立体几何考点专题复习(一)多面体、旋转体
高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)高考立体几何知识点总结一、空间几何体一)空间几何体的类型1.多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形称为多面体的面,相邻两个面的公共边称为多面体的棱,棱与棱的公共点称为多面体的顶点。
2.旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
二)几种空间几何体的结构特征1.棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类底面是四边形,侧棱垂直于底面的棱柱称为直棱柱;底面是矩形的棱柱称为四棱柱;底面是正方形的棱柱称为正四棱柱;棱长都相等的直棱柱称为正方体,棱长都相等的正四棱柱称为正方锥。
1.3 棱柱的性质1)侧面都是平行四边形,且各侧棱互相平行且相等;2)两底面是全等多边形且互相平行;3)平行于底面的截面和底面全等;1.4 棱柱的面积和体积公式直棱柱的侧面积为底周长乘以高,表面积为底面积加上两倍的侧面积,体积为底面积乘以高;其他类型的棱柱的面积和体积公式与直棱柱类似。
2.棱锥的结构特征2.1 棱锥的定义1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征1)平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;2)正棱锥的各侧棱相等,各侧面是全等的等腰三角形。
2.3 棱锥的面积和体积公式正棱锥的侧面积为底周长乘以斜高,表面积为底面积加上侧面积,体积为底面积乘以高除以3;其他类型的棱锥的面积和体积公式与正棱锥类似。
高二-11-多面体与旋转体

1、多面体定义为:由三角形或平面多边形围成的封闭几何体;如:棱柱、棱锥、棱台等几何体都是多面体.2、多面体可以用它的面的数量进行命名,有几个面的多面体就叫做几面体;例如,三棱锥有一个底面和三个侧面,所以是四面体;长方体(四棱柱)有六个面,是六面体.一般地,一个n 棱锥,有一个底面和n 个侧面,所以是n +1面体;n 棱柱或n 棱台有两个底面和n 个侧面,所以是n +2面体;由此可见,面数最少的多面体是四面体,即三棱锥.3、四面体在立体几何中的作用相当于三角形在平面几何中的作用.4、与平面上的正多边形类比,在空间中可以考虑正多面体.如果一个多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的棱的条数都相等,这个多面体就叫做正多面体.有正四面体、正六面体、正八面体、正十二面体、正二十面体共5种.【例1】下列说法正确的是( )A .多面体至少有3个面B .有2个面平行,其余各面都是梯形的几何体是棱台C .各侧面都是正方形的四棱柱一定是正方体D .棱柱的侧棱相等,侧面是平行四边形【难度】★第11讲 多面体与旋转体 知识梳理例题分析 模块一:多面体 ~~~~~~~~~~~~~~~~~~~~~~~~~【例2】“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.将正方体沿交于一个顶点的三条棱的中点截去一个三棱锥,如此截去八个三棱锥得到一个阿基米德多面体,则该阿基米德多面体的棱有条.【难度】★★【例3】图中的十面体的面是由四个正五边形,四个三角形和两个正方形组成的,则图中上正方形面积是下正方形面积的()倍.A.1B.2C.3D.4【难度】★★【难度】★★【例5】如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.【难度】★★1. 由一个平面封闭图形绕其所在平面上的一条定直线旋转一周所形成的空间封闭几何体称为旋转体;这条直线叫做该旋转体的轴.2. 与旋转体类似地可以定义空间中的旋转面:一条平面曲线(包括直线、折线等)绕其所在平面上的一条直线旋转一周所形成的空间图形称为旋转面.3. 圆柱、圆锥和圆台的概念(1)圆柱、圆锥和圆台的定义将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台.