, 的内切圆半径。
c os A b 4cos B a 3,求a,b 及△ABC『易错疑难辨析』易错点利用正弦定理解题时,出现漏解或增解【易错点辨析】本节知识在理解与运用中常出现的错误有:(1)已知两边和其中一边的对角,利用正弦定理求另一边的对角时,出现漏解或增解;(2)在判断三角形的形状时,出现漏解的情况。
(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档

必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构成三角形个数问题
1在 ABC 中,已知a x,b 2,B 45°,如果三角形有两解,则x 的取值范围是( )
A.
2 x 2\f2 B. X 2 血 C . V2 x 2 D. 0x2
2 •如果满足 ABC 60 , AC 12 , BC k 的厶ABC 恰有一个,那么k 的取值范围是
3.在 ABC 中,根据下列条件解三角形,其中有两个解的是(
)
A* CJ = S J fr = 10^ A = 45" E ・ 口 = 60 r £* = S1 B = 6(T * C. a — 7 > £> = 5 ? A - &0=
D ・ 口二 14# 6 - 20 , -4-45"心
求边长问题
A. 5 B
5•在△ ABC 中, a 1,B 450, S ABC 2,则 b = _________________
三. 求夹角问题
6.在
ABC
中, ABC -, AB 2,BC 3,则 sin BAC () 4
10 10
3 10 5 A. 10
B 5
C 10
D
5
7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若
4.在 ABC 中,角 A, B,C 所对边 a,b,c ,若 a 3,C
1200
,
ABC
的面积S
15 3 4
1 2 2 2 acosB bcosA csinC, S -(b c a ),则/ B=()
4
A. 90° B . 60° C . 45° D . 30°
四.求面积问题
&已知△ ABC中,内角A,B, C所对的边长分别为a,b,c.若a 2bcosA, B -,c 1,则
3 △ ABC的面积等于( )
书书书书
A B------
B ■
C i
D i +11
8 6 4 2
A
9.锐角ABC中,角A、B、C的对边分别是a、b、c,已知cos2C j
(i)求sinC的值;
(n)当a 2, 2si nA si nC时,求b的长及| ABC的面积.
10•如图,在四边形ABCD 中,AB 3,BC 7J3,CD 14, BD 7, BAD 120
(1 )求AD边的长;
(2)求ABC的面积.
11.(本小题满分12分)已知ABC中,角A, B,C对边分别为a,b,c,已知c 2,C
(1 )若ABC的面积等于3 ,求a,b
(2)若si nC si n( B A) 2 si n2A,求ABC 的面积.
12 .在ABC中,角A, B,C对边分别为a,b,c已知C 一 .
3
外接圆的面积;
五.判定三角形形状问题
若a 2,b 3,求ABC的
13.在ABC中,a, b , c分别为角A, B , C所对边, a 2bcosC,则此三角形一定是()
A.等腰直角三角形
B.
C.等腰三角形
D.直角三角形
等腰或直角三角形
1 1 1
14. ABC中三边上的高依次为丄,丄,丄,贝U ABC为(
13 5 11
A.锐角三角形 B •直角三角形 C •钝角三角形D
)
•不存在这样的三角形
19.在锐角 ABC 中,内角A,B,C 的对边分别为a,b,c ,且2asi nB ..3b . (1)求角A 的大小;
(2 )若a 4,b c 8,求 ABC 的面积.
15.在 ABC 中,若 0 tanA tanB A.锐角三角形
B .钝角三角形
那么 ABC 一定是 •直角三角形 D
) .形状不确定
16.在△ ABC 中, 2
B a c cos ---
-------- 2 2c
(a , b , c 分别为角A , B , C 的对边),则△ ABC 勺形状 为 A.正三角形
B .直角三角形
()
等腰三角形或直角三角形
D •等腰直角三角形
17•在 ABC 中,如果工一
cosB
.直角三角形
A.等腰三角形
b
cosA'
C
则该三角形是
.等腰或直角三角形
D .以上答案均不正确
六. 综合问题 18.在锐角厶ABC 中, a, b, c 是角 A , B , C 的对边,且,3a 2csin A .
(1)求角C 的度数;
(2)若 C .7
,且△ ABC 的面积为3 3,求a b 的值。
2
20.在VABC 中,角A, B,C 对边分别是a,b,c ,且满足 2c b cos A a sin — B 2
(2)若a 2,VABC 的面积S
—,且b
c ,求b 和c 的值.
(1) 求角A 的大小;
(2) 若a 2,且VABC 的面积为 J3,求b,c .
22•在VABC 中,a,b,c 分别是角A,B,C 的对边,已知3 b 2 c 2 3a 2 2bc .
(1) 求 sin A 的值;
B =
—
AB 8 3
,点D 在BC 边上,且CD 2 ,cos ADC
21.如图,在ABC 中,
(II )求 BD, AC 的长.
(I )求 sin BAD ;
23. (12 分)在厶ABC中,a, b, c 分别是角A, B, C的对边,且2cosAcosC+1=2sinAsinC .
(I)求B的大小;
(n)若a.3 求厶ABC的面积.
24.(本小题满分12分)已知在ABC中,内角A, B, C的对边分别为a, b, c .且
cos A 2cosC2c a
cosB b
(I)求邑匹的值;
sin A
1
(n)若cosB , b 2,求ABC的面积s。
4
25 .(本题满分15分)在ABC中,内角A B, C 所对的边长分别为a, b, c ,
丄A B丄C 4 3
tan ------- tan— ----------- .
2 2 3
(I)求角C的大小;
(n)已知ABC不是钝角三角形,且c 2 3 , sinC sin(B A) 2sin2A,求ABC
的面积•
26.(本题满分13分)在ABC中,内角A,B,C所对的边分别为a,b,c . sin B兰,
2 6 bsin A 6asin C , c 1 .
(i)求a的值和ABC的面积;
(n)求sin(2A )的值.
3。