切线长定理和内切圆

合集下载

讲切线长定理及角形的内切圆

讲切线长定理及角形的内切圆

七.切线长定理及三角形地内切圆一、教案目标:1、理解切线长地定义及切线长定理,并能够利用切线长定理计算与证明2、理解三角形地内切圆和内心地概念,注意区分三角形地内心与外心二、教案内容1、切线长概念及定理:<1 )切线长地概念:经过圆外一点作圆地切线,这点和切点之间地线段地长,叫做这点到圆地切线长•提问:经过直线外一点可以做圆地几条切线?它们地切线长有什么关系?为什么?<2 线长定理:_________________________________________ . b5E2RGbCAP如图:P为O O外一点,PA、PB分别与O O相切,切点分别为A、B,贝U PA=PB,PO 平分/ APB举例练习:(1) 如上图,连接AB,(1>写出图中所有地垂直关系;(2>写出图中所有地全等三角形(3>如果PA=4cm,PD=2cm,求半径0A地长•<2 ) 如图,PA,PB分别为O 0地切线,切点分别为A、B,/P=60 ° ,PA =10 cm,那么AB 地长为•(3) 如图,PA,PB分别为O O地切线,AC为直径,切点分别为A、B,N P=70 ° ,则N C = .2、三角形地内切圆与三角形地内心<1)概念:与三角形各边都相切地圆叫做三角形地________________内切圆地圆心叫做三角形地__________ .地交点;<2 )三角形地内心是三角形地 ________________________________p1EanqFDPw它到三角形三边地_____________ 相等,是内切圆地__________ •提问:三角形地内心在三角形地 _____________ ,与三角形地形状______________举例练习:(1) 如图若/ A=40o,M分别为△ ABC地外心、内心、垂心时,求/ BMC地度数.(2>如图,△ ABC中,E是内心,/ A地平分线和△ ABC地外接圆相交于点D,求证:DE=DB.练习1、如图,PA , PB分别为O O地切线,切点分别为A、B , PA =10 ,在劣弧AB上任取一点C ,过C作O O地切线,分别交PA, PB于D , E ,则厶PDE地周长是DXDiTa9E3d2.如图,PA 切O O于A , PB 切O O 于B , /APB =90° , OP =4, 地半径为_________ .3.如图,O O半径为1, P为O O外一点,切O O于点A, PA =1, AB是OO地弦,且AB = 42 , PB地长为______________ .4.如图,.APB =60 ° ,半径为2地O O切PB于P点,若将O O在PB上向右滚动,则当滚动到O O与PA也相切时,圆心O移动地水平距离是 _________ . RTCrpUDGiT5•如图,PA、PB分别与O O相切于A、B两点,C是O O上一点,且-ACB =55 ,则• P 等于<)A. 70B. 65C. 110D. 5511.如图,Rt △ ABC 中,/ C =90 ° , E 为AC 上一点,以CE 为直径地O O 切AB 于D 点,AD = 4, AE =2.求 BD 地长.A.梯形B.菱形C.矩形D.平行四边形7.如图,AB 、 AC 与O O 相切于点B 、C , . A 二50。

24.2.2切线长定理和三角形的内切圆(教案)

24.2.2切线长定理和三角形的内切圆(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。

第3课时切线长定理与三角形的内切圆(原卷版)

第3课时切线长定理与三角形的内切圆(原卷版)

