二重积分及三重积分简化计算
二重积分及三重积分的计算

第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
二重积分和三重积分的转化

二重积分和三重积分的转化在数学中,积分是一种重要的运算方法,它的应用非常广泛。
其中,二重积分和三重积分是常见的两种积分形式,它们在计算面积、体积和质量等方面都起着重要作用。
本文将介绍二重积分和三重积分的概念、性质以及它们之间的转化关系。
首先,我们来了解一下二重积分。
二重积分是对二元函数在平面区域上的积分运算,用于计算平面区域的面积。
我们将二重积分表示为∬f(x,y)dA,其中f(x,y)是定义在平面区域上的实函数,dA表示积分区域的面积元素。
在计算二重积分时,我们需要确定积分的积分区域,并建立一个适当的坐标系,将积分区域的面积元素用坐标变量表示。
然后,将二重积分区域划分成若干个小区域,计算每个小区域上函数值的积和,再对这些积和求和,即可得到二重积分的结果。
二重积分的计算方法有多种,如直接计算、极坐标法、换元法等。
接下来,让我们了解一下三重积分。
三重积分是对三元函数在空间区域上的积分运算,用于计算空间区域的体积、质量等。
我们将三重积分表示为∭f(x,y,z)dV,其中f(x,y,z)是定义在空间区域上的实函数,dV表示积分区域的体积元素。
在计算三重积分时,我们需要确定积分的积分区域,并建立一个适当的坐标系,将积分区域的体积元素用坐标变量表示。
然后,将三重积分区域划分成若干个小区域,计算每个小区域上函数值的积和,再对这些积和求和,即可得到三重积分的结果。
三重积分的计算方法与二重积分类似,可以根据需要选择合适的坐标系和计算方法。
二重积分和三重积分之间存在一种转化关系,即通过二重积分来计算三重积分。
这可以通过引入累次积分的方式实现。
具体而言,在计算三重积分时,我们可以先对其中的一个变量进行积分,然后再对另外两个变量进行积分,即将三重积分转化为两个二重积分的复合。
这种转化可以简化计算过程,提高效率。
当然,在进行二重积分和三重积分的转化时,我们需要注意积分区域和积分顺序的选择,以确保计算的正确性。
综上所述,二重积分和三重积分是数学中常见的两种积分形式,它们在计算面积、体积和质量等方面具有重要的意义。
二重积分与三重积分

二重积分与三重积分积分是微积分的重要概念之一,是对函数的求和运算。
在微积分中,有两种常见的积分形式,即二重积分和三重积分,它们在不同维度下对函数进行求和。
本文将对二重积分和三重积分的概念、计算方法和应用进行介绍。
一、二重积分二重积分主要用于平面区域上的函数求积问题。
设有函数 f(x, y) 在平面区域 D 上连续,则二重积分可以表示为:∬D f(x, y) dxdy其中,D 表示平面上的某个闭区域,f(x, y) 是定义在 D 上的函数,dxdy 表示对平面区域 D 进行积分求和。
计算二重积分的方法主要有直接积分和换元积分。
直接积分是将二重积分化为一重积分的连加,依次对 x 和 y 进行积分。
换元积分则是通过变量代换,将二重积分转化为更简单的形式进行计算。
二重积分在几何学、物理学、经济学等领域具有广泛的应用。
例如,可以用二重积分计算平面图形的面积、计算质量分布在平面上的物体的质量、计算曲线围成的平面区域内的曲线积分等。
二、三重积分三重积分主要用于三维空间内的函数求积问题。
设有函数 f(x, y, z)在空间域 V 上连续,则三重积分可以表示为:∭V f(x, y, z) dV其中,V 表示空间中的某个闭区域,f(x, y, z) 是定义在 V 上的函数,dV 表示对三维空间域 V 进行积分求和。
计算三重积分的方法类似于二重积分,可以使用直接积分和换元积分。
通过将三重积分转化为更简单的形式,可以进行计算求解。
三重积分在物理学、工程学、天文学等领域有重要的应用。
例如,可以用三重积分计算物体的体积、计算物体的质心位置、计算电荷分布在空间中的电场等。
总结:二重积分和三重积分是微积分中的重要概念,它们分别适用于平面区域和三维空间中的函数求积问题。
通过不同的计算方法,可以对函数在给定区域内的求和进行精确计算。
二重积分和三重积分在各个领域都有广泛的应用,为解决实际问题提供了有效的数学工具。
对于深入理解和应用积分概念,掌握二重积分和三重积分的计算方法和应用是非常重要的。
计算二重积分的几种简便方法

