立体几何-空间角题型

合集下载

补上一课 空间角的大小比较及最值(范围)问题

补上一课  空间角的大小比较及最值(范围)问题

补上一课 ,空间角的大小比较及最值(范围)问题)1.空间角的大小比较是每年高考的常考题型,以选择题的形式考查,主要类型有线线角间的大小比较、线面角间的大小比较、面面角间的大小比较及线线角、线面角、面面角间的大小比较,主要方法有计算法、元素比较法、三角函数值比较法及利用最小角定理(线面角是最小的线线角,二面角是最大的线面角)等方法. 2.立体几何动态问题中空间角的最值及范围也是常见到的题型,常与图形翻折、点线面等几何元素的变化有关,常用方法有几何法、函数(导数)法,不等式法等.题型一 空间角的大小比较 角度1 同类角间的大小比较【例1-1】 (1)(2021·嘉兴测试)已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,AA 1=a ,AB =b ,且a >b ,侧棱CC 1上一点E 满足CC 1=3CE ,设异面直线A 1B 与AD 1,A 1B 与D 1B 1,AE 与D 1B 1的所成角分别为α,β,γ,则( ) A .α<β<γ B .γ<β<α C .β<α<γ D .α<γ<β(2)(2017·浙江卷)如图,已知正四面体D -ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQQC =CRRA =2,分别记二面角D -PR-Q ,D -PQ -R ,D -QR -P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α 答案 (1)A (2)B解析 (1)以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,∵长方体ABCD -A 1B 1C 1D 1的底面为正方形,AA 1=a ,AB =b ,且a >b ,侧棱CC 1上一点E 满足CC 1=3CE ,∴A 1(b ,0,a ),B (b ,b ,0),A (b ,0,0),D 1(0,0,a ),B 1(b ,b ,a ),E (0,b ,a 3),A 1B →=(0,b ,-a ),AD 1→ =(-b ,0,a ),D 1B 1→ =(b ,b ,0),AE → =(-b ,b ,a 3),cos α=|A 1B → ·AD 1→||A 1B → |·|AD 1→|=a 2a 2+b 2·a 2+b 2=a 2a 2+b 2,cos β=|A 1B → ·D 1B 1→||A 1B → |·|D 1B 1→ |=b 2a 2+b 2·b 2+b2,cos γ=|AE → ·D 1B 1→||AE → |·|D 1B 1→ |=0,∵a >b >0,∴cos α>cos β>cos γ=0,∴α<β<γ,故选A.(2)如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO . 由图可知它们的对边都是DO , ∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心.设点O 到△QRP ′三边的距离为a ,则OG =a , OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a , OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a , ∴OF <OG <OE ,∴OD tan β<OD tan γ<ODtan α,∴α<γ<β.角度2 不同类型角间的大小比较【例1-2】 (1)(2019·浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P -AC -B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β(2)(一题多解)(2018·浙江卷)已知四棱锥S -ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S -AB -C 的平面角为θ3,则( ) A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1 C .θ1≤θ3≤θ2 D .θ2≤θ3≤θ1 答案 (1)B (2)D解析 (1)由题意,不妨设该三棱锥的侧棱长与底面边长相等.因为点P 是棱VA 上的点(不含端点),所以直线PB 与平面ABC 所成的角β小于直线VB 与平面ABC 所成的角,而直线VB 与平面ABC 所成的角小于二面角P -AC -B 的平面角γ,所以β<γ;因为AC ⊂平面ABC ,所以直线PB 与直线AC 所成的角α大于直线PB 与平面ABC 所成的角β,即α>β.故选B.(2)法一 由题意知四棱锥S -ABCD 为正四棱锥,如图,连接AC ,BD ,记AC ∩BD =O ,连接SO ,则SO ⊥平面ABCD ,取AB 的中点M ,连接SM ,OM ,OE ,易得AB ⊥SM ,则θ2=∠SEO ,θ3=∠SMO ,易知θ3≥θ2.因为OM ∥BC ,BC ⊥AB ,SM ⊥AB ,所以θ3也是OM 与平面SAB 所成的角,即BC 与平面SAB 所成的角,再根据最小角定理知θ3≤θ1,所以θ2≤θ3≤θ1,故选D.法二 如图,不妨设底面正方形的边长为2,E 为AB 上靠近点A 的四等分点,E ′为AB 的中点,S 到底面的距离SO =1,以EE ′,E ′O 为邻边作矩形OO ′EE ′,则∠SEO ′=θ1,∠SEO =θ2,∠SE ′O =θ3.