异面直线及夹角

合集下载

异面直线所成角的求解方法

异面直线所成角的求解方法

异面直线所成角的求解方法
向量相交所产生的两个平面夹角,可以用叉乘来求解,结果可以用两种方式计算:第一种求解方法:
假定两个向量u和v 是两个不同的平面所给定的向量,它们可以表示为:
u= (u1, u2, u3)
叉乘满足:u X v = (u2v3-u3v2, u3v1 - u1v3, u1v2 - u2v1)
使用叉乘向量的结果,可以计算出 u 与 v 的夹角为:
β =arccos[(u X v) / (|u|*|V|)]
其中,|u| 与|v| 分别为u 向量与v 向量的模。

可以利用两个向量的内积来求夹角。

内积的运算公式为:
总的来说,利用叉乘或内积来计算两条直线所成的角度,可以将求解过程简化,并让求解结果更加准确。

最后要注意的是,当实际求解时,应先把两个向量方向向量化,然后用叉乘或内积公式计算夹角,以便得出精确的解决方案。

异面直线教案

异面直线教案

异面直线教案【篇一:异面直线及其夹角(教案与反思)】课题:异面直线及其夹角温江中学许桃教学目标:1、知识与技能(1)理解异面直线及其夹角的概念,会画空间两条异面直线的图形,能在空间几何体,中判断两直线是否为异面直线.能在具体几何体中求出一些较简单的异面直线所成的角.(2)初步培养学生由图到物,由物到图的观察想像力;把空间中的角转化为平面上的角的降维能力;根据图形特征选择恰当的平移方式求异面直线所夹角的动手实践能力.2、过程与方法努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑的氛围,提高学学习的兴趣和课堂效率.让学生经历知识的探究过程, 体会类比的数学思想.3、情感目标让学生领悟数学思想观点;体会数学来源于实际又服务于实际,激发学生的学习热情,使学生初步形成做数学的意识和科学精神,会用联系的观点,运动变化的思想去分析问题和解决问题教学重点:异面直线所成角的概念, 能求出一些较简单的异面直线所成的角教学难点:如何依托载体选择恰当的点将异面直线所成的角转化为相交直线所成的角教学过程:一、复习引入,问题呈现,导入主题(1)创设情境,感知异面教师活动:创设情境,感知异面学生活动:小实验:请用手中的两支笔当着直线,在空间能摆出两条直线有哪几种位置关系?设计意图:通过简单的动手操作让学生发现问题,培养学生思维的主动性(2)总结概括完善认知教师活动:从公共点个数与是否共面概括空间中两条直线的位置关系学生活动:填写表格(3)问题引导,剖析定义教师活动:例举教室中的两直线是否异面,从大梁和讲台下方的两条直线位置关系的分析中引导学生得出异面直线的定义学生活动:分析问题设计意图:剖析异面直线的定义二、合作交流,探究发现,共论主题(1)例举实例,感知异面直线教师活动:让学生例举生活中的异面直线,展示生活中的异面直线学生活动:例举生活中的异面直线设计意图:从生活实例中感知异面直线(2)异面直线的判定定理教师活动:给出命题,引导学生用反正法证明判定定理学生活动:在引导下根据异面直线的定义证明判定定理设计意图:获取判定定理,掌握异面直线的判定方法。

9.2(2)异面直线及其夹角

9.2(2)异面直线及其夹角
CE , AF
因為B∈CE,D∈AF 所以B∈α、D∈α 所以A、B、C、D共面
D
B
E
C
這與已知四邊形ABCD為空間四邊形矛盾 所以AE和CF是異面直線
例1 已知空間四邊形ABCD,E、F分別為BC、DA的中 點。求證:AE和CF是異面直線 A 證明: (定理法)
C 平面ABC F 平面ABC AE 平面ABC
F
D
B
C AE
所以AE和CF是異面直線
E
C
例2 如圖,在正方體AC'中 (1) 哪些棱所在直線與直線AA'垂直? (2) 求直線BA '分別和CC ' 、 DC ' 、AD '的夾角的度數。
D' C' A' B'
D A B
C
例2 如圖,在正方體AC'中 (1) 哪些棱所在直線與直線AA'垂直? (2) 求直線BA '分別和CC ' 、 DC ' 、AD '的夾角的度數。
A1
B1 D
A
C B
小 結
1、異面直線 異面直線的概念 異面直線的判定方法
(1) 判定定理 連結平面內一點與平面外一點的直線,和這個 平面內不經過此點的直線是異面直線。 (2) 定義法 判斷兩直線永不在同一平面內 常用反證法
2、異面直線成的角 (1) 定義
分別平行於兩條異面直線的兩條相交直線所 成的銳角(或直角)叫做這兩條異面直線所成的角。
空間兩條直線
思考: 1、兩條直線不相交則平行。( ) 2、無公共點的兩條直線一定平行。
(
)
空間兩條直線的位置關係: 相交、平行、異面