九年级上册数学《第二十四章 圆》 24.2点和圆、直线和圆的位置关系 24. 第3课时 切线长定理 & 三角形的内切圆◆1、切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长. 【注意】①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. ◆2、切线长定理: 过圆外一点所画的圆的两条切线长相等. ∵ P A 、PB 分别切☉O 于 A 、B , ∴ P A = PB , ∠OP A = ∠OPB .切线长定理为证明线段相等、角相等提供了新的方法.◆1、三角形的内切圆:与三角形各边都相切的圆叫做这个三角形的内切圆. 【注意】一个圆可以有无数个外切三角形,但是一个三角形只有一个内切圆.◆2、三角形的内心:三角形内切圆的圆心叫做这个三角形的内心.这个三角形叫做这个圆的外切三角形. ◆3、三角形内心的性质:三角形的内心就是三角形三条角平分线的交点.三角形的内心到三角形的三边的距离相等.如图,☉I 是△ABC 的内切圆,点 I 是△ABC 的内心,△ABC 是☉I 的外切三角形. ◆4、三角形外心、内心的区别:名称 确定方法 图形 性质POAB外心:三角形外接圆的圆心三角形三边中垂线的交点1、外心到三顶点的距离相等;2、外心不一定在三角形的内部.内心:三角形内切圆的圆心三角形三条角平分线的交点1、内心到三边的距离相等;2、内心在三角形内部.【例题1】(2022秋•潮州期末)如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =8,则△PCD 的周长为( ) A .8B .12C .16D .20【变式11】(2023•怀化三模)如图,AB 、AC 、BD 是⊙O 的切线,切点分别是P 、C 、D .若AB =10,AC =6,则BD 的长是( ) A .3B .4C .5D .6【变式12】如图,⊙O 为△ABC 的内切圆,AC =10,AB =8,BC =9,点D ,E 分别为BC ,AC 上的点,且DE 为⊙O 的切线,则△CDE 的周长为( ) A .9B .7C .11D .8【变式13】(2022秋•南沙区校级期末)如图,四边形ABCD 是⊙O 的外切四边形,且AB =8,CD =15,则四边形ABCD 的周长为 .【变式14】(2022秋•红旗区校级期末)以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点F ,交AB 边于点E ,若△CDE 的周长为12,则直角梯形ABCE 周长为( ) A .12B .13C .14D .15【变式15】如图,P A 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交P A 、PB 于点E 、F ,已知P A =12cm ,∠P =40°OCBAO CBA①求△PEF的周长;②求∠EOF的度数.【变式16】如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.【例题2】(2022秋•东城区期中)如图,已知⊙I是△ABC的内切圆,点I是内心,若∠A=28°,则∠BIC等于()A.99°B.102°C.104°D.152°【变式21】(2023•东安县模拟)如图,在△ABC中,∠A=70°,点I是内心,则∠BIC的大小为()A.130°B.140°C.105°D.125°【变式22】如图所示,已知⊙I是△ABC的内切圆,D、E、F是切点,∠C=60°,∠DIF=140°,则∠B为()A.40°B.50°C.60°D.80°【变式23】如图,在△ABC中,∠B=50°,⊙O是△ABC的内切圆,分别切AC,AB,BC于点D,E,̂上一点,则∠EPF的度数为()F,P是DFA.50°B.55°C.60°D.65°【变式24】(2023•聊城)如图,点O是△ABC外接圆的圆心,点I是△ABC的内心,连接OB,IA.若∠CAI=35°,则∠OBC的度数为()A.15°B.17.5°C.20°D.25°【变式25】(2023•陇县一模)如图所示,△ABC内接于⊙O,点M为△ABC的内心,若∠C=80°,则∠MAN的度数是()A.50°B.55°C.60°D.80°【例题3】(2023•青海一模)如图,⊙O 与△ABC 的边AB 、AC 、BC 分别相切于点D 、E 、F ,如果AB=4,AC =5,AD =1,那么BC 的长为 .【变式31】(2022秋•同心县期末)如图,⊙O 是△ABC 的内切圆,点D ,E ,F 为切点,AD =4,AC =10,BC =14,则BD 长为 .【变式32】如图,①ABC 中,①C =90°,AC =12,BC =5,①O 与①ABC 的三边相切于点D 、E 、F ,则AD 长为( ) A .8B .10C .12D .14【变式33】如图,①O 分别切①ABC 的三条边AB 、BC 、CA 于点D 、E 、F 、若AB =5,AC =6,BC =7,求AD 、BE 、CF 的长.【变式34】已知△ABC 的内切圆半径r =√3,D 、E 、F 为切点,∠ABC =60°,BC =8,S △ABC =10√3,求AB 、AC 的长.【变式35】(2022秋•津南区期末)如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F .(1)若∠ABC =50°,∠ACB =75°,求∠BOC 的度数; (2)若AB =13,BC =11,AC =10,求AF 的长.【例题4】(2023•天心区校级三模)如图,⊙O 是△ABC 的内切圆,若△ABC 的周长为18,面积为9,则⊙O 的半径是( ) A .1B .