向量2.1~2.2综合测试题

合集下载

向量基础练习题(含答案)

向量基础练习题(含答案)
【点睛】
本小题主要考查平面向量相等、共线等知识的理解,属于基础题。
3.B
【解析】
【分析】
逐一分析选项,得到答案。
【详解】
A。单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;
B.向量 与向量 是相反向量,方向相反,长度相等,所以选项正确;
C。向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;
【详解】
解:因为向量 =(1,0), =(-1,m).
所以 , ,
由 得 ,即 ,
即m-(-1)=0,
即m=-1,
故答案为: .
【点睛】
本题考查了向量垂直的坐标运算,重点考查了运算能力,属基础题。
27.
【解析】
【分析】
由 ,得 ,由此可求得 .
【详解】
∵ ,∴ ,即 ,
( 舍去).
故答案为: .
【点睛】
17.
【解析】
【分析】
由两向量共线,可求 的值,再利用向量的模长公式即可.
【详解】
解: , 则 ,解得 ,
从而3 ,
故答案为: .
【点睛】
本题考查向量平行与向量的模长公式,是基础题.
18. .
【解析】
【分析】
设 ,用向量 和 表示向量 ,再根据 三点共线,即可求出 ,进而求出答案。
【详解】
设 ,
, ,
27.已知 , ,若 ,则正数 ________。
参考答案
1.C
【解析】
【分析】
单位向量可能方向不同,所以A错误;若 ,则B错误;相反向量模长相等方向相反,所以C正确;若 , 与 ( )的方向相同,所以D错误。

最新高中向量题集(含答案)【强烈推荐】

最新高中向量题集(含答案)【强烈推荐】

高中向量题集(含答案)【强烈推荐】------------------------------------------作者xxxx------------------------------------------日期xxxx平面向量测试题一、选择题(本题有10个小题,每小题5分,共50分)1.“两个非零向量共线”是这“两个非零向量方向相同”的( )A.充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件2.如果向量(,1)a n=与(4,)b n=共线,且方向相反,则n的值为( )A.2±B.2-C.2D.03.已知向量a、b的夹角为60,||3a =,||2b =,若(35)()a b ma b+⊥-,则m的值为()A。

3223B。

2342C.2942D。

42294.已知a=(1,-2),b=(1,x),若a⊥b,则x等于( )A.21B。

21- C. 2D. -25.下列各组向量中,可以作为基底的是( )A)1,2(),0,0(21-==ee B)9,6(),6,4(21==ee C.)4,6(),5,2(21-=-=ee)43,21(),3,2(21-=-=ee6.已知向量a,b的夹角为120,且|a|=2,|b|=5,则(2a —b)·a= ( )A.3 B。

9C 。

12 D. 137.已知点O为三角形ABC所在平面内一点,若=++OCOBOA,则点O是三角形ABC的( )A.重心 B。

内心C。

垂心D。

外心2 / 253 / 258.设a =(2,-3),b =(x,2x),且3a ·b=4,则x 等于 ( )A.-3B. 3C. 31-D 。

319.已知y x 且),3,2(),,(),1,6(--===∥,则x+2y的值为 ( )A.0 B 。

2 C 。

21D 。

-210.已知向量a+3b,a—4b分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为( )A.6π B。