(2)与圆柱、圆锥、圆台有关的概念绕着旋转的这条直线叫做轴;垂直于轴的边旋转而成的圆面叫做底面;不垂直于轴的边旋转而成的曲面叫做侧面;无论旋转到什么位置,这条边都叫做母线.模块二:旋转体 ~~~~~~~~~~~~~~~~~~~~~~~~~ 例题分析知识梳理【例1】已知直角梯形ABCD,现绕着它的较长底CD所在的直线旋转一周,所得的几何体包括()A.一个圆柱、一个圆锥B.一个圆柱、两个圆锥C.一个圆台、一个圆柱D.两个圆柱、一个圆台【难度】★【例2】给出以下四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是__________.【难度】★【例3】下列给出的图形中,绕给出的轴旋转一周,能形成圆台的是()A.B.C.D.【难度】★【例4】已知AB是直角梯形ABCD与底边垂直的一腰(如图).分别以AB,BC,CD,DA为轴旋转,试说明所得几何体是由哪些简单几何体构成的?【难度】★★【例5】一个直角梯形的两底长为2和5,高为4,将其绕较长的底旋转一周,求所得旋转体的表面积.【难度】★★【难度】★★【例8】将一个边长为2的正三角形以其一边所在直线为旋转轴旋转一周,所得几何体的表面积为.【难度】★★【例9】已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过点C作l⊥CB,以l为轴将梯形ABCD旋转一周,求旋转体的表面积.【难度】★★【例1】如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5AB BC ==,3CD =.(1)求二面角A DC B −−的大小;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求△ACD 的三边在旋转过程中所围成的几何体的体积.【难度】★★【例2】已知在直角三角形ABC 中,AC BC ⊥,2,tan 22BC ABC =∠=(如图所示)(1)若以AC 为轴,直角三角形ABC 旋转一周,求所得几何体的表面积.(2)一只蚂蚁在问题(1)形成的几何体上从点B 绕着几何体的侧面爬行一周回到点B ,求蚂蚁爬行的最短距离.【难度】★★模块三:旋转体综合问题 ~~~~~~~~~~~~~~~~~~~~~~~~~ 例题分析1. 一个多面体至少有 个面.【难度】★2. 下列说法中,正确的是( )A .底面是正多边形,而且侧棱长与底面边长都相等的多面体是正多面体B .正多面体的面不是三角形,就是正方形C .若长方体的各侧面都是正方形,它就是正多面体D .正三棱锥就是正四面体【难度】★3. 如图,多面体的顶点数是 、棱数是 、面数是 .【难度】★4. 将一个正方体切一刀,可能得到的以下几何体中的种类数为( )①四面体;②四棱锥;③四棱柱;④五棱锥;⑤五棱柱;⑥六棱锥;⑦七面体A .3种B .4种C .5种D .以上均不正确 【难度】★★5. 边长为2的正方形ABCD 绕BC 旋转形成一个圆柱,则该圆柱的表面积为 .【难度】★★师生总结 巩固练习7. 正多面体各个面都是全等的正多边形,其中,面数最少的是正四面体,面数最多的是正二十面体,它们被称为柏拉图多面体.如图,正二十面体是由20个等边三角形所组成的正多面体.已知多面体满足:顶点数-棱数+面数2=,则正二十面体的顶点的个数为( )A .30B .20C .12D .10【难度】★★8. 多面体欧拉定理是指对于简单多面体,其顶点数V 、棱数E 及面数F 间有著名的欧拉公式:2V E F −+=,并且多面体所有面的内角总和为(2)360V −⋅.已知某正多面体所有面的内角总和为3600,且各面都为正三角形,设过每个顶点的棱数为n ,则该正多面体的顶点数V = ,棱数E = .【难度】★★9. 用斜二测画法画一个水平放管的平面图,其直观图如图所示,已知3A B ''=,1B C ''=,3A D ''=,且A D B C ''''∥.(1)求原平面图形ABCD 的面积;(2)将原平面图形ABCD 绕BC 旋转一周,求所形成的几何体的表面积和体积.【难度】★★10. 正多面体也称柏拉图立体,被喻为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求二面角A BF C −−的余弦值.【难度】★★1. 2021年10月,麻省理工大学的数学家团队解决了n 维空间中的等角线问题等角线是组直线,这组直线中任意两条直线所成的角都相等.三维空间中,最大的等角线组有6条直线,它们是连接正二十面体的12个相对顶点形成的6条直线.已知棱长为1的正二十面体,其外接球半径为10254+,则三维空间最大等角线组中,任意两条直线形成的角的大小为 (精确到0.1°)【难度】★★★能力提升【难度】★★★。