计算二重积分的几种简便方法一、极坐标法在二维平面上,如果点P在直角坐标系中的坐标为(x,y),那么以O点为极点,OP 线段所在直线为极轴的极坐标(r,θ)满足以下关系式:x=r*cosθy=r*sinθ将函数f(x,y)转化为g(r,θ)表示,则有:根据二重积分的定义式,可以得到用极坐标表示的二重积分:∬Df(x,y)dxdy=∬g(r*cosθ,r*sinθ)rdrdθ其中,D为定义域,r为极径。
二、对称性法对称性法即利用函数在定义域内的对称性简化计算。
具体方法如下:1. 翻折对称:如果定义域D为一个轴对称图形,那么可以将积分区域缩小一半,只计算一侧再乘以2。
3. 奇偶性:如果函数f(x,y)满足奇偶性,即满足f(-x,y)=-f(x,-y)或f(-x,-y)=f(x,y),则可以将定义域限定在一个象限内(通常是第一象限),依次计算再乘以4或2。
轮换对称法即利用极坐标系下的轮换对称性简化计算。
对于一个n边形,将其边每隔2π/n取一条,则这些边的边长相等,角度之和为2π,因此在极坐标系下具有轮换对称性。
具体方法如下:1. 将定义域D分成n份,每份的极角为(k-1)2π/n和k2π/n(k=1,2,...,n)。
2. 对于每份,取中心点和每条边上的一个点,计算这些点构成的区域上的积分。
3. 最后将n份的积分相加即得到原积分。
四、正交性法正交性法即根据正交性定理,将一些特殊的函数乘在被积函数上,使之变成正交函数的线性组合,从而简化计算。
常用的正交函数有勒让德多项式、柯西-斯瓦茨函数等。
1. 将f(x,y)表示为一些正交函数的线性组合。
2. 考虑在正交函数构成的正交系下计算积分。
3. 利用正交性定理,将积分转化为正交基上的系数计算,从而得到简化后的积分表达式。
五、变换法变换法即通过适当的变换将一些定义域较为复杂的积分转化为更加简单的形式。
常见的变换有参数化、奇异变换、极坐标变换等。
1. 找到适当的变换使定义域变得简单。
二重积分和三重积分的计算