完整版向量相关练习题及答案

完整版向量相关练习题及答案

向量相关练习一:选择题(共12题,每题5分,共60分), rrr»_rrrr r r uu uu ur o1.设向量a,b,c满足 a b c 0,a b,|a| 1,|b| 2,则|c| ()A. 1B.2C.4D.52. O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OP OA(上B丄C), |AB| |AC|定通过△ ABC K()A.外心B.内心C. 重心D. 垂心3.已知平面向量a(1,2),b(2, m),且a// b,则2a3b =( )A . (-2 , -4 ) B.(-3 , -6 ) C. (-4-8) D.(-5 , -10)4、已知平面向量a=(1, —3), b= (4〔,一2), a b与a垂直,则是()A. -1B. 1C. —2D. 25.已知向量a、b满足a| 1, b 4,,且agD 2,则a与b的夹角为()A. — B60,+ ,则P的轨迹一6.设向量a=(1, —2),b=( —2,4),c=( —1, —2),若表示向量4a,4b—2c,2(a—c),d的有向线段首尾相接能构成四边形,贝卩向A.(2,6)B.( —2,6)C.(2, —6)D.( —2,—6)7•如图,在平行四边形ABCD中,下列结论中错误的是( )8. 在平行四边形ABC [中,AC 与 BD 交于点O, E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC a , BD b ,则AF( )1 r i r2 r 1 r 1 r 1 r 1 r 2 r A . — a —b B. —a —b C. —a —b D. —a - b4 2 3 3 — 4339. 已知点M — (6, 2)和M — (1, 7),直线y=mx — 7与线段M — M —的交点分有向线段M —M —的比为3: 2,则m 的值为 3 2 1 A -B -C —D 423410. 点P 在平面上作匀速直线运动,速度向量 v (4, 3)(即点P 的运动方向与v 相同,且每秒移动的距离为 v 个单位).设 开始时点P 的坐标为(一10, 10),则5秒后点P 的坐标为() A (-2, 4)B(-30, 25) C (10, -5)D (5, -10)11. ( 2007上海)直角坐标系 xOy 中,r , r 分别是与X , y 轴正方向同向的单位向量.在直角 三角形ABC 中,若AB 2i j, AC 3i k j ,则k 的可能值个数是()A. 1B. 2C. 3D. 4十八,, t - uur uuu uuu UUU uuur uuu r 「uur uuuuir _ uuu12. 设 D 、E 、F 分别是△ ABC的三边BC 、CA 、AB 上的点,且 DC 2BD,CE 2EA, AF2FB,则 AD BECF 与 BC ( )A. AB = DCB. AD + AB = ACC. AB — AD = BDD. AD + CB = 0A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直二:填空题(共四题,每题4分,共14分)13.若三点 A(2,2), B(a,0), C(0,b)(ab 0)共线,则--的值等于a b14.已知直线ax +by + c = 0与圆O : x 1 2 + y 2= 1相交于A 、B 两点,且|AB| = .3,则OA OB15-已知向量(1'0),°B (1 cos ,3 sin),则向量与向量的夹角的取值范围是韦.16.关于平面向量a, b, c .有下列三个命题: ①若 ag) = aop ,贝卩 b c .②若 a (1,k), b ( 2,6), a // b ,贝S k 3。