由题意得tan θ1=SO ′EO ′=52,tan θ2=SO EO =152=25,tan θ3=1,此时tan θ2<tan θ3<tan θ1,可得θ2<θ3<θ1,当E 在AB 中点处时,θ2=θ3=θ1,故选D.【训练1】 (2021·宁波适考)在正四面体S -ABC 中,点P 在线段SA 上运动(不含端点).设PA 与平面PBC 所成角为θ1,PB 与平面SAC 所成角为θ2,PC 与平面ABC 所成角为θ3,则( ) A .θ2<θ1<θ3 B .θ2<θ3<θ1 C .θ3<θ1<θ2 D .θ3<θ2<θ1 答案 D解析 由题意可得,正四面体S -ABC 的四个顶点在正方体上,如图所示,不妨设点A (1,0,0),B (0,1,0),C (0,0,1),S (1,1,1),且AP → =λAS →,0<λ<1,则点P (1,λ,λ),所以平面PBC 的一个法向量为a =(1-2λ,1,1),平面SAC 的一个法向量为b =(1,-1,1),平面ABC 的一个法向量为c =(1,1,1).因为PA→=(0,-λ,-λ),PB → =(-1,1-λ,-λ),PC →=(-1,-λ,1-λ).所以sin θ1=|PA →·a ||PA →||a |=24λ2-4λ+3,sin θ2=|PB → ·b ||PB → ||b |=23λ2-3λ+3,sin θ3=|PC →·c ||PC → ||c |=2λ3λ2-3λ+3,所以θ1>θ2>θ3,故选D.题型二 空间角的最值【例2】 (1)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点P 是棱AB 上的动点(P 点可以运动到端点A 和B ),设在运动过程中,平面PDB 1与平面ADD 1A 1所成的最小角为α,则cos α=________.(2)(一题多解)(2021·浙江名师预测二)在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P ,Q 分别为直线AC 1,BB 1上的动点,则平面APQ 与平面BCC 1B 1所成二面角的最小值为( ) A.π6 B.π4 C.π3 D.π2 答案 (1)63 (2)A解析 (1)以点D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,AP =a (0≤a ≤1),则易得D (0,0,0),P (1,a ,0),B 1(1,1,1),则DP → =(1,a ,0),DB 1→=(1,1,1),设平面PDB 1的法向量为n =(x ,y ,z ),则{DP →·n =x +ay =0,DB 1→·n =x +y +z =0,令x =a ,得平面PDB 1的一个法向量为n =(a ,-1,-a +1),易得平面ADD 1A 1的一个法向量为m =(0,1,0),由图易得平面PDB 1与平面ADD 1A 1所成的二面角为锐角,设其为θ,则其余弦值为cos θ=|n ·m|n ||m ||=|-1|a 2+(-1)2+(-a +1)2=12(a -12)2 +32,易得当二面角取得最小值α时,a =12,此时有cos α=63.(2)法一 如图,因为点P ∈AC 1,所以平面APQ 即为平面AC 1Q ,根据二面角与线面角的大小关系知,当Q 运动到点B 时,动平面AC 1Q 与平面BCC 1B 1所成二面角的最小值即为直线AC 1与平面BCC 1B 1所成角∠AC 1B .由题意得AB =1,AC 1=2,所以sin ∠AC 1B =12,所以∠AC 1B =π6,故平面APQ 与平面BCC 1B 1所成二面角的最小值为π6,故选A.法二 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,由题意可知平面BCC 1B 1的一个法向量为n =(0,1,0),平面APQ 即为平面AC 1Q ,则点A (1,0,0),C 1(0,1,2),Q (1,1,a ),则AC 1→ =(-1,1,2),AQ →=(0,1,a ),设平面AC 1Q 的法向量为m =(x ,y ,z ),则{AC 1→·m =-x +y +2z =0,AQ →·m =y +az =0,解得m =(a -2,a ,-1).设平面AC 1Q 与平面BCC 1B 1所成二面角为θ,则cos θ=|a |(a -2)2+a 2+1=1(3a -63)2 +43,所以当a =322时,(cos θ)max =32,所以θmin =π6,故选A.【训练2】 (1)(2021·义乌市联考)如图,正方体ABCD -A 1B 1C 1D 1,点P 在AB 1上运动(不含端点),点E 是AC 上一点(不含端点),设EP 与平面ACD 1所成角为θ,则cos θ的最小值为( )A.13B.33C.53D.63(2)(2021·金华十校期末调研)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值是________.答案 (1)A (2)25解析 (1)点P 在AB 1上运动(不含端点),点E 是AC 上一点(不含端点),即EP 的运动区域为△AB 1C ,当cos θ取最小值时,θ最大,即为平面AB 1C 与平面AC 1D 所成的角,以点D 为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,DD 1所在的直线为z 轴,建立空间直角坐标系D -xyz 如图所示,平面AB 1C 的一个法向量n =(1,1,-1),平面AC 1D 的一个法向量m =(1,1,1),所以cos θ=|cos 〈m ,n 〉|=|m ·n |m ||n ||=13×3=13,故选A.