几何意义:三重 积分可以用来计 算三维空间中物 体的质量、质心 和转动惯量等物
理量
计算方法:通 过累加三维空 间中各个小体 积元的积分来 计算三重积分
应用场景:在 物理学、工程 学和经济学等 领域有广泛应
用
连续性:三重积分在连续的区间上具有连续的函数值 可加性:对于任意分割的三重积分,其和等于原三重积分的值 可积性:如果三重积分存在,则其值等于被积函数在积分区域上的质量
奇偶性:如果被积函数是奇函数或偶函数,则三重积分的值可能是奇数或偶数
二重积分与三重积 分的应用
计算物体在弹性力作用下的 变形量
计算物体在重力场中的质心 位置
计算带电体在电场中的电势 分布
计算电磁场中的能量密度分 布
三重积分可以用来计算三维物 体的质量、质心和转动惯量等二重积分表示的是二维平面上的面积 二重积分可以计算平面图形的面积 二重积分的值等于被积函数与x轴围成的面积 二重积分的几何意义是二维平面上的体积
可加性:二重积分满足可加性,即可以将积分区域分成若干个小区域, 分别对每个小区域进行积分后再求和。
线性性质:二重积分满足线性性质,即对于常数c,有∫∫D (c) dxdy = c * ∫∫D dxdy。
二重积分的计算需要使用微元法, 将积分区域划分为小的矩形区域
将所有矩形的积分结果相加,即可 得到整个积分区域的二重积分值
直角坐标系法:将二重积分转化为累次积分,再逐一计算 极坐标系法:将二重积分转化为极坐标形式,再逐一计算 区域分割法:将积分区域分割成若干个小区域,再分别计算 数值计算法:利用数值计算软件进行二重积分的计算
三重积分的几何意义:三重积分可以理解为三维空间中体积的积分,即对三维空 间中某一区域进行积分。
三重积分的计算方法:三重积分可以通过多次逐维积分来计算,即先对一个变量 进行积分,再对另一个变量进行积分,最后对第三个变量进行积分。
二、三重积分的计算

D2
X-型域或Y-型域 ,则
D1
D D1 D2 D3
D3
o
x
5
第九章利用极坐标系计算二重积分面积元素i i
i
D
i
o
A
f ( x, y)dxdy f (r cos , r sin )rdrd .
D
D
6
第九章
基本简化区域的定义 r-型区域: 穿过区域且r=常数的圆周与区 域边界相交不多于两个交点.
dr
r sin
r sind
dv r2 sindrdd ,
r
rd
d
o
y
f ( x, y, z)dxdydz
d
x
f (r sin cos ,r sin sin ,r cos )r2 sindrdd .
27
第九章
28
第九章
如图,
z
球面坐标系中的体积元素为 d
dr
r sin
r sind
dv r2 sindrdd ,
z
o
x
A
•
y
x yP
x2 y2 z2 r2
x2 y2 r2 sin2
3·球坐标的取值范围: 0 2,0 r ,0
25
第九章
规定: 0 r , 0 , 0 2.
三坐标面分别为
r 为常数
为常数 为常数
球 面; 圆锥面; 半平面.
26
第九章
如图,
z
球面坐标系中的体积元素为 d
D
f (x,
y)d
V f ( x, y) 0 V f ( x, y 0)
二重积分的物理意义:平面薄片D的质量
MD ( x, y)d
重积分公式

重积分公式重积分是微积分中的一个重要概念,用于计算多元函数在某一区域上的积分。
重积分公式是指在不同坐标系下计算重积分时所使用的相应公式。
一般来说,重积分可以分为二重积分和三重积分,分别用于计算二元函数和三元函数在某一区域上的积分。
下面分别介绍二重积分和三重积分的公式。
1. 二重积分公式:在直角坐标系下,设函数 f(x, y) 在闭区域 D 上连续或者仅有有限个第一类间断点,在 D 上定义二重积分,则有以下公式:Df(x, y)dxdy = ∫∫Df(x, y)dxdy在极坐标系下,设函数 f(r, θ) 在闭区域 D 上连续或者仅有有限个第一类间断点,在 D 上定义二重积分,则有以下公式:Df(r, θ)rdrdθ = ∫∫Df(r, θ)rdrdθ其中,D 表示积分区域,f(x, y) 或 f(r, θ) 是要求积分的函数,dxdy 或 rdrdθ是积分元。
2. 三重积分公式:在直角坐标系下,设函数 f(x, y, z) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(x, y, z)dxdydz = ∫∫∫Vf(x, y, z)dxdydz在柱坐标系下,设函数 f(ρ, θ, z) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(ρ, θ, z)ρdρdθdz = ∫∫∫Vf(ρ, θ, z)ρdρdθdz在球坐标系下,设函数 f(ρ, θ, φ) 在闭区域 V 上连续或者仅有有限个第一类间断点,在 V 上定义三重积分,则有以下公式:Vf(ρ, θ, φ)ρsinφdρdθdφ = ∫∫∫Vf(ρ, θ, φ)ρsinφdρdθdφ其中,V 表示积分区域,f(x, y, z)、f(ρ, θ, z) 或 f(ρ, θ, φ) 是要求积分的函数,dxdydz、ρdρdθdz 或ρsinφdρdθdφ是积分元。
多重积分计算二重积分与三重积分的基本方法

