切线长定理及三角形的内切圆
切线长定理及三角形内切圆

例2 PA、PB是☉O的两条切线,A,B是切点,OA=3. (1)若AP=4,则OP= 5 ; (2)若∠BPA=60 °,则OP= 6 .
A
O
P
B
二、三角形的内切圆及作法
思考
图是一块三角形的铁片,如何在它上面截下一块圆形的用料,并且使 截下来的圆与三角形的三条边都相切?
思路引导:半径为 r 的☉I 与△ABC 的三 边都相切,圆心 I 到三角形三边的距离相 等,都等于 r.
B
C
F O
由BD+CD=BC,可得(13-x)+(9-x)=14.
B
D
C
解得x=4.
因此AF=4,BD=5,CE=9.
归纳总结
你学会了吗?
求三角形内切圆的问题,一般的作辅助线的方法为: 一是连顶点、内心产生角平分线; 二是连切点、内心产生半径及垂直条件.
小试牛刀
1.下列说法错误的是( C ) A.三角形有且只有一个内切圆 B.等腰三角形的内心一定在它的底边的高上 C.三角形的内心不一定都在三角形的内部 D.若I是△ABC的内心,则AI平分∠BAC
24.2.2.3 切线长定理及 三角形内切圆
九年级上
学习目标
1.探索并证明切线长定理. 重点
2.了解三角形内切圆、内心的概念,对比区分内切圆与外接圆的区别
与联系. 难点 3.会运用切线长定理进行计算与证明. 难点
4.能用尺规作图:作三角形的外接圆.
Байду номын сангаас 新课引入
前面我们已经学习了切线的判定和性质,已知⊙O和⊙O外一点P,你能 过点P画出⊙O的切线吗?
A
☉I是△ABC的内切圆,点I是
I
△ABC的内心,△ABC是☉I的外
24.2.2切线长定理和三角形的内切圆(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。
切线长定理及三角形的内切圆—知识讲解(基础)

切线长定理及三角形的内切圆—知识讲解(基础)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015秋•湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【答案与解析】解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键.2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.3421OFD CB A【答案与解析】证明:连结OD 、CD ,AC 是直径,∴OA=OC=OD ,∴∠OCD=∠ODC ,∠ADC=90°,∴△CDB 是直角三角形.∵E 是BC 的中点,∴DE=EB=EC ,∴∠ECD=∠EDC ,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD ⊥ED , ∴DE 是⊙O 切线.【总结升华】自然连接OD ,可证OD ⊥DE. 举一反三:【变式】已知:如图,⊙O 为ABC ∆的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .求证:DA 为⊙O 的切线.OFD CBA【答案】证明:连接AO .∵ AO BO =,∴ 23∠=∠.∵ BA CBF ∠平分,∴ 12∠=∠. ∴ 31∠=∠ . ∴ DB ∥AO .∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒. ∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线.3.如图,正方形ABCD 边长为4cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过A 作半圆的切线,与半圆相切于F 点,与DC 相交于E 点,则△ADE 的面积( )A.12B.24C.8D.6【答案】D;【解析】解:∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S△ADE=AD•DE÷2=3×4÷2=6cm2.【总结升华】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF,EF=EC.类型二、三角形的内切圆4.(2015•靖江市校级二模)如图,在△ABC中,I是内心,O是AB边上一点,⊙O经过B点且与AI相切于I点.(1)求证:AB=AC;(2)若BC=16,⊙O的半径是5,求AI的长.【解题思路】(1)延长AI交BC于D,连结OI,如图,根据内心的性质得∠OBI=∠DBI,则可证明OI∥BD,再根据切线的性质得OI⊥AI,则BD⊥AD,加上AI平分∠BAC,所以△ABC为等腰三角形,得到AB=AC;(2)由OI∥BC,得到△AOI∽△ABD,得到比例式,再根据勾股定理求得2232 3AB BD-=,于是就可得.【答案与解析】解:(1)延长AI交BC于D,连结OI,如图,∵I是△ABC的内心,OCBA∴BI 平分∠ABC,即∠OBI=∠DBI, ∵OB=OI,∴∠OBI=∠OIB, ∴∠DBI=∠OIB, ∴OI∥BD,∵AI 为⊙O 的切线, ∴OI⊥AI, ∴BD⊥AD,∵AI 平分∠BAC,∴△ABC 为等腰三角形, ∴AB=AC;(2)∵OI∥BC, ∴△AOI∽△ABD, ∴==,∴=, ∴AB=,∴AD=22323AB BD -=, ∴AI=•AD=×=.【总结升华】本题考查了三角形的内切圆与内心,等腰三角形的判定和性质,相似三角形的判定和性质等,正确的作出辅助线是解题的关键. 举一反三:【变式】已知如图,△ABC 中,∠C=90°,BC=4,AC=3,求△ABC 的内切圆⊙O 的半径r.OCBA【答案】解:连结OA 、OB 、OC ,∵△ABC 中,∠C=90°,BC=4,AC=3,∴AB=5. 则S △AOB +S △COB +S △AOC =S △ABC ,即11115+4+3=34=12222r r r r ⨯⨯⨯⨯⨯,。
切线长定理及三角形内切圆