高一数学异面直线及夹角3

高一数学异面直线及夹角3

例题
D1
例1:设图中的正方体的棱长为a,A1
①图中哪些棱所在的直线与 BA1成异面直线
②求异面直线A1B与C1C的夹 角的度数
D A
③图中哪些棱所在的直线与直线AA1垂直
C1 B1
C B
例2
直三棱柱ABC-A1B1C1 中
B1
ห้องสมุดไป่ตู้D1
A1
F1
角ACB=900, D1,F1分
C1
别是A1B1与A1C1的中点。
(2)、反证法
5、异面直线成的角 (1)、定义:分别平行于两条异面直线
的两条相交直线所成的锐角(或直角)叫 做这两条异面直线所成的角
(2)、取值范围(00,900]
(3)、作法:平移法或补形法 (4) 两条直线互相垂直
①相交直线的垂直 ②异面直线的垂直
奇光,他抓住奇光秀丽地一摇,一件黑晶晶、光溜溜的咒符『银丝锤佛铁饼咒』便显露出来,只见这个这件奇物儿,一边变形,一边发出“嘀嘀”的余响……猛然间I.提瓜
B1
D1 A1 F1
E
则将BD1平移到AE, 角EAF1(或其补角 )
B A
C
即为BD1与AF1所成的角。
三、小结
1.空间两条直线的位置关系 2.异面直线所成的角及其求解方法
作业 习题9.2
4, 5, 7
B
若BC=CA=CC1,求BD1 与
AF1这两条异面直线所成
A C
的角。
分析:恰当的平移是将异面直线所成的角 转化为平面中的角的关键。
思路一:取BC中点G, 连结F1G,则角AF1G (或其补角)为异面 直线所成的角;解三 角形AF1G可得。
B1
D1 F1
A1

异面直线夹角求法

异面直线夹角求法

在解决实际问题中的应用
建筑设计
在建筑设计领域,异面直线夹角可以用于确定建筑物的外观、结构等,以确保建筑物的稳定性和美观 性。
机械设计
在机械设计领域,异面直线夹角可以用于确定机械零件的形状、尺寸等,以确保机械零件的准确性和 可靠性。
04
异面直线夹角的特殊情况
异面直线夹角为直角的情况
总结词
当两条异面直线之间的夹角为直角时,它们之间的夹角是确定的,即90度。
利用向量的数量积求异面直线夹角
总结词
通过向量的数量积,可以计算出异面直线之间的夹角的余弦 值。
详细描述
首先分别求出两条异面直线的方向向量,然后计算这两个方 向向量的数量积。数量积的绝对值等于两向量的模的乘积与 两向量夹角的余弦值的乘积,由此可以求出夹角的余弦值。
利用空间几何的性质求异面直线夹角
总结词
利用空间几何的性质,通过观察空间几何图形,可以直观地求出异面直线之间的 夹角。
详细描述
首先根据异面直线的位置关系,构建一个空间几何图形。然后利用空间几何图形 的性质,如平行线之间的夹角、三角形中的角度关系等,可以求出异面直线之间 的夹角。
03
异面直线夹角的应用
在几何图形中的应用
确定几何形状
异面直线夹角可以用于确定几何图形 的形状和大小,例如在三维建模、建 筑设计等领域。
异面直线夹角的性质
异面直线夹角是两条异面直线在同一 平面内投影所形成的角度,因此不会 超过$90^circ$。
异面直线夹角的大小与两条异面直线 的方向向量有关,方向向量之间的夹 角等于异面直线夹角的补角。
异面直线夹角的取值范围
1
异面直线夹角的取值范围是$0^circ$到 $90^circ$,不包括$0^circ$和$90^circ$。