《多面体与旋转体》知识点

《多面体与旋转体》知识点1、多面体:(1)棱柱的主要性质:①棱柱的所有侧棱都 ,直(正)棱柱的侧棱长等于 。
②棱柱的每一个侧面都是 形,直棱柱的每一个侧面都是形,正棱柱的各个侧面都是 形。
③棱柱中,过不相邻的两条侧棱的截面都是 形。
(2)填适当的符号,表示下列集合之间的关系:四棱柱 平行六面体 直平行六面体 长方体 正四棱柱 正方体(3)长方体中过一个顶点的三条棱长分别为a 、b 、c,则它的对角线长d= 。
(4)棱锥:① 叫做正棱锥。
②正棱锥各侧棱 ,各侧面是全等的 ,③s s 棱锥截棱锥底=④正棱锥的 、 和 组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面的摄影也组成一个 。
(5)面积,体积公式:s 直棱柱侧= , v 棱柱= ,s 正棱锥侧= , v 棱锥= , 2、旋转体:(1)圆柱:平行于底面的截面是 ,轴截面是 ,s 轴截面= ,(2)圆锥:h, r, l 之间的关系式: 。
s s 圆锥截圆锥底= ,轴截面是 ,s 轴截面= ,(3)圆柱侧面展开图是 ,圆锥侧面展开图是 , s 圆柱侧= = , s 圆柱全= ,v 圆柱= , s 圆锥侧= = , s 圆锥全= ,v 圆锥= ,(4)球:①截面是 ,d, R, r, 之间的关系式 ,②球面上两点的距离:经过两点的大圆在这两点间的一段 的长度。
③ S 大圆= S 球= ,V 球=选择题:1、斜四棱柱的侧面为矩形的个数最多有 ( )A O 个B 1个C 2 个 D3个 2、若棱住的侧面是全等的矩形,则棱柱是( )A .直棱柱B .正棱柱C .正方体D .底面为菱形的直棱柱 3、若长方体的三条棱长分别是3、5、15,则长方体的对角线的长是( ) A .53 B 23 C .3 D .不同于以上答案 4、若两球的表面积之比为1:2,则其半径之比为( )A 1:2B 1:4C 1:2D 1:22 5、侧棱长为2,底面周长为3的正三棱锥的高是( )A .311 B .313 C .339 D .333 6、各棱长均为1的正三棱锥的全面积为 ( )A .2B .3C .2D .367、已知圆柱的轴截面是一个面积为4的正方形,则圆柱的侧面积是( )A .π2B .π4C .π6D .π8 8、圆锥侧面展开图是半径为a 的半圆,这个圆锥的高是( )A .aB .a 22 C .a 3 D .a 23 9、正方体的对角线长为L ,它的全面积是 ( )A .2L 2B .32L C .12L 2 D .18L 210、圆柱的一个底面面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ) A 4πS B 2πS C πS D 3πS11、轴截面为直角三角形的圆锥,侧面积与底面积之比为 ( )A 2:1B 3:1C 5:1D 2:1 12、正四棱锥底面边长为2,侧面积为8,它的体积为( )A334 B 23 C 43 D 83 13、若球的体积增大为原来的8倍,则它的表面积增大为原来的 ( )A2倍 B 4倍 C8倍 D16倍14、一个棱锥的底面面积为Q ,过它的高的中点作平行于底面的截面,那么截面面积 ( )A21Q B 31Q C 41Q D 22Q 15、各棱长均相等的正四棱锥的侧面与底面所成的二面角的余弦值为 ( )A63 B 33 C 23 D 36二、填空题:1、正方体一个面的对角线的长为a ,则正方体的对角线长是__________。
《立体几何初步》复习

4.(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形, 平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线
√B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
5 5.