√2D .2【变式41】已知一个三角形的三边长分别为5、5、6,则其内切圆的半径为( )A .3B .5C .32D .52【变式42】(2023•邵阳县一模)如图所示,⊙O 是等边三角形ABC 的内切圆,若AB =4,则⊙O 的半径是( ) A .√32B .1C .2√33D .2【变式43】(2022秋•齐河县期末)如图,⊙O 的直径AB 为10cm ,弦BC 为8cm ,∠ACB 的平分线交⊙O于点D ,△ADB 的内切圆半径是( ) A .12B .5(√2−1)C .5(√2+1)D .5√22【变式44】如图,这条花边中有4个圆和4个正三角形,且这条花边的总长度AB 为4,则花边上正三角形的内切圆半径为( ) A .√33B .23√3C .1D .√3【变式45】如图,圆O 是△ABC 的内切圆,其中AB =7,BC =5,AC =8,求其内切圆的半径.【例题5】(2023春•江岸区校级月考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆,则花圃的面积为 .【变式51】(2022秋•河西区校级期末)如图,⊙I 是直角△ABC 的内切圆,切点为D 、E 、F ,若AF =10,BE =3,则△ABC 的面积为 .【变式52】等边三角形的边长为4,则它的内切圆面积等于( )A .4πB .43πC .23πD .163π【变式53】如图,在四边形ABCD 中,AB =CB ,AD =CD .若∠ABD =∠ACD =30°,AD =1,则△ABC的内切圆面积 (结果保留π).【变式54】如图,①O 内切于正方形ABCD ,O 为圆心,作①MON =90°,其两边分别交BC ,CD 于点N ,M ,若CM +CN =4,则①O 的面积为( ) A .πB .2πC .4ππ【例题6】(2023•越秀区校级二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆的半径r是()A.2B.3C.4D.无法判断【变式61】(2023•沭阳县一模)直角三角形中,两直角边的长分别为3与4,则其内切圆半径为.【变式62】(2022秋•防城港期末)在《九章算术》卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如图,今有直角三角形勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.【变式63】(2022秋•金华期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=52,CA=2,则⊙O的半径是.【变式64】(2022秋•黔西南州期中)如图,已知O是△ABC的内心,连接OA,OB,OC.若△ABC内切圆的半径为2,△ABC的周长为12,求△ABC的面积.【变式65】(2022秋•天河区校级期末)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.【变式66】如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,半径为r,切点为D、E、F,连接OD,OE,OF.(1)若BC=6,AC=8,则r=;(2)若Rt△ABC的周长为L,面积为S,则S,L,r之间有什么数量关系,并说明理由.【例题7】如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.【变式71】如图,在平面直角坐标系中,已知点A(3√2,0),点B在第一象限,且AB与直线l:y=x2平行,AB长为4,若点P是直线l上的动点,则△P AB的内切圆面积的最大值为.【变式72】(2022秋•鼓楼区校级月考)在Rt△ABC中,∠ACB=90°,BC=6,AC=8,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.【变式73】已知一块等腰三角形钢板的底边长为60cm,腰长为50cm.(1)求能从这块钢板上截得的最大圆的半径.(2)用一个圆完全覆盖这块钢板,这个圆的最小半径是多少?(3)求这个等腰三角形的内心与外心的距离.【例题8】如图,点E是①ABC的内心,AE的延长线和①ABC的外接圆①O相交于点D,过D作直线DG①BC.(1)若①ACB=80°,则①ADB=;①AEB=.(2)求证:DE=CD;(3)求证:DG是①O的切线.【变式81】(2022秋•泗阳县期末)已知,如图,AB为⊙O的直径,△ABC内接于⊙O,BC>AC,点P 是△ABC的内心,延长CP交⊙O于点D,连接BP.(1)求证:BD=PD;(2)已知⊙O的半径是3√2,CD=8,求BC的长.【变式82】(2023•庐阳区校级一模)如图,已知⊙O是Rt△ABC的外接圆,点D是Rt△ABC的内心,BD的延长线与⊙O相交于点E,过E作直线l∥AC.(1)求证:l是⊙O的切线;(2)连接CE,若AB=3,AC=4,求CE的长.【变式83】(2022秋•江夏区校级期末)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.【变式84】如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D过D作直线DG ∥BC.(1)若∠ACB=70°,则∠ADB=;∠AEB=.(2)求证:DE=CD;(3)求证:DG是⊙O的切线.【变式85】如图,已知点D在⊙O的直径AB延长线上,点C为⊙O上,过D作ED⊥AD,与AC的延长线相交于E,CD为⊙O的切线,AB=2,AE=3.(1)求证:CD=DE;(2)求BD的长;(3)若∠ACB的平分线与⊙O交于点F,P为△ABC的内心,求PF的长.。