异面直线夹角公式

异面直线夹角公式

异面直线夹角公式在几何中,异面直线夹角(Tangent Line Angles)是指两条不同直线交汇时产生的夹角。

它们通常被简写为TLA。

任意一条直线上的点可以与另一条直线上的任一点产生一个夹角,在不同的实例中,夹角的大小是不同的。

在矩形,正方形,平行四边形和正多边形的情况下,将两条不同的直线称为异面直线,它们之间有两个不同的夹角:边夹角和夹角。

边夹角是指直线的两个端点之间的夹角,而夹角是指两条直线之间的夹角,它们之间有一个共同的端点。

对于任意一个夹角,都可以用一个类似于异面直线夹角(TLA)公式来描述它:三角函数中的总共有三个关键因素:角度(α),角度(β)和边长(c),它们满足下面的关系:α + = 90°c2 = a2 + b2 2abcosαα = cos-1 ( (a2 + b2 c2) / 2ab )这里,α和β就是两条不同直线之间的边夹角和夹角,而c就是这两条直线之间的边长。

给定两条异面直线所构成的夹角,可以用这三种证明方法来找出其大小:1、使用“影子法”。

即可以用一条给定的直线(不同直线所影响的边)来表示第二条直线在第一条直线上的位置,然后根据它们之间的距离来估算夹角的大小。

2、使用“直角勾股定理”。

根据两条直线的端点,使用直角勾股定理来求解夹角的大小。

3、使用“延长线定理”。

设置两条延长线,以便延长线和第二条直线之间的距离来估算夹角的大小。

这里定义的异面直线夹角公式亦可用于计算平行四边形和正多边形中的夹角大小。

若已知两条异面的边的长度,可以使用上述的公式来求出相应的夹角。

此外,还可以使用异面直线夹角公式来解决其他几何问题,比如:1、求直线的斜率2、求三角形的外接圆的半径3、求两个不同的点之间的距离4、求不同直线之间的夹角5、求反三角形的边长从上面的定义可以看出,异面直线夹角公式可以用于求解不同形状几何问题中的夹角大小,从而使解决几何问题变得更加容易。

它也是数学中最古老的关于三角运算的方法之一,在今天仍然被广泛使用,同时也增加了我们对三角学的理解和认识。

高二数学异面直线及其夹角

高二数学异面直线及其夹角

思路一:取BC中点G, 连结F1G,则角AF1G (或其补角)为异面 直线所成的角;解三 角形AF1G可得。
B1
D1 F1 C1
A1
B
G
A C
思路二、延展平面
B1
D1 A1 F1
E
BAA1B1,使A1E=D1A1,
则将BD1平移到AE, 角EAF1(或其补角 )
B C
A
即为BD1与AF1所成的角。
A1
D1 B1 D
C1
C
A
B
③图中哪些棱所在的直线与直线AA1垂直
例2 直三棱柱ABC-A1B1C1 中 角ACB=900, D1,F 1分 别是A1B1与A1C1的中点。 若BC=CA=CC1,求BD1 与 AF1这两条异面直线所成 的角。
B1
D1 F1 C1 A
A1
B
C
分析:恰当的平移是将异面直线所成的角 转化为平面中的角的关键。
5、异面直线成的角
(1)、定义: 分别平行于两条异面直线
的两条相交直线所成的锐角(或直角)叫 做这两条异面直线所成的角
(2)、平移法或补形法 (4) 两条直线互相垂直 ①相交直线的垂直 ②异面直线的垂直
例题
例1:设图中的正方体的棱长为a, ①图中哪些棱所在的直线与 BA1成异面直线 ②求异面直线A1B与C1C的夹 角的度数
一、基础知识
1、异面直线的定义:
不同在任何一个平面内的两条直线叫作异面直线
2、空间两条直线的位置关系:
平行直线 相交直线 共面直线
空间两条直线
异面直线
3、异面直线的画法:平面衬托法
A
B
4、异面直线的判断
(1)、异面直线的判定定理 连结平面内一点

异面直线及夹角PPT教学课件

异面直线及夹角PPT教学课件

(2)定义法:判断两直线永不在同一平面内 常用反证法
练习1、判断:
(1)没有公共点的两直线叫异面直线
(2)分别在两个平面内的直线叫异面直线
练习2、说出正方体中各对线段的位置关系
1) AB,CC1 ; 2) A1C,BD1
D1
C1
A1
3) AA1,CB1; 4) A1C1,CB1
B1
5) A1B1,DC; 6) BD1,DC