即
AO
与平面
ABCD
所成角的正切值为
5 5.
(3)平面AOB与平面AOC所成角的大小.
解 由(1)可知OC⊥平面AOB. 又∵OC⊂平面AOC,∴平面AOB⊥平面AOC. 即平面AOB与平面AOC所成的角为90°.
反思 感悟
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
(2)BE∥平面PAD;
证明 因为AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形,所以BE∥AD. 又因为BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD.
(3)平面BEF⊥平面PCD.
证明 因为AB⊥AD,且四边形ABED为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD,所以AP⊥CD. 又因为AP∩AD=A,AP,AD⊂平面PAD, 所以CD⊥平面PAD,所以CD⊥PD. 因为E和F分别是CD和PC的中点, 所以PD∥EF,所以CD⊥EF. 又因为CD⊥BE,EF∩BE=E,EF,BE⊂平面BEF, 所以CD⊥平面BEF.又CD⊂平面PCD, 所以平面BEF⊥平面PCD.
高三立体几何复习讲义:多面体与旋转体

多面体与旋转体一、棱柱1、 由几个多边形围成的封闭的几何体叫做多面体。
2、 两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
棱柱的基本性质:(1) 棱柱的侧面都是平行四边形。
(2) 棱柱的两个底面及平行于底面的截面都是全等的多边形。
3、 侧棱与底面不垂直的的棱柱叫做斜棱柱。
侧棱与底面垂直的棱柱叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
性质:(1) 直棱柱侧面都是矩形。
(2) 直棱柱侧棱与高相等。
(3) 正棱柱的侧面都是全等的矩形。
4、 底面是平行四边形的棱柱叫做平行六面体。
底面是矩形的直棱柱是长方体。
长方体的对角线平方等于三边长的平方和。
5、 夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
6、 h V S =⋅棱柱底. 二、棱锥1、有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
棱锥的基本性质:如果一个棱锥被平行于底面的一个平面所截,那么: (1) 侧棱和高被这个平面分成比例线段; (2) 截面和底面都是相似多边形;(3) 截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
2、如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这个棱锥叫做正棱锥。
正棱锥的性质:(1) 各侧棱相等,各侧面都是全等的等腰三角形。
(2) 正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形。
正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
《空间几何体》基础的知识点

《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。
4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。
高考数学复习 多面体与旋转体部分知识梳理及重要题型

2008高考数学复习多面体与旋转体部分知识梳理及重要题型目的要求:对本章简单几何体知识进行梳理和总结,突出知识间的联系,提高学生综合运用知识的能力和逻辑思维能力.内容分析:1、这部分主要涉及棱柱、棱锥、多面体和球的知识.其内容大致可分为定义、分类、性质、面积和体积几个方面.除此之外还有简单多面体的欧拉公式、球面上两点间的球面距离等重要概念、定理,这些知识牵涉的面很广,但并不十分复杂,有些内容可用类比法进行复习.然而复习中一定要弄清楚,不可混淆.2、如果说前节课所复习的知识还是一些立体图形的元件的话,那么本课所复习的内容就是几何体了.应当说,这节课的空间观念更综合、更形象了.复习中也应该重视画图、识图(包括图形的综合和分解).只有做到这一点,学生才会把图形在头脑中“立体化”.复习中这个任务依然应予以重视.3、球的体积和表面积计算公式所涉及的重要数学思想方法是数学教学的重要内容,但教学目标仅为了解,而且新授不久,因此,在这次复习中不是重点,复习的重点是各种几何体的基本性质.4、与前节课一样,本课作为复习课,应有针对性,所以重点、难点的确定和内容的调整应根据学生学习中掌握的情况而定.教学过程:1、内容小结(1)针对简单几何体的知识内容,教师预先拟订提纲,让学生课前按提纲进行复习.提纲可按教科书的学习要求和需要注意的问题中学习要求拟定.(2)课堂复习中,让学生比较棱柱、棱锥、球三种几何体的形状、表面、截面、面积、体积,比较前两种几何体的分类、直观图的画法.例题1 如图8-3,三棱锥P—ABC中,△ABC是正三角形,∠PCA=90°,D为PA的中点,二面角P —AC —B 为120°,PC=2,AB=23。