切线长定理与三角形内切圆

切线长定理与三角形内切圆

基础知识点(一)知识点一:切线长定理1.切线长的概念: 在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长 2. 切线和切线长是两个不同的概念切线是一条与圆相切的直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。

3. 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

注:切线长定理为证明线段相等、角相等提供新的方法4. 方法总结解决有关圆的切线长问题时,往往需要我们构建基本图形。

(1)分别连结圆心和切点(2)连结两切点(3)连结圆心和圆外一点5. 切线,常有六性质1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径; 3切线垂直于过切点的半径; 4、经过圆心垂直于切线的直线必过切点; 5、经过切点垂直于切线的直线必过圆心。

6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

6.示例讲解例1如图,四边形 ABCD 的边AB 、BC 、CD DA 和圆O O 分别相切于点 L 、M 、N 、P ,求证: AD+BC=AB+CD 例2如图,卩是00外一点t PA.PB 分别和00切于点=4 c 叫是箱上任意•点,过点作O"的切线分 别交PA.PB 于点D&求;(I ) A PDE 的周长;例3(2014,云歯曲靖中考・23题* 10分)如图是GO 的切线胡/为切点是OO 的直径,GPR 的延长线相 交丁点“<1)若Z.1-20%求LAPB 的度数.(2)当"为多少度时请说明理由.(二)知识点二:三角形的内切圆1.问题:怎样做三角形内切圆2.方法:作角平分线1.作/ ABC 、 / ACB 的平分线 BM 和CN ,交点为I. ID 为半径作O I. O I 就是所求的圆.3. 定义和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

初中:切线长定理及三角形的内切圆—知识讲解(基础)

初中:切线长定理及三角形的内切圆—知识讲解(基础)

切线长定理及三角形的内切圆一知识讲解〈基础)【学习目标】l.了解切线长定义:理解三角形的内切圆及内心的定义:2.掌握切线长定理:利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理z从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆z与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心z三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点.要点诠释z(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形:(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积户即S=;Pr (S 7'J 三角形的面积P为三角形的周长r为内切圆阳)(3)三角形的外心与内心的区别:名称|确定方法|图形|性质外心(三角形|三角形三边中垂线的外接圆的圆|交点心)AB(1)OA=OB=OC: (2)外心不一定在三角形内部内心(三角形三角形三条角平分线内切圆的圆的交点心)【典型例题】类型一、切线长定理B c(1)到三角形三边距离相等:(2) O A、OB、oc分别平分L'.'.BAC、ζABC、丘ACB:(3)内心在三角形内部.。