作业
P15 4, 7 P80 4
1.下列结论正确的是( C )
A.没有公共点的两条直线是平行直线
B.两条直线不相交就平行
C.两条直线有既不相交又不平行的情况
D.一条直线和两条相交直线中的一条平 行,它也可能和另一条平行
O是空间中的任意一点 所成的锐角是否相等?
b2
点O常取在两 条异面直线中 的一条上
b
a2
.
o1
b1
a1
.
o
a M
(三)异面直线a与b所成的角
空间中过点O,作直线a1∥a, b1∥b,
则直1.直线线a和ab和所b成所的成角的。锐角(或直角)叫做.异面 1 1
bbbb11b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1ba1b1b1a1b1b1a1b1b1a1baa1b11b1a1ba1b011b01a1b,9a1b10aa1b101b11a1b1b1a111a1ao1a1a1 a1aa1a11
一、空间中两直线的位置关系
a
a
b
b
平行
相交
平行直线 相交直线
共面直线 异面直线
a b 异面 空间两条直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
例2、在棱长是a的正方体ABCD-
A1B1C1D1中,点E,F分 别是BB1,CC1的 中点,求直线AE与BF所成的角.
解:
D1 A1
C1
arccos1
B1 ·F
5
D
·E C
A
B
《名师伴你行》P 8 2020年4月14日星期二
23
例2、在棱长是a的正方体ABCD-
A1B1C1D1中,点E,F分 别是BB1,CC1的 中点,求直线AE与BF所成的角.
如:若求出 cos 1
5
则异面直线所成的角的余弦值为
cos
1
∴异面直线所成的角 arccos 1
5
2020年4月14日星期二
5
例3、异面直线a,b所成的角为500,P为空
间一定点,则过P点且与a,b所成的角都是
300的直线有且只有(B)
A. 1条; B.2条; C.3条; D.4条
变式一、例3中,过P点且与所成的角都是
《名师伴你行》P19 考点3
D1
M
A1
D
2 C1arccos
5
B1 R
N
·
C
A
2020年4月14日星期二
PQ B
变式二、求AE与BD1所成的角
arccos 15
15
D1
C1
A1
B1
B3
D
·E C
·E1
A
2020年4月14日星期二
B
B2
注意
1、平移:
①直接平移,②中位线平移,③补形平移
2、若用余弦定理求出cosα<0,则异 面直线所成的角为π-α
作业 P80 4 <名师伴你行>P23 7
2020年4月14日星期二
练习2、如图,已知直线a,b,c不共面,但 都经过同一点A,点M,P是直线a上异于 A点的一点,点N是直线b上异于A点的 一点,点Q是直线c上异于A点的一点, 求证:直线MN与直线PQ是异面直线
P· a
α
M· A· N·
Q·c
b
《名师伴你行》P10 考点3 Q NhomakorabeaM
P
a
N
b
c
练习2、《名师伴你行》P 2020年4月14日星期二
10
考点1
例2、在棱长是a的正方体ABCD-
A1B1C1D1中,点E,F分 别是BB1,CC1的 中点,求直线AE与BF所成的角.
解:
D1
C1
A1
B1
·F
arccos1 5
D
·E C
A
B
《名师伴你行》P 8 2020年4月14日星期二
250的直线有且只有 1 条
变式二、异面直线a,b所成的角为600,P 为空间一定点,则过P点且与a,b所成的角
都是600的直线有且只有 3 条
2020年4月14日星期二
变式三、异面直线a,b满足a⊥b,直线c
与 a成400角,则c与b所成角的范围为
500,900
《名师伴你行》P23 5
2020年4月14日星期二
2020年4月14日星期二
练习1、
1.下面两条直线是异面直线的是(C)
A.不同在一个平面内的两条直线; B.分别在某两个平面内的两条直线; C.既不平行又不相交的两条直线; D.平面内的一条直线和平面外的一条直线
2020年4月14日星期二
2.若a,b是异面直线,b,c是异面直线, 则a,c的位置关系是 ( )
解:
D1
C1
A1
·K B1
·F
arccos1 5
D
·E C
A
B
《名师伴你行》P 8 2020年4月14日星期二
23
求异面直线所成角的步骤 1 、平移(作平行线) 2、 找出角θ,证明θ即为所求角 3、 解三角形,求出θ
2020年4月14日星期二
变式一、M,N为A1B1,BB1的中点,求AM
与CN所成的角
√A.相交、平行或异面 B.相交或平行
C.异面
D.平行或异面
D
3.如图,在正方体
C
ABCD-A1B1C1D1中,A
棱AB与CC1所成的
角为_____9度0.
D1
B C1
2020年4月14日星期二
A1
B1
例1、如图:a,b,c为不共面的三条直线, 且相交于一点O,点M,N,P分别在直线a, b,c上,点Q是b上异于N的点,判断MN与 PQ的位置关系,并予以证明。 O
2020年4月14日星期二
相关文档
最新文档