(1)求证:AC ⊥BD ;(2)求BD 与底面ABC 所成的角(用反正弦表示); (3)求三棱锥P —ABC 的体积。
解 (1)如图8-4,取AC 中点E ,连DE 、BE ,则DE ∥PC , ∵PC ⊥AC ,∴DE ⊥AC 。
空间立体几何高考复习知识点及经典题目

知识空间立体几何知识点归纳:1. 空间几何体的类型( 1)多面体: 由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。
( 2) 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
如圆柱、圆锥、圆台。
2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。
正棱柱:底面多边形是正多边形的直棱柱。
正棱锥:底面是正多边形且所有侧棱相等的棱锥。
正四面体:所有棱都相等的四棱锥。
3. 空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : S 2 rl 2 r2圆锥的表面积: S rlr2圆台的表面积:Srlr2RlR2球的表面积:S4 R 24.空间几何体的体积公式: VS底 h: V1h柱体的体积锥体的体积S 底3台体的体积:1球体的体积: V43V( S 上下下hR3S 上 SS )35. 空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
画三视图的原则:长对正、宽相等、高平齐。
即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。
6 . 空间中点、直线、平面之间的位置关系( 1) 直线与直线的位置关系:相交;平行;异面。
(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。
(3)平面与平面的位置关系:平行;相交。
7.空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。
②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
④线面垂直的性质定理:垂直于同一平面的两直线平行。
(2)线线垂直的判断:①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何考点专题复习(一)
——多面体、旋转体
一、多面体和旋转体
(一)直观图(斜二测画法)
原则:1.x轴、y轴的夹角画成45°或135°,一般画45°。
z轴竖直向上;
2.与坐标轴平行的直线依然平行;
3.与x轴、z轴平行的线段长度不变,与y轴平行的线段长度变为原
来的一半。
(切记:除以上3条外没有任何可以确定的量)
画图步骤:
1.在原图上建立坐标系,画出直观图坐标系,定位图形与三坐标轴
的交点。
2.画与x轴平行的线段。
3.画与y轴平行的线段,长度变为原来的一半。
4.画与z轴平行的线段。
(二)面积和体积
公式:侧面积公式与体积公式。
求法:割补法或等体积法都常用。
例1.若某几何体的三视图单位:如图所示.
画出该几何体的直观图;
求此几何体的体积和表面积.
【答案】解:根据三视图画出直观图,如图所示;
该几何体可以看成是一个直三棱柱去掉两个等底的小三棱锥组成的
如图,直三棱柱的体积为,
两个小三棱锥的体积为,故几何体的体积为40.
在图中,作于点M,则,,,所以,.
于是,
,
梯形
又矩形,
所以几何体的表面积为梯形矩形.【解析】本题考查了三视图与几何体的直观图的关系,几何体的表面积以及体积的求法问题.
根据三视图得出该几何体是底面为直角梯形的直四棱柱,结合图中数据画出几何体的直观图;
结合图中数据计算该几何体的表面积和体积.
例2.已知一个几何体的三视图如图所示.
求此几何体的表面积;
如果点P,Q在正视图中所处的位置为:P为三角形的顶点,Q为四边形的顶点,求在该几何体的侧面上,从点P到点Q的最短路径的长.