1.(2叫湛江校级脚己知PA,PB :5t别切。

于A、B E为劣弧础上一点过E,#,1¥Ji;JJ�交PA于C、交PB于D.(1)若PA吨,求6PCD的周长.(2)若ζP=50°求ζDOC.p【答案与解析】解:(1)连接OE,..PA、PB与圆0相切,:.PA=PB=6,同理可得:AC=CE,BD=DE,6PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12: (2)γPA PB与圆O相切,二ζOAP=ζOBP=90。

《切线长定理》与内切圆

《切线长定理》与内切圆

4.已知:△ABC中,∠A=70º,点O是内心,求 ∠BOC的度数。
A
O
B
C
5、已知△ABC的内切圆分别和BC、AC、AB切于
点D、E、F,BC=9cm,AC=13cm,AB=14cm,求AF、
BD和CE的长。
A
F
E
B
D
C
6.如图△ABC中,∠C=90,AC=6,BC=8,三角 形三边与⊙O均相切,切点分别是D、E、F,求⊙O 的半径。
A
P O
B
如何用尺规通过圆外一点画出圆的切线?
A
OO ·
P
B
1.认识切线长:
过圆外一点作圆的切线,这点和切点之间的线段长叫
做这点到圆的切线长.
A
O
·
P
B
切线与切线长是一回事吗?它们有什么区别与联系呢?
2.研究切线长的性质:A
切线长定理:
过圆外一点
引圆的两条
O
P
切线,它们 的切线长相
B
等。
你还会得到哪些结论?再连接AB呢?
切线长定理与内切圆
圆的性质定理:
圆的切线垂直于过切点的半径.
圆的判定定理:
过半径外端且垂直于这条半径的直线是圆的切线.
是基本思路)
新课导入:
过一点A作⊙O的切线,
1.当点A在圆内时,能画⊙O的切线吗? 2.当点A在圆上时,能画⊙O的切线吗? 3.当点A在圆外时,能画⊙O的切线吗?
1.如何过⊙O外一点P画出⊙O的切线? 如下左图,借助三角板,我们可以画出PA是⊙O的切线. 2.这样的切线能画出几条?
A
F
D
O
CE
B
7.已知四边形ABCD的边AB、BC、CD、DA分别与⊙O

切线长和圆与圆的位置关系

切线长和圆与圆的位置关系

切线长和切线长定理及圆与圆的位置关系一、切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.二、三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形的内切圆半径与三边关系OF ED C BACBA CBAcbacba(1) (2)图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=︒,则()12r a b c =+-、abr a b c=++重难点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目.1.切线长定理及切线性质的应用例题1(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。

(1) 求证:OD ∥BE;(2) 猜想:OF 与CD 有何数量关系?并说明理由。

解:(1)证明:连接OE∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分∴∠AOD=∠EOD=21∠AOE …………2分 ∵∠ABE=21∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF =21CD …………4分 理由:连接OC∵BE 、CE 是⊙O 的切线∴∠OCB=∠OCE …………5分 ∵AM ∥BN∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =21CD ……7分 三、圆与圆的位置关系重点:两个圆的五种位置关系中的等价条件及它们的运用. 难点:探索两个圆之间的五种关系的等价条件及应用它们解题. 易错点:1)圆与圆位置关系中相交时圆心距在两圆半径和与差之间, 2)没有公共点要考虑外离和内含的两种情况 3)有一个公共点要考虑内切与外切两种情况4)两圆相交求的公共弦多对的圆周角,求出圆心距一般都有两种情况圆与圆的位置关系的应用 例题2(2011•绍兴)如图,相距2cm 的两个点A 、B 在直线l 上.它们分别以2cm/s 和1cm/s的速度在l 上同时向右平移,当点A ,B 分别平移到点A 1,B 1的位置时,半径为1cm 的⊙A 1,与半径为BB 1的⊙B 相切.则点A 平移到点A 1,所用的时间为为多少秒?考点:圆与圆的位置关系。

24.切线长定理及三角形的内切圆课件

24.切线长定理及三角形的内切圆课件

作法:
M
1. 作∠ABC 和∠ACB 的平分线
BM 和 CN,交点为 O.
O
2. 过点 O 作OD⊥BC,垂足为 D.