如图,一圆内切于四边形ABCD, 且AB=16,CD=10,则四边形 ABCD的周长为
12.已知:如图,⊙O内切于△ABC,∠BOC=105°,
∠ACB=90°,AB=20cm.求BC、AC的长.
15.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°. (1)若AC=12cm,BC=9cm,求⊙O的半径r; (2)若AC=b,BC=a,AB=c,求⊙O的半径r.
B
PA = PB
∠OPA=∠OPB
O
。
P
A 证明:∵PA,PB与⊙O相切,点A,B是切点 ∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
试用文字语言 叙述你所发现 的结论
∵ OA=OB,OP=OP ∴Rt△AOP≌Rt△BOP(HL) ∴ PA = PB ∠OPA=∠OPB
切线长定理 从圆外一点引圆的两条切线,它
解:∵ AB,BC,CD,DA都与⊙O相切, P L,M,N,P是切点,
D N
C
M
∴AL=AP,LB=MB, DN=DP,NC=MC
O A L
∴AL+ LB+ DN+ NC = AP+ MB+DP+MC
B
即 AB+ CD = AD+BC 圆的外切四边形的两组对边的和相等(可做定理用)
练 习: 1、已知⊙O的半径为3cm,点P 和圆心O的距离为6cm,经过点 P P有⊙O的两条切线,则切线长 为______cm。这两条切线的夹 60 度。 角为_____ 2、已知圆外切四边形ABCD 中,AB:BC:CD=4:3:2, 它的周长为24cm。则 AB= 8cm ,BC= 6cm ; CD= 4cm ,DA= 6cm 。
切线长定理与三角形内切圆

基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。
(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
初中:切线长定理及三角形的内切圆—知识讲解(基础)

切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。
1.(2叫湛江校级脚己知PA,PB :5t别切。
于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。
3第2课时 切线长定理与三角形的内切圆

【学习目标】1. 知识技能(1)理解圆的切线的有关性质并能灵活运用.(2)理解切线长及切线长定理.(3)体验并理解三角形内切圆的性质.2. 解决问题通过例题的教学, 培养学生解决实际问题的能力和应用数学的意识.3. 数学思考(1)通过动手操作、合作交流, 经历圆的切线的性质定理的产生过程.(2)体验切线长定理, 并能正确、灵活地运用.(3)通过作图操作, 经历三角形内切圆的产生过程.4. 情感态度通过动手操作, 反复尝试, 合作交流, 培养探索精神和合作意识.【学习重难点】1. 重点: (1)切线的性质定理、切线长定理.(2)三角形的内切圆.2. 难点:切线性质的灵活运用.课前延伸切线的判定方法:(1)和圆________公共点的直线是圆的切线.(2)和圆心距离等于________的直线是圆的切线.(3)经过________且________的直线是圆的切线.课内探究一、课内探究:1. 如图27-2-131, AB为⊙O的直径, C为⊙O上一点, AD和过点C的切线互相垂直,垂足为D.求证: AC平分∠DAB.2.如图27-2-132, △ABC的内切圆⊙O与BC, CA, AB分别相切于点D, E, F, 且AB =9 cm, BC=14 cm, CA=13 cm, 求AF、BD、CE的长.图27-2-131图27-2-132 图27-2-1333. 如图27-2-133所示, △ABC的内心为I, ∠A=50°, O为△ABC的外心, 求∠BOC 和∠BIC的度数.二、课堂反馈训练1. 如图27-2-134, PA切⊙O于点A, 该圆的半径为3, PO=5, 则PA的长等于________.2.如图27-2-135, ⊙O的半径为5, PA切⊙O于点A, ∠APO=30°, 则切线长PA为________.(结果保留根号)图27-2-134图27-2-135 图27-2-1363.如图27-2-136所示, PA, PB, DE分别切⊙O于点A, B, C, 如果PA=8 cm, 求△PDE的周长.。
切线长定理和三角形的内切圆