(2)以A 点为坐标原点,AB ,AD ,AQ 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,设AB =1,则AF →=(1,12,0),E (12,0,0),设M (0,y ,1)(0≤y ≤1),则EM →=(-12,y ,1),∴cos 〈AF → ,EM →〉=-12+12y 1+14·14+y 2+1=-1-y 52·4y 2+5.则cos θ=|cos 〈AF → ,EM→〉|=1-y 52·4y 2+5 =255·1-y 4y 2+5,令t =1-y ,则y =1-t ,∵0≤y ≤1,∴0≤t ≤1, 那么cos θ=255·t 4t 2-8t +9=255t 24t 2-8t +9=25514-8t +9t 2, 令x =1t ,∵0≤t ≤1,∴x ≥1,那么cos θ=25514-8x +9x 2,又∵z =9x 2-8x +4在[1,+∞)上单调递增, ∴x =1时,z min =5,此时cos θ的最大值为255·15=255·55=25.题型三 空间角的范围【例3】 (1)(2021·浙江名师预测四)在矩形ABCD 中,AB =3,BC =1,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.[0,π6]B.[0,π3]C.[0,π2] D.[0,2π3] (2)在正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( ) A.[π4,π3] B.[π4,π2] C.[π6,π2] D.[π6,π3]答案 (1)C (2)D解析 (1)根据题意,初始状态,直线AD 与直线BC 成的角为0,当BD =2时,AD ⊥DB ,AD ⊥DC ,且DB ∩DC =D ,所以AD ⊥平面DBC ,又BC ⊂平面DBC ,故AD ⊥BC ,直线AD 与BC 成的角为π2,所以在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为[0,π2].(2)建立如图坐标系,设正方体ABCD -A 1B 1C 1D 1棱长为1,则AD 1→=(1,0,-1),A 1C → =(1,1,1).设A 1P → =λA 1C → =(λ,λ,λ),其中0≤λ≤1.则BP →=(λ,λ-1,λ-1).又设BP 与AD 1所成角为θ,所以cos θ=|cos 〈BP → ,AD 1→ 〉|=|BP → ·AD 1→||BP → ||AD 1→|=16(λ-23)2 +43.由0≤λ≤1得12≤cos θ≤32,而0≤θ≤π2,所以π6≤θ≤π3.【训练3】(1)如图,在正三棱柱ABC-A1B1C1中,所有的棱长均为2,M是AB的中点,动点P在底面A1B1C1内,若BP∥平面A1MC,记∠PCC1=α,则sin α的取值范围是________.(2)(2021·杭州二中月考)在等腰梯形ABCD中,已知AB=AD=CD=1,BC=2,将△ABD沿直线BD翻折成△A′BD,如图所示,则直线BA′与CD所成角的取值范围是( )A.[π3,π2]B.[π6,π3]C.[π6,π2]D.[0,π3]答案 (1)[0,217] (2)A解析 (1)如图,取A1B1的中点D,连接BD,C1D,BC1,则BD∥A1M,又A1M⊂平面A1MC,BD⊄平面A1MC,所以BD∥平面A1MC,又C1D∥CM,C1D⊄平面A1MC,CM⊂平面A1MC,所以C1D∥平面A 1MC ,又BD ∩C 1D =D ,所以平面BC 1D ∥平面A 1MC ,所以点P 在线段C 1D 上,点P 的轨迹的长度C 1D =3,连接CD ,在Rt △CDC 1中,0≤α≤∠C 1CD ,CD =7, sin ∠C 1CD =217,所以0≤sin α≤217.(2)取BC 的中点E ,连接AE ,交BD 于点O ,则由AB =AD =CD =1,BC =2得AE ⊥BD ,则点A ′在以点O 为圆心,AO 为半径,垂直于直线BD 的平面内的圆上运动.以点O 为坐标原点,OE ,OD 所在直线为x ,y 轴,过点O 垂直平面BCD 的直线为z 轴建立空间直角坐标系如图所示,易得点A (-12,0,0),B (0,-32,0),C (1,32,0),D (0,32,0).设点A ′(12cos θ,0,12sin θ),θ∈[0,π],则BA ′→=(12cos θ,32,12sin θ),CD →=(-1,0,0),设直线BA ′与直线CD 的夹角为α,则cos α=cos 〈BA ′→ ,CD → 〉=BA ′→ ·CD →|BA ′→ |·|CD →|=-12cos θ∈[-12,12].又因为α∈[0,π2],所以α∈[π3,π2],故选A.1.如图,二面角α-l -β中,P ∈l ,射线PA ,PB 分别在平面α,β内,点A 在平面β内的射影恰好是点B ,设二面角α-l -β、PA 与平面β所成的角、PB 与平面α所成的角的大小分别为δ,φ,θ,则( )A .δ≥φ≥θB .δ≥θ≥φC .φ≥δ≥θD .θ≥δ≥φ答案 A解析 因为点A 在平面β内的射影为点B ,则φ=∠APB ,由二面角的定义易得δ≥φ,设PB 在平面α内的射影为PB ′,则θ=∠BPB ′,则由最小角定理得∠BPB ′≤APB ,则θ≤φ.综上所述,故选A.2.