高中向量题集(含答案)【强烈推荐】

高中向量题集(含答案)【强烈推荐】

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中向量题集(含答案)【强烈推荐】地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容平面向量测试题一、选择题(本题有10个小题,每小题5分,共50分)1.“两个非零向量共线”是这“两个非零向量方向相同”的()A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件2.如果向量与共线 ,且方向相反,则的值为(). . . .3.已知向量、的夹角为,,,若,则的值为(). . . .4.已知a=(1,-2),b=(1,x),若a⊥b,则x等于()A. B. C. 2 D. -25.下列各组向量中,可以作为基底的是()ABC.6.已知向量a,b的夹角为,且|a|=2,|b|=5,则(2a-b)·a= ()A.3 B. 9 C . 12 D. 137.已知点O为三角形ABC所在平面内一点,若,则点O是三角形ABC的( )A.重心 B. 内心 C. 垂心 D. 外心8.设a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.-3 B. 3 C. D.9.已知∥,则x+2y的值为()A.0 B. 2 C. D. -210.已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|≠0,|b|≠0,则a与b的夹角为()A. B. C. D.二、填空题(共4个小题,每题5分,共20分)11.在三角形ABC中,点D是AB的中点,且满足,则12.设是两个不共线的向量,则向量b=与向量a=共线的充要条件是_______________13.圆心为O,半径为4的圆上两弦AB与CD垂直相交于点P,若以PO为方向的单位向量为b,且|PO|=2,则=_______________14.已知O为原点,有点A(d,0)、B(0,d),其中d>0,点P在线段AB上,且(0≤t≤1),则的最大值为______________三、解答题15.(12分)设a,b是不共线的两个向量,已知若A、B、C三点共线,求k的值.16.(12分)设向量a,b满足|a|=|b|=1及|3a-2b|=3,求|3a+b|的值17.(14分)已知|a|=,|b|=3,a与b夹角为,求使向量a+b 与a+b的夹角是锐角时,的取值范围20.已知向量、、、及实数、满足,,若,且.⑴求关于的函数关系式及其定义域;⑵若时,不等式恒成立,求实数的取值范围.附加题(可不做)1.已知点P分所成的比为-3,那么点分所成比为()A. B. C. D.2.点(2,-1)按向量a平移后得(-2,1),它把点(-2,1)平移到()A.(2,-1) B. (-2,1) C. (6,-3) D. (-6,3))高中数学高考总复习平面向量的数量积及向量的应用习题及详解一、选择题1.(文)(2010·东北师大附中)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( ) A.-4 B.4C.-2 D.2[解析] a在b方向上的投影为eq \f(a·b,|b|) = eq \f(-12,3) =-4.(理)(2010·浙江绍兴调研)设a·b=4,若a在b方向上的投影为2,且b在a方向上的投影为1,则a与b的夹角等于( )A. eq \f(π,6)B. eq \f(π,3)C. eq \f(2π,3)D. eq \f(π,3) 或 eq \f(2π,3)[答案] B[解析] 由条件知, eq \f(a·b,|b|) =2, eq \f(a·b,|a|) =1,a·b=4,∴|a|=4,|b|=2,∴cos〈a,b〉= eq \f(a·b,|a|·|b|) = eq \f(4,4×2) = eq \f(1,2) ,∴〈a,b〉= eq \f(π,3) .2.(文)(2010·云南省统考)设e1,e2是相互垂直的单位向量,并且向量a=3e1+2e2,b=xe1+3e2,如果a⊥b,那么实数x等于( )A.- eq \f(9,2) B. eq \f(9,2)C.-2 D.2[解析] 由条件知|e1|=|e2|=1,e1·e2=0,∴a·b=3x+6=0,∴x=-2.(理)(2010·四川广元市质检)已知向量a=(2,1),b=(-1,2),且m=ta+b,n=a-kb(t、k∈R),则m⊥n的充要条件是( )A.t+k=1 B.t-k=1C.t·k=1 D.t-k=0[答案] D[解析] m=ta+b=(2t-1,t+2),n=a-kb=(2+k,1-2k),∵m⊥n,∴m·n=(2t-1)(2+k)+(t+2)(1-2k)=5t -5k=0,∴t-k=0.3.(文)(2010·湖南理)在Rt△ABC中,∠C=90°,AC=4,则 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) 等于( )A.-16 B.-8C.8 D.16[答案] D[解析] 因为∠C=90°,所以 eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =0,所以 eq\o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =( eq \o(AC,\s\up6(→)) + eq \o(CB,\s\up6(→)) )· eq\o(AC,\s\up6(→)) =| eq \o(AC,\s\up6(→)) |2+ eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =AC2=16.(理)(2010·天津文)如图,在△ABC中,AD⊥AB, eq \o(BC,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) ,| eq \o(AD,\s\up6(→)) |=1,则 eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( ) A.2 eq \r(3) B. eq \f(\r(3),2)C. eq \f(\r(3),3)D. eq \r(3)[答案] D[解析] ∵ eq \o(AC,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(BC,\s\up6(→)) = eq\o(AB,\s\up6(→)) + eq \r(3) eq \o(BD,\s\up6(→)) ,∴ eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( eq \o(AB,\s\up6(→)) + eq \r(3) eq\o(BD,\s\up6(→)) )· eq \o(AD,\s\up6(→)) = eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) + eq\r(3) eq \o(BD,\s\up6(→)) · eq \o(AD,\s\up6(→)) ,又∵AB⊥AD,∴ eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) =0,∴ eq \o(AC,\s\up6(→)) · e q \o(AD,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) · eq\o(AD,\s\up6(→)) = eq \r(3) | eq \o(BD,\s\up6(→)) |·| eq \o(AD,\s\up6(→)) |·cos∠ADB = eq \r(3) | eq \o(BD,\s\up6(→)) |·cos∠ADB= eq \r(3) ·| eq \o(AD,\s\up6(→)) |= eq \r(3) .4.(2010·湖南省湘潭市)设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=( )A.150° B.120°C.60° D.30°[答案] B[解析] ∵a+b=c,|a|=|b|=|c|≠0,∴|a+b|2=|c|2=|a|2,∴|b|2+2a·b=0,∴|b|2+2|a|·|b|·cos〈a,b〉=0,∴cos〈a,b〉=- eq \f(1,2) ,∵〈a,b〉∈[0°,180°],∴〈a,b〉=120°.5.