切线长定理和三角形的内切圆切线长定理和三角形的内切圆,这俩玩意儿看上去有点高深莫测,但其实嘛,真没那么复杂,大家来轻松聊聊。
想象一下,你在一个阳光明媚的下午,跟朋友们一起聚会,话题从生活琐事聊到数学,大家哈哈大笑,结果你一不小心提到了这两样东西。
你朋友们肯定会瞪大眼睛,疑惑地问:“这是什么鬼?”别急,让我来给你解解惑。
切线长定理就像是数学界的小秘密。
啥意思呢?就是在一个圆外,如果你画一条切线,这条线跟圆的交点只有一个,那就有点意思了。
这条切线的长度与从圆心到切线的距离有关。
大家可能会想,听起来好像没啥用。
切线长定理就像生活中的一条真理,适用性非常广。
举个例子,如果你想用一根绳子围住一个圆,绳子长短跟你离这个圆的远近有直接关系。
这种简单的道理其实在很多地方都能找到,比如你在超市排队,越靠近收银台,越容易看到商品,哈哈,明白了吗?说到内切圆,它就像是三角形里的小秘密武器。
内切圆的意思就是一个圆,它刚好能碰到三角形的三条边。
听上去是不是很神奇?这就好比你想象一下,一个小朋友在玩捉迷藏,躲在一个房间的正,四周都有墙壁,但它总能找到一个最舒服的位置,这就是内切圆的感觉。
三角形的每一条边都可以算得上是“朋友”,而这个内切圆就像是它们的聚会地点。
更妙的是,内切圆的半径跟三角形的面积和周长有着密不可分的关系。
这就像是你在聚会中,跟朋友们聊得开心的同时,气氛越好,大家就越会聚在一起,形成一种共鸣。
再说切线长定理和内切圆的关系。
这俩玩意儿就像是一对黄金搭档。
在三角形里,如果我们在三角形的每一边画切线,切线的长度与内切圆的半径又有妙不可言的联系。
简而言之,切线的长度告诉你这个圆有多大,而内切圆又是三角形的灵魂。
大家可以想象,内切圆就像是三角形的情感核心,而切线则是把这情感包围起来的纽带。
它们互相依存,缺一不可。
我们可以通过简单的图形来理解这一切。
想象一下,一个大三角形,中间有一个小圆,圆正好包裹住三角形的每一条边。
你站在三角形的某个顶点,伸出手,发现能碰到内切圆的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切?角平分线的判定和性质是什么?
如图,已知⊙O外一点P,你能作几条直线 与⊙O相切?
用尺规过作图 A
o
· o′
p
B
通过作图你能发现什么呢?
1.过圆外一点作圆的切线可以作两条 2、A、B关于直线PO对称。
PO=13, • OB=5,∠AOB=150°,则∠APO= ,
PA= 。
3. 三角形的内切圆
• ①内切圆相关概念 • 如图3,与三角形各边都 的圆叫做三角 • 形的 ,三角形的内切圆的圆心叫 • 做三角形的 . • 这个三角形叫做圆的 .三角形的内
心就是三角形三条内角 的交点. • 即:如图3,如果⊙I与△ABC的三边 , • 则⊙I叫做△ABC的 ,圆心I叫做
如图,P为⊙O 外一点,PA、PB分别切⊙O于A、B两点,
OP交 ⊙O于C,若PA=6,PC=2 ,求3 ⊙O的半径OA
及两切线PA、PB的夹角。
解:连接OA,则OA⊥AP
A
在Rt△AOP中,设OA=x 则OP= x+2 3
O· c
·P
∴OA2+PA2=OP2
即 x2+62=(x+2 3)2
B
解得x=2 3 ,即OA=OC=2 3
CD的长。
y4
• 小结: • 1、切线长定理:从圆外一点可以引
圆的两条切线,切线长相等。这一点
• 与圆心连线平分两条切线的夹角。 • 2、三角形的内切的内心是三角形三条