多重积分计算二重积分与三重积分的基本方法在数学中,多重积分是解决面积、体积和质量等问题的重要工具。
其中,二重积分是用来计算平面区域的面积,而三重积分则用于计算空间区域的体积。
本文将介绍二重积分与三重积分的基本方法与计算步骤。
一、二重积分的基本方法二重积分是对某个平面区域上的函数进行积分运算,求得该区域的面积。
一般来说,二重积分可分为定积分和不定积分两种情况。
1. 定积分形式的二重积分对于一个连续函数 f(x, y),在平面区域 D 上的二重积分可表示为:∬D f(x, y) dA其中,dA 表示面积元素。
根据坐标变换公式,可将二重积分转化为极坐标下的积分形式,进而进行计算。
具体的步骤如下:(1)确定积分区域 D,可用不等式或几何关系描述。
(2)通过坐标变换公式将二重积分转化为极坐标下的积分形式,例如:x=r*cosθ,y=r*sinθ。
(3)计算极坐标变换后的积分限,并替换原函数 f(x, y) 为极坐标下的函数f(r, θ)。
(4)进行积分计算,得到最终结果。
2. 不定积分形式的二重积分当二重积分的积分区域 D 无法用几何关系或不等式表示时,可以将二重积分转化为不定积分形式进行计算。
具体的步骤如下:(1)将二重积分转化为累次积分形式,例如:∬D f(x, y) dA = ∫c1到c2 ( ∫h1到h2 f(x, y) dy ) dx。
(2)依次计算累次积分,其中内积分 dy 需要将变量 x 视为常量,进行积分运算。
(3)将内积分的结果代入到外积分中,再次进行积分运算,得到最终结果。
二、三重积分的基本方法三重积分是对空间区域上的函数进行积分运算,求得该区域的体积。
一般来说,三重积分可分为定积分和不定积分两种情况。
1. 定积分形式的三重积分对于一个连续函数 f(x, y, z),在空间区域 E 上的三重积分可表示为:∭E f(x, y, z) dV其中,dV 表示体积元素。
根据坐标变换公式,可将三重积分转化为柱面坐标或球面坐标下的积分形式,进而进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z 0的部分,则
若积分区域 关于 xoy 面或 yoz 对称, 也由类似的结果.
而 (2)若积分区域 关于 xoy面和 zox 均对称, 1 是中
对应于z 0,y 0的部分,则
也由类似的结果.
而 1 是中
位于第一卦限的部分,则
4. 利用三重积分的轮换对称性简化计算 例1. 计算下列三重积分
1. 关于利用被积函数的奇偶性和积分区域对称性 对称性简化二重积分计算:
而D1 是D中对应于
y 0的部分,则
x 0的部分,则
而D1 是D中对应于
而D1 是D中对应于
x 0, y 0的部分,则
2. 利用轮换对称性简化二重积分计算
轮换对称性指被积函数和积分区域关于变量的称性
3. 利用被积函数的奇偶性和积分区域对称性 简化三重积分计算: (1) 若积分区域 关于 xoy 面对称, 1 是中对应于 而
1
y
x
1
解: 设
则
z
0 d 0 sin d r cos r dr 0 x 4
1
2
2
2
0
D
1
y
1ห้องสมุดไป่ตู้
由三重积分的轮换对称性,
z
I 3 z dv 以下利用球面坐标计算,
0 d 0
2
2 sin
d r cos r 2dr
0
0
1
3 16