3. 以O为圆心,OD为半径作圆O.
D
CC ☉O 就是所求的圆.
24.2.4切线长定理及三角形的内切圆
知识要点
1. 与三角形三边都相切的圆叫做三角形的内切圆.
2. 三角形内切圆的圆心叫做这个三角形的内心.
问题2 PA 为☉O 的一条切线,沿着直线 PO 对折,设圆上与
点 A 重合的点为 B.
➢ OB 是☉O 的一条半径吗?
A
➢ PB 是☉O 的切线吗?
O
P
➢ PA、PB 有何关系? B
➢∠APO 和∠BPO 有何关系?
(利用图形轴对称性解释)
24.2.4切线长定理及三角形的内切圆
A
要点归纳
切线长定理:
∴PA = PB ,∠OPA=∠OPB.
∴PC=PC.
∴ △PCA ≌ △PCB,
∴AC=BC.
24.2.4切线长定理及三角形的内切圆
典例精析
例1 已知:如图,四边形 ABCD 的边 AB、BC、CD、
DA 与 ⊙O 分别相切于点 E、F、G、H.
D
求证:AB + CD = AD + BC.
G C
解:连接 IB,IC.
A
∵ 点 I 是△ABC 的内心,
∴ BI,CI 分别平分∠ABC,∠ACB.
I
在△IBC 中,
B
C
BIC 180° (IBC ICB)
180° 1 (ABC ACB) 180° 1 (43° 61°)
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“切线长定理”教学设计
【学习目标】
1.通过动手操作、度量、猜想、验证,理解切线长的概念,掌握切线长定理
2.通过对例题的学习,培养分析问题、总结问题的习惯,提高综合运用知识和解决问题的能力,培养数形结合的思想.
情景导入生成问题
旧知回顾:
1.过⊙O内一点P可以引圆的切线吗?如果可以,有几条?
2.过⊙O上一点P可以引圆的切线吗?如果可以,有几条?
3.过⊙O外一点P可以引圆的切线吗?如果可以,有几条?
自学互研生成能力
知识模块一切线长定理
【自主探究】
认真阅读课本P99思考上面内容,完成下列问题:
阅读教材P99第一段话可以得到以下归纳:
归纳:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.
如图,过圆外一点P作两条直线PA、PB与圆相切,切点分别为A、B,连接OA、OB、OP.
(1)判断△PBO与△PAO的形状,并说明理由.
答:△PBO与△PAO均为直角三角形,根据切线的性质.
(2)△PBO与△PAO的关系怎样?根据什么判断的?
答:△PBO与△PAO全等,根据“HL”可判断.
(3)PA与PB、∠APO与∠BPO有怎样的关系?根据是什么?
答:PA=PB,∠APO=∠BPO,根据△PBO与△PAO全等的性质.
归纳:切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两切线的夹角.
范例:已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,∠P=70º.
求(1)△PEF的周长。

(2)∠EOF 的度数
解:略
探究提升:
切线长定理的基本图形研究
写出所有的垂直关系,相等关系
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 切线长定理
当堂检测 达成目标
【当堂检测】
1.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是35°. (第1题图) (第2题图) (第3题图)
2.如图,PA ,PB 分别与⊙O 相切于点A ,B ,⊙O 的切线EF 分别交PA ,PB 于点E ,F ,切点C 在AB ︵上,
若PA 长为2,则△PEF 的周长是4.
提示:根据题意得:AE =CE ,BF =CF ,PA =PB ,所以△PEF 的周长=PE +CE +CF +PF =PE +AE +BF +PF =PA +PB =4.
【课后检测】见学生用书
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。

相关文档
最新文档