角平分线的交点,它到三角形三条边
• 的距离相等。
∴OP⊥AB,且OP平分AB
A⌒D与B⌒D 相等吗?
从圆外一点引圆的两条切线,圆心和这一 点的连线垂直平分切点所成的弦;平分切 点所成的弧。
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点. 直线 OP 交 ⊙O 于点 D、E,交 AB 于 C.
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形.
∴OP=4 3 在Rt△AOP中,OP=2OA ∴∠APO=30° ∵PA、PB是⊙O的切线
∴∠APB=2∠APO=60°
∴⊙O的半径为2 3,两 切线的夹角为60°
例2 如图,已知:在△ABC中,∠B=90°,O是 AB上一点,以O为圆心,OB为半径的圆交AB
于点E,与AC交于点D。求证:DE∥OC C
②内切圆的作法
• 已知△ABC,画它的内切圆⊙O • 作法: • 1、分别作∠A,∠B的 ,两平分线交
于点O • 2、过点O作AB的垂线段,交AB于D • 3、以点 为圆心,以 的长为半径,画
圆
• 例1:△ABC 的内切圆⊙O 与AC、AB、 BC分别相切于点D、E、F,且AB=5厘 米,
• BC=9厘米,AC=6厘米, 求AE、BF和
(3)如果 PA = 4 cm , PD = 2 cm , 求半径 OA 的长.
解:(1) OA⊥PA , OB⊥PB , OP⊥AB
A
(2) △OAP ≌△ OBP , △OCA≌△OCB
△ACP≌△BCP.
E
O
D
C
P
(3) 设 OA = x cm , 则 PO = PD + x = 2 + x (cm)
在 Rt△OAP 中,由勾股定理,得
B
PA 2 + OA 2 = OP 2
即 4 2 + x 2 = (x + 2 ) 2
解得 x = 3 cm
所以,半径 OA 的长为 3 cm.
2: 问题 (1)若PO与圆相分别交于C、D,连接 AB于PO交于点E,图中有哪些相等的线 段?有哪些相等的角,有哪些相等的 弧?有哪些互相垂直的线段?有哪些 全等的三角形。 (2)你能说说在什么情况下适用切线 长定理?
经过圆外一点作圆的。
从圆外一点引圆的两条切线,切线长相等以及这一点与圆心 的连线平分两条切线的夹角
∵ PA、PB是⊙O的切线,
A
A、B为切点
∴OA⊥PA,OB⊥PB
o
·
p
又∵OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP
B
∴PA=PB,∠APO=∠BPO
证明:连接BD.
∵∠ABC=90°,OB为⊙O的半径
12
D
∴CB是⊙O的切线
∵AC是⊙O的切线,D是切点
· A E O B
∴CD=CB,∠1=∠2
∴OC⊥BD
∵BE是⊙O的直径
∴∠BDE=90°,即DE⊥BD
∴DE∥OC
练习:
• 1、如右图,PA,PB分别为⊙O为的切线, PA=3cm,
• ∠APB=60°,则∠APO= ,PB= , • ∠AOP= • 2、如图,PA,PB分别为⊙O为的切线,
切线长定理:
从圆外一点可以引圆的两条切线,切线长相等, 这一点和圆心的连线平分两条切线的夹角。
A
∵ PA、PB是⊙O的切线, A、B为切点
o
·C D
p
∴PA=PB,∠APO=∠BPO
B
如图,若连接AB,则OP与AB有什么关系?
∵ PA、PB是⊙O的切线, A、B为切点
∴PA=PB,∠APO=∠BPO