(2015·浙江卷)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α 答案 B解析 ∵A ′C 和BC 都不与CD 垂直,∴∠A ′CB ≠α,故C ,D 错误.当CA =CB 时,容易证明∠A ′DB =α.不妨取一个特殊的三角形,如Rt △ABC ,令斜边AB =4,AC =2,BC =23,如图所示,则CD =AD =BD =2,∠BDH =120°,设沿直线CD 将△ACD 折成△A ′CD ,使平面A ′CD ⊥平面BCD ,则α=90°.取CD 中点H ,连接A ′H ,BH ,则A ′H ⊥CD ,∴A ′H ⊥平面BCD ,且A ′H =3,DH =1.在△BDH 中,由余弦定理可得BH =7.在Rt △A ′HB 中,由勾股定理可得A ′B =10.在△A ′DB 中,∵A ′D 2+BD 2-A ′B 2=-2<0,可知cos ∠A ′DB <0,∴∠A ′DB 为钝角,故排除A.综上可知答案为B.3.(2021·七彩阳光联盟适考)如图1,梯形ABCD 中,AB ∥DC ,AD =DC =BC =AE =12AB ,现将四边形ADCE 沿EC 折起,得到几何图形B -ECD ′A ′(如图2),记直线D ′C 与直线EB 所成的角为α,二面角B -EC -D ′的平面角的大小为β,直线A′E与平面BCE所成角为γ,则( )A.α>γ,β>γB.α<β,β>γC.α>β>γD.β>α>γ答案 A解析 在折叠过程中,由线面角是最小的线线角可知α>γ;由二面角是最大的线面角可知β>γ,故选A.4.(2021·宁波十校联考)正方体ABCD-A1B1C1D1,P是线段BD1(不含端点)上的点.记直线PC与直线AB所成角为α,直线PC与平面ABC所成角为β,二面角P-BC-A的平面角为γ,则( )A.β<γ<αB.α<β<γC.γ<β<αD.γ<α<β答案 A解析 由题意知,二面角P-BC-A为平面D1CB与平面ABCD所成的角,其平面角即为∠D1CD,则γ=∠D1CD.如图,因为直线与平面所成的角是此直线与该平面内的直线所成角中的最小角,而∠D1CD是直线AB与平面D1CB所成的角,PC⊂平面D1CB,则有γ<α.又∠D1CD也是直线CD与平面D1CB所成的角,故β<γ,所以β<γ<α,故选A.5.(2018·衢州二中二模)如图,△BCD是以BC为斜边的等腰直角三角形,在△ABC中,∠BAC=90°,△ABC沿着BC翻折成三棱锥A-BCD的过程中,直线AB与平面BCD所成的角均小于直线AC与平面BCD所成的角,设二面角A-BD-C,A-CD-B的大小分别为α,β,则( )A.α>βB.α<βC.存在α+β>πD.α,β的大小关系不能确定答案 B解析 作AH⊥平面BCD,分别作HM⊥BD,HN⊥CD于M,N两点.由AB与平面BCD所成的角∠ABH总小于AC与平面BCD所成的角∠ACH,则AB>AC.设O为BC的中点,则点H在DO的右侧,所以有HM>HN,故tan α=tan∠AMH=AHHM,tan β=tan∠ANH=AHHN,因此,tan α<tan β,即α<β,故选B.6.已知在矩形ABCD中,AD=2AB,沿直线BD将△ABD折成△A′BD,使得点A′在平面BCD上的射影在△BCD内(不含边界),设二面角A′-BD-C的大小为θ,直线A′D,A′C与平面BCD所成的角分别为α,β,则( )A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ答案 D解析 设点A′在平面BCD内的射影为点O,过点A′作BD的垂线,垂足为点E,设AB=1,则在Rt△A′BD中易得A′E=63,∠A′DO=α,∠A′CO=β,∠A′EO=θ,且α,β,θ均为锐角,tan∠A′DO=A′OOD,tan∠A′CO=A′OOC,tan∠A′EO=A′OOE,又由翻折及解三角形知识易得当点A′在平面BCD内的射影在△BCD内(不含边界)时,有OE<OC<OD,所以A′OOD<A′OOC<A′OOE,即tan∠A′DO<tan∠A′CO<tan∠A′EO,所以∠A′DO<∠A′CO<∠A′EO,即α<β<θ,故选D.7.(2021·宁波期末)如图,已知在平面四边形ABCD中,∠A=∠C=90°,BC=CD,AB>AD,现将△ABD沿对角线BD翻折得到三棱锥A′-BCD,在此过程中,二面角A′-BC-D,A′-CD-B的大小分别为α,β,直线A′B与平面BCD所成角为γ,直线A′D与平面BCD所成角为δ,则( )A.γ<δ<βB.γ<α<βC.α<δ<βD.γ<α<δ答案 B解析 在平面四边形ABCD中,过点A作BD的垂线,交BD于点H,则易得在翻折的过程中,点A′在底面BCD内的投影点O在直线AH上,连接OB,OD,过点O作CD,BC的垂线,垂足分别为点E,F,则∠A′FO=α,∠A′EO=β,∠A′BO=γ,∠A′DO=δ,则tan α=A′OOF,tan β=A′OOE,tan γ=A′OOB,tan δ=A′OOD.由题设易得OF>OE,OB>OD,所以tan α<tan β,tan γ<tan δ,所以α<β,γ<δ.又由最小角定理得γ<α,δ<β.综上所述,γ<α<β,故选B.8.(2021·杭州二中仿真模拟)空间线段AC⊥AB,BD⊥AB,且AC∶AB∶BD=1∶3∶1,设CD与AB所成的角为α,CD与平面ABC所成的角为β,二面角C-AB-D的平面角为γ,则( )A.β≤α≤γ2B.β≤γ2≤αC.α≤β≤γ2D.α≤γ2≤β答案 A解析 如图所示,过点B作BE∥AC,且BE=AC,连接DE.则可知α=∠DCE,γ=∠DBE.由最小角定理可得β≤α.在△DBE中,DE=2sin γ2.在Rt△DCE中,sinα<tan α=23sinγ2<sinγ2,所以α<γ2.