【答案】解:由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和底面圆半径长a,圆柱高为2a,圆锥高为a,
,圆柱侧,圆柱底,圆锥侧
所以表面.
分别沿点P与点Q所在的母线剪开圆柱的侧面,并展开铺平,如图所示,
则,
所以P,Q两点在该几何体的侧面上的最短路径的长为.
【解析】本题考查三视图、组合体表面积公式及旋转体上最短距离问题,属于基础题.由三视图可以还原几何体是上面一个圆锥加下面一个圆柱,即可求得表面积;
沿点P与点Q所在的母线剪开圆柱的侧面,并展开铺平,直线距离最短,由勾股定理即可得到答案.
二、外接球和内切球
(一)外接球
例1.正四棱锥的底面积为3,外接球的表面积为,则外接球的球心到平面ABCD的距离为________.
【答案】
【解析】【分析】
本题考查了正四棱锥以及球的结构特征,球的表面积由题意,得到中,
,从而得到结果.
【解答】
解:如图,设外接球的球心为O,半径为R,
正四棱锥的底面积为3,
,
,
,
外接球的表面积为,
,
,
中,,
,
,
,
球心到平面ABCD的距离为.
故答案为.
(二)内切球
例1.正三棱锥的高为1,底面边长为2,正三棱锥内有一个球与其四个面相切则球的表面积为______ .
【答案】
【解析】解:如图,过点P作平面ABC于D,
连结并延长AD交BC于E,连结PE,是正
三角形,
是BC边上的高和中线,D为的中心.
,
,
,
设球的半径为r,以球心O为顶点,
棱锥的四个面为底面把正三棱锥分割为四个小棱锥,
则,
,
球的表面积为.
故答案为:.
设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,求出r,由此能求出球的表面积.
本题考查棱锥的全面积和体积的求法,考查球的表面积的求法,解题时要认真审题,注意空间思维能力的培养.
例2.正四面体内切球与外接球的体积的比为_________.
【答案】1:27
【解析】【分析】
本题是中档题,考查正四面体的内切球与外接球的关系,找出两个球的球心重合,半径的关系是解题的关键,考查空间想象能力,计算能力.
【解答】
解:设正四面体为PABC,两球球心重合,设为O.
设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,底面ABC,
且,,OD为正四面体PABC内切球的半径
设正四面体PABC底面面积为S,将球心O与四面体的4个顶点PABC全部连接,
可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面.
每个正三棱锥体积而正四面体PABC体积,根据前面的分析,,
所以,,所以,,
所以棱长为a的正四面体的内切球和外接球的体积之比为1:27.
故答案为1:
三、多面体表面最短距离
例1.在直三棱柱中,底面为直角三角形,,,
,P是上一动点,如图所示,求的最小值.
【答案】解:在平面内,PC在平面内,
将其铺平后转化为平面上的问题解决铺平平面、平面,
如图所示计算,,又,
故是的直角三角形.
C.
在中,由余弦定理,得,故.
【解析】本题考查了三棱柱的展开图中最短距离问题以及余弦定理,属于中档题,在平面内,PC在平面内,将其铺平后转化为平面上的问题解决铺平平面、
平面,在中,由余弦定理,得
.
例2.如图所示,正四面体ABCD中,E是棱AD的中点,P是
棱AC上一动点,的最小值为,则该正四面体的
外接球面积是______.
【答案】
【解析】解:将侧面和展成平面图形,如图所示:
设正四面体的棱长为a,
则的最小值为
,
.
在棱锥中,设底面三角形BCD的中心为M,外接球
的球心为O,
F为BC的中点,则,
,.
设外接球的半径,则,
在中,由勾股定理可得:,
解得:.
外接球的表面积为:.
故答案为:.
将侧面展开,根据的最小值可得正四面体的棱长,再计算外接球的半径,得出外接球面积.
本题考查了棱锥的几何特征与外接球的表面积计算,棱锥侧面距离的最值,属于中档题.。