若DB⊂平面ABC,则β=α=γ2=0,所以β≤α≤γ2,故选A.9.(2021·浙江新高考仿真三)在四面体ABCD中,AB⊥BC,BC⊥CD,AB=BC=CD=1,AD=3,点E为线段AB上动点(包含端点),设直线DE与BC所成角为θ,则cos θ的取值范围为( )A.[0,33]B.[0,22]C.[22,53]D.[33,22]答案 D解析 由题意得|AD → |2=(AB → +BC → +CD → )2=|AB → |2+|BC → |2+|CD → |2+2AB → ·BC →+2AB → ·CD → +2BC → ·CD →=3,又因为AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,所以AB → ·CD →=0,则可将四面体ABCD 放到棱长为1的正方体内,如图所示,以点C 为坐标原点,CD 所在直线为x 轴,CB 所在直线为z 轴建立空间直角坐标系,则易得C (0,0,0),B (0,0,1),D (1,0,0),E (0,a ,1),a ∈[0,1],所以BC →=(0,0,-1),DE →=(-1,a ,1),所以|cos θ|=12+a2∈[33,22],故选D.10.(2021·金华十校模拟)设三棱锥V -ABC 的底面是以A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A -VC -B 为γ,则( ) A .α<β,β+γ>π2 B .α<β,β+γ<π2C .α>β,β+γ>π2D .α>β,β+γ<π2答案 C解析 因为VA ⊥底面ABC ,AB 在平面ABC 内,则由最小角定理得α>β,β=∠VMA ,则β+∠MVA =π2.过点A 作AN ⊥VC ,连接BN ,则γ=∠BNA ,tan γ=tan ∠BNA =ABAN , 而tan ∠BVA =ABAV ,AN <AV ,所以tan ∠BVA <tan ∠BNA ,则γ>∠BVA .又因为tan ∠MVA =AMAV,AB >AM ,所以tan ∠MVA <tan ∠BVA ,所以γ>∠BVA >∠MVA ,则β+γ>π2,故选C.11.如图1,在平面多边形ABCDE 中,四边形ABCD 是正方形,△ADE 是正三角形.将△ADE 所在平面沿AD 折叠,使得点E 达到点S 的位置(如图2).若二面角S -AD -C 的平面角θ∈[π6,π3],则异面直线AC 与SD 所成角的余弦值的取值范围是( )A.[216,24]B.[616,24]C.[216,6+216] D.[0,28]答案 D 解析 如图,取AD 的中点O ,BC 的中点G ,连接OS ,OG ,则OG ⊥AD ,以OG 所在直线为x 轴,OD 所在直线为y 轴,过点O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系.设AB =2,则A (0,-1,0),C (2,1,0),D (0,1,0).因为△SAD 为正三角形,O 为AD 的中点,所以SO ⊥AD ,又OG ⊥AD ,所以∠SOG 是二面角S -AD -C 的平面角,即∠SOG =θ,则S (3cos θ,0,3sin θ).因为AC →=(2,2,0),DS →=(3cos θ,-1,3sin θ),所以cos 〈AC → ,DS →〉=23cos θ-222×2.又θ∈[π6,π3], 所以cos θ∈[12,32],所以cos 〈AC → ,DS →〉∈[6-228,28],故异面直线AC 与SD 所成角的余弦值的取值范围是[0,28].12.(2021·金华十校期末调研)如图,在底面为正三角形的棱台ABC -A 1B 1C 1中,记锐二面角A 1-AB -C 的大小为α,锐二面角B 1-BC -A 的大小为β,锐二面角C 1-AC -B 的大小为γ,若α>β>γ,则( )A .AA 1>BB 1>CC 1 B .AA 1>CC 1>BB 1 C .CC 1>BB 1>AA 1D .CC 1>AA 1>BB 1 答案 D解析 分别延长AA 1,BB 1,CC 1交于点D ,过点D 作DO ⊥底面ABC ,过点O 分别作△ABC 三边的垂线,分别交于点M ,N ,P ,则tan α=DO OM,tan β=DO ON ,tan γ=DO OP,因为α>β>γ,所以OM <ON <OP ,则点O 一定在△BEF 内部(不包括边界),所以OB <OA <OC ,又因为AD =OA 2+OD 2,BD =OB 2+OD 2,CD =OC 2+OD 2,所以BD <AD <CD ,所以CC 1>AA 1>BB 1,故选D.13.(2016·浙江卷)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.答案 66解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 则A (0,62,0),B(302,0,0),C (0,-62,0),作DH ⊥AC 于H ,连接D ′H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306, 因此可设D ′(-306cos α,-63,306sin α),则BD ′→=(-306cos α-302,-63,306sin α), 与CA →平行的单位向量为n =(0,1,0), 所以cos θ=|cos 〈BD ′→ ,n 〉|=|BD ′→ ·n |BD ′→|·|n ||=639+5cos α,所以cos α=-1时,cosθ取最大值6 6.。

立体几何之空间夹角

立体几何之空间夹角

第26练“空间角”攻略[题型分析·高考展望]空间角包括异面直线所成的角, 线面角以及二面角, 在高考中频繁出现, 也是高考立体几何题目中的难点所在. 掌握好本节内容, 首先要理解这些角的概念, 其次要弄清这些角的范围, 最后再求解这些角. 在未来的高考中, 空间角将是高考考查的重点, 借助向量求空间角, 将是解决这类题目的主要方法.体验高考1. (2015·浙江)如图, 已知△ABC, D是AB的中点, 沿直线CD将△ACD翻折成△A′CD, 所成二面角A′—CD—B的平面角为α, 则()A. ∠A′DB≤αB. ∠A′DB≥αC. ∠A′CB≤αD. ∠A′CB≥α2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1的顶点A, α∥平面CB1D1, α∩平面ABCD=m, α∩平面ABB1A1=n, 则m, n所成角的正弦值为()A.32 B.22 C.33 D.133. (2016·课标全国丙)如图, 四棱锥P-ABCD中, PA⊥底面ABCD, AD∥BC, AB=AD=AC=3, PA=BC=4, M为线段AD上一点, AM=2MD, N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.高考必会题型题型一异面直线所成的角例1在棱长为a的正方体ABCD-A1B1C1D1中, 求异面直线BA1与AC所成的角.变式训练1(2015·浙江)如图, 三棱锥A—BCD中, AB=AC=BD=CD=3, AD=BC=2, 点M, N分别是AD, BC的中点, 则异面直线AN, CM所成的角的余弦值是________.题型二直线与平面所成的角例2如图, 已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD, AC⊥BD, 垂足为H, PH是四棱锥的高, E为AD的中点. (1)证明: PE⊥BC;(2)若∠APB=∠ADB=60°, 求直线PA与平面PEH所成角的正弦值.变式训练2如图, 平面ABDE⊥平面ABC, △ABC是等腰直角三角形, AB=BC=4, 四边形ABDE是直角梯形, BD∥AE, BD⊥BA, BD=AE=2, 点O、M分别为CE、AB的中点. (1)求证: OD∥平面ABC;(2)求直线CD和平面ODM所成角的正弦值;(3)能否在EM上找到一点N, 使得ON⊥平面ABDE?若能, 请指出点N的位置并加以证明;若不能, 请说明理由.题型三二面角例3(2016·浙江.如图, 在三棱台ABC—DEF中, 平面BCFE⊥平面ABC, ∠ACB=90°, BE =EF=FC=1, BC=2, AC=3..(1)求证: BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.变式训练3如图, 长方体ABCD-A1B1C1D1中, AA1=AD=1, AB=2, 点E是C1D1的中点.(1)求证: DE⊥平面BCE;(2)求二面角A-EB-C的大小.高考题型精练1. 在正方体ABCD-A1B1C1D1中, A1B与B1C所在直线所成角的大小是()A. 30°B. 45°C. 60°D. 90°2. 在正方体ABCD-A1B1C1D1中, A1B与平面BB1D1D所成的角的大小是()A. 90°B. 30°C. 45°D. 60°3. 如图所示, 将等腰直角△ABC沿斜边BC上的高AD折成一个二面角, 此时∠B′AC=60°, 那么这个二面角大小是()A. 90°B. 60°C. 45°D. 30°4.已知正三棱锥S-ABC中, E是侧棱SC的中点, 且SA⊥BE, 则SB与底面ABC所成角的余弦值为()A.63 B.33 C.23 D.365. 如图所示, 在正方体ABCD-A1B1C1D1中, E、F、G、H分别为AA1.AB.BB1.B1C1的中点, 则异面直线EF与GH所成的角等于()A. 45°B. 60°C. 90°D. 120°(5题)(6题)(8题)6如图, △ABC是等腰直角三角形, AB=AC, ∠BCD=90°, 且BC=CD=3, 将△ABC沿BC的边翻折, 设点A在平面BCD上的射影为点M, 若点M在△BCD内部(含边界), 则点M 的轨迹的最大长度等于______;在翻折过程中, 当点M位于线段BD上时, 直线AB和CD 所成角的余弦值等于______.7. 直三棱柱ABC-A1B1C1中, 若∠BAC=90°, 2AB=2AC=AA1, 则异面直线BA1与B1C 所成角的余弦值等于________.8.如图所示, 在四棱锥P-ABCD中, 已知PA⊥底面ABCD, PA=1, 底面ABCD是正方形, PC 与底面ABCD所成角的大小为, 则该四棱锥的体积是________.9. 以等腰直角三角形ABC斜边BC上的高AD为折痕, 使△AB′D和△ACD折成互相垂直的两个平面, 则∠B′AC=________.10. 如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=2, BC=, D.E分别是AC1和BB1的中点, 则直线DE与平面BB1C1C所成的角为________.(10题)(11题)11. (2016·四川)如图, 在四棱锥PABCD中, AD∥BC, ∠ADC=∠PAB=90°, BC=CD=AD.E为棱AD的中点, 异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M, 使得直线CM∥平面PBE, 并说明理由;(2)若二面角P—CD—A的大小为45°, 求直线PA与平面PCE所成角的正弦值.如图, 在四棱锥P-ABCD中, 底面ABCD为菱形, ∠BAD=60°, Q为AD的中点.(1)若PA=PD, 求证: 平面PQB⊥平面PAD;(2)点M在线段PC上, PM=PC, 若平面PAD⊥平面ABCD, 且PA=PD=AD=2, 求平面MBQ与平面CBQ夹角的大小.。

立体几何综合复习——空间角(完整版)

立体几何综合复习——空间角(完整版)

立体几何专题复习-----空间角的求法(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。

(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. (4)求异面直线所成的角的方法:法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线;法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求(5).向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;1.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角lαβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

2、作二面角的平面角的常用方法:①、点P 在棱上——作垂直于棱的直线(如图1) ;②、点P 在一个半平面——三垂线定理法;(如图2) ③、点P 在二面角内——垂面法。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

(高中段)大题考法立体几何第二课时空间向量与空间角3

(高中段)大题考法立体几何第二课时空间向量与空间角3

[解] (1)证明:在△ABC 中,BC=2,AB=4,∠ABC=60°,所以 AC2= BC2+AB2-2BC·AB·cos B=12,
则有 AC2+BC2=AB2,即 AC⊥BC. 又因为 PA⊥BC,PA∩AC=A,PA⊂平面 PAC,AC⊂平面 PAC,所以 BC ⊥平面 PAC. (2)由(1)知 AC⊥BC,以点 C 为坐标原点,CA,CB 所在 直线分别为 x,y 轴建立如图所示的坐标系 C-xyz. 则 C(0,0,0),A(2 3,0,0),B(0,2,0),D( 3,-1,0), 易知 P 在底面的射影为 AC 与 BD 的交点, 所以 P233,0,236,―PD→= 33,-1,-2 36,
由(1)知―A→P =0,1, 22是平面 PCB 的一个法向量,
记 n =―A→P ,则
n ,m
n ·m =
|n |·|m
|=2 5
5 .
所以二面角
B-PC-E
的余弦值为2 5
5 .
融通方法 利用空间向量求二面角的解题模型
应用体验 (2020·河北“五个一”名校联考)在四棱锥 P-ABCD 中,AD ∥BC,AB=BC=CD=12AD,G 是 PB 的中点,△PAD 是 等边三角形,平面 PAD⊥平面 ABCD. (1)求证:CD⊥平面 GAC; (2)求二面角 P-AG-C 大小的正弦值.
设平面 AEF 的一个法向量为 n =(x1,y1,z1),
n ·―AE→=0,
则 n
·―AF→=0,
即x21x+1+z1λ=y1=0,0.
令 y1=2,则zx11==λ-. λ, ∴n =(-λ,2,λ).
设平面 PCD 的一个法向量为 m =(x2,y2,z2),

高考真题(立体几何中空间角问题[题目])

高考真题(立体几何中空间角问题[题目])

解答题1. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.2. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,︒=∠45CDA .(I )求证:平面P AB ⊥平面P AD ;(II )设AB =AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。

3. 如图5.在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,2PA PD ==,PB =2, E ,F 分别是BC ,PC 的中点.(1) 证明:AD ⊥平面DEF ;(2) 求二面角P -AD -B 的余弦值.4. 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ;(Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.A B DC FPE5. 如图,在圆锥PO中,已知PO=2,⊙O的直径2AB=,C是»AB的中点,D为AC 的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B PA C--的余弦值。

6. 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.8. 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD =AD ,求二面角A -PB -C 的余弦值.9. 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB =90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.10. 如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=o o 是BC 上的高,沿AD 把ABC ∆折起,使90BCD ∠=o 。

立体几何空间角 专题

立体几何空间角 专题

PCDBA立体几何空间角 专题空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。

空间角是异面直线所成的角、直线与平面所成的角及二面角总称。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三计算。

异面直线所成的角的范围:090θ<≤(一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。

【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE ,则PC与BD 所成的角为PCE ∠或它的补角。

CE BD==PE==∴由余弦定理得222c o s 26PC CE PE PCE PC CE +-∠==-⋅∴PC 与BD 所成角的余弦值为63(二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D为AC 中点。

求异面直线1AB 与1BC A 1C 1【答案】125直线与平面所成角的范围:090θ≤≤方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上,的角的大小。

【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 设AB 的中点为D ,连接,PD CD 。

AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。

不妨设2PA =,则1,4OD OP AB===CD OC ∴===在RtOCP ∆中,tan 13OP OCP OC∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。

2022高三高考数学知识点第7章 高考专题突破4 高考中的立体几何问题

2022高三高考数学知识点第7章 高考专题突破4 高考中的立体几何问题

跟踪训练3 (2020·宜昌一中模拟)如图,在四棱锥 P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC, AD=DC=AP=2,AB=1,点E为棱PC的中点. (1)证明:BE⊥PD;
解 依题意,以点A为原点,以AB,AD,AP为x轴、y轴、z轴建立空间 直角坐标系如图, 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E为棱PC的中点,得E(1,1,1). 证明 向量B→E=(0,1,1),P→D=(0,2,-2), 故B→E·P→D=0,所以B→E⊥P→D,所以 BE⊥PD.
设直线AM与平面PBC所成的角为θ,

sin
θ=|cos〈m,A→M〉|=
→ |m·AM|


|m|·|AM|
23×1+12×0+

7 4
23×1=
42 7.
∴直线 AM 与平面 PBC 所成角的正弦值为
42 7.
命题点3 二面角
例3 (2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为
设平面QCD的一个法向量为n=(x,y,z),
[5分] [6分]
则DD→→CQ··nn==00,, 即ym=x+0,z=0,
令x=1,则z=-m, 所以平面QCD的一个法向量为n=(1,0,-m),
则 cos〈n,P→B〉=|nn|·|PP→→BB|=
1+0+m 3· m2+1.
[9分] [10分]
当且仅当m=1时取等号,
所以直线PB与平面QCD所成角的正弦值的最大值为
6 3
.
[12分]
答题模板
第一步:根据线面位置关系的相关定理,证明线面垂直. 第二步:建立空间直角坐标系,确定点的坐标. 第三步:求直线的方向向量和平面的法向量. 第四步:计算向量夹角(或函数值),借助基本不等式确定最值. 第五步:反思解题思路,检查易错点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何-空间角求法题型
空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面针对几何法举例说明。

一、异面直线所成的角:
【例】如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,
12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

解:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF ,
有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1
于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

在Rt △BE 1F 中,
2222115126E F E F BF =
+=
+=。

在Rt △D 1DE 1中,
222221111112
2
2
13214
D E DE DD AE AD DD =+=++=++= 在Rt △D 1DF 中,22
11222222124224
FD FD DD CF CD DD =+=++=++=
在△E 1FD 1中,由余弦定理得:
222111111111cos 2D E FD E F E D F D E FD +-∠==⨯⨯
∴直线1EC 与1FD
所成的角的余弦值为
14。

可见,“转化”是求异面直线所成角的关键。

平移线段法,或化为向量的夹角。

一般地,异面直线l 1、l 2的夹角的余弦为:
cos AC BD AC BD
β⋅=
⋅。

二、线面角
【例】已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点,
12,BF BC a FB a ===。

(1)若D 为BC 的中点,E 为AD 上不同于A D 、的任意一点,证明:1EF FC ⊥; (2)若113A B a =,求1FC 与平面11AA B B 所成角的正弦值。

提示:(1)转证线面垂直;证明FC1与面ADF 垂直(2)sin θ=。

三、二面角的求法:
几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图(1)。

②利用三垂线定理及其逆定理,图(2)最常用。

③作棱的垂面,图(3)。

A
B F C
E 1
A 1
B 1
C
D
另外,特别注意观察图形本身是否已含有所求的平面角;
几何法在书写上体现:“作出来、证出来、指出来、算出来、答出来”五步。

【例】如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,
90BAD FAB ∠=∠=,12BC AD
∥,12
BE AF
∥。

(Ⅰ)证明:C D F E ,,,四点共面;
(Ⅱ)设AB BC BE ==,求二面角A ED B --的正切值。

解:(Ⅰ)延长DC 交AB 的延长线于点G ,由1
2
BC AD
∥得 1
2
GB GC BC GA GD AD ===,延长FE 交AB 的延长线于点G ', 同理可得12G E G B BE G F G A AF ''===''.故G B GB
G A GA
'=',即G '与G 重合, 因此直线CD EF ,相交于点G ,即C D F E ,,,四点共面。

(Ⅱ)设1AB =,则1BC BE ==,2AD =.取AE 中点M ,则BM AE ⊥,又由已知得,AD ⊥平面ABEF ,故AD BM ⊥,BM 与平面ADE 内两相交直线
A O B
M N
α
β α β
A
O P A B O
P α
β (1)
(2)
(3)
F
A
B
C
D
E
AD AE ,都垂直,
所以BM ⊥平面ADE ,作MN DE ⊥,垂足为N ,连结BN ,由三垂线定理知
BN ED ⊥,BNM ∠为二面角A ED B --的平面角,
213223
AD AE BM MN DE ⨯=
==,, 故6
tan 2
BM BNM MN ∠==,所以二面角A DE B --的正切值为。

【空间角的几何求解练习】
1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1B 与AC 1所成的角为( )
(A )450 (B )600 (C )900 (D )1200
(2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .
1
3
B

3
C

3
D .
23
(3)Rt ABC ∆的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则BA C '∠的范围是________________。

(4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α⊂,
这时PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定
(5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内

射影所成的角是( )
A .30°
B .45°
C .60°
D .90°
(6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条
线
段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。

(7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB
所成角的余弦值是( )
A .2
1
B .22
C .36
D .33
(8)如图,在正方体1111D C B A ABCD -中,
,M N 分别是1,A A AB 上的点,若0
190NMC ∠=,
A B
C
D 1A 1
B 1
C 1
D M
N
那么1NMB ∠的大小是( )
A.大于0
90 B.小于0
90 C. 0
90 D.不能确定
(9)已知SO ABC ⊥∆所在平面于O 点,且S 到,,A B C 三点等距离,若ABC ∆中,有
cos cos sin sin A B A B >,则O 点( )
A.必在ABC ∆的某一边上
B.必在ABC ∆外部(不含边界)
C.必在ABC ∆内部(不含边界)
D.以上都不对
(10)如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为
21θθ和,则( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθ
C .1sin sin 2212>+θθ
D .1sin sin 2212<+θθ
(11)如图,l A B αβαβαβ⊥=∈∈,,,,A B ,到l 的距离分别是a 和
b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,
若a b >,则( ) A .m n θϕ>>,
B .m n θϕ><,
C .m n θϕ<<,
D .βm n θϕ<>,
(12)与正方形各面成相等的角且过正方体三个顶点的截面的个数是________。

A B a
b
l α
【答案】
课后作业(一)答案:
(90,180];(4)C;(5)D;(6)略;(7)D;1.(1)C;(2)C;(3)00
(8)C;(9)B;(10)B;(11)D;
(12)解:如图中,截面ACD1和截面ACB1均符合题意要求,这样的截面共有8个。

相关文档
最新文档