(2010·四川双流县质检)已知点P在直线AB上,点O不在直线AB上,且存在实数t满足 eq \o(OP,\s\up6(→)) =2t eq \o(PA,\s\up6(→)) +t eq \o(OB,\s\up6(→)) ,则 eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) =( )A. eq \f(1,3)B. eq \f(1,2)C.2 D.3[答案] B[解析] ∵ eq \o(OP,\s\up6(→)) =2t( eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) )+t eq\o(OB,\s\up6(→)) ,∴ eq \o(OP,\s\up6(→)) = eq \f(2t,2t+1) eq \o(OA,\s\up6(→)) + eq \f(t,2t+1) eq\o(OB,\s\up6(→)) ,∵P在直线AB上,∴ eq \f(2t,2t+1) + eq \f(t,2t+1) =1,∴t=1,∴ eq \o(OP,\s\up6(→)) = eq \f(2,3) eq \o(OA,\s\up6(→)) + eq \f(1,3) eq \o(OB,\s\up6(→)) ,∴ eq \o(PA,\s\up6(→)) = eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(1,3) eq\o(OA,\s\up6(→)) - eq \f(1,3) eq \o(OB,\s\up6(→)) ,eq \o(PB,\s\up6(→)) = eq \o(OB,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(2,3) eq\o(OB,\s\up6(→)) - eq \f(2,3) eq \o(OA,\s\up6(→)) =-2 eq \o(PA,\s\up6(→)) ,∴ eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) = eq \f(1,2) .6.(文)平面上的向量 eq \o(MA,\s\up6(→)) 、 eq \o(MB,\s\up6(→)) 满足| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,且 eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,若向量 eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) ,则| eq \o(MC,\s\up6(→)) |的最大值是( )A. eq \f(1,2) B.1C.2 D. eq \f(4,3)[答案] D[解析] ∵ eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,∴ eq \o(MA,\s\up6(→)) ⊥ eq\o(MB,\s\up6(→)) ,又∵| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,∴|AB|=2,且M在以AB为直径的圆上,如图建立平面直角坐标系,则点A(-1,0),点B(1,0),设点M(x,y),则x2+y2=1,eq \o(MA,\s\up6(→)) =(-1-x,-y), eq \o(MB,\s\up6(→)) =(1-x,-y),∵ eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) = eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x,-y)) ,∴| eq \o(MC,\s\up6(→)) |2= eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x)) 2+y2= eq \f(10,9) - eq\f(2,3) x,∵-1≤x≤1,∴x=-1时,| eq \o(MC,\s\up6(→)) |2取得最大值为 eq \f(16,9) ,∴| eq \o(MC,\s\up6(→)) |的最大值是 eq \f(4,3) .(理)(2010·山东日照)点M是边长为2的正方形ABCD内或边界上一动点,N是边BC的中点,则 eq\o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为( )A.8 B.6C.5 D.4[答案] B[解析] 建立直角坐标系如图,∵正方形ABCD边长为2,∴A(0,0),N(2,-1), eq \o(AN,\s\up6(→)) =(2,-1),设M坐标为(x,y), eq \o(AM,\s\up6(→)) =(x,y)由坐标系可知eq \b\lc\{\rc\ (\a\vs4\al\co1(0≤x≤2①,-2≤y≤0 ②))∵ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) =2x-y,设2x-y=z,易知,当x=2,y=-2时,z取最大值6,∴ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为6,故选B.7.如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC= eq \r(7) ,则 eq \o(AO,\s\up6(→)) · eq\o(BC,\s\up6(→)) 等于( )A. eq \f(3,2)B. eq \f(5,2)C.2 D.3[答案] B[解析] eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \o(AO,\s\up6(→)) ·( eq\o(AC,\s\up6(→)) - eq \o(AB,\s\up6(→)) )= eq \o(AO,\s\up6(→)) · eq \o(AC,\s\up6(→)) - eq\o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) ,因为OA=OB.所以 eq \o(AO,\s\up6(→)) 在 eq \o(AB,\s\up6(→)) 上的投影为 eq \f(1,2) | eq \o(AB,\s\up6(→)) |,所以 eq \o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) = eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq \o(AB,\s\up6(→)) |=2,同理 eq \o(AO,\s\up6(→)) · eq\o(AC,\s\up6(→)) = eq \f(1,2) | eq \o(AC,\s\up6(→)) |·| eq \o(AC,\s\up6(→)) |= eq \f(9,2) ,故 eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \f(9,2) -2= eq \f(5,2) .8.(文)已知向量a、b满足|a|=2,|b|=3,a·(b-a)=-1,则向量a与向量b的夹角为( )A. eq \f(π,6)B. eq \f(π,4)C. eq \f(π,3)D. eq \f(π,2)[答案] C[解析] 根据向量夹角公式“cos〈a,b〉= eq \f(a·b,|a||b|) 求解”.由条件得a·b-a2=-1,即a·b=-3,设向量a,b的夹角为α,则cosα= eq \f(a·b,|a||b|) = eq\f(3,2×3) = eq \f(1,2) ,所以α= eq \f(π,3) .9.(理)(2010·黑龙江哈三中)在△ABC中, eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) ∈ eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3,8),\f(3\r(3),8))) ,其面积S= eq \f(3,16) ,则 eq \o(AB,\s\up6(→)) 与 eq \o(BC,\s\up6(→)) 夹角的取值范围是( )A. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,4)))B. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,3)))C. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(π,3)))D. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(3π,4)))[答案] A[解析] 设〈 eq \o(AB,\s\up6(→)) , eq \o(BC,\s\up6(→)) 〉=α,∵ eq \o(AB,\s\up6(→)) · eq\o(BC,\s\up6(→)) =| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |cosα,S= eq \f(1,2) | eq\o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |·sin(π-α)= eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq\o(BC,\s\up6(→)) |·sinα= eq \f(3,16) ,∴| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |= eq\f(3,8sinα) ,∴ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→))= eq \f(3cosα,8sinα) = eq \f(3,8) cotα,由条件知 eq \f(3,8) ≤ eq \f(3,8) cotα≤ eq \f(3\r(3),8) ,∴1≤cotα≤ eq \r(3) ,∵ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) >0,∴α为锐角,∴ eq \f(π,6) ≤α≤ eq \f(π,4) .10.(理)(2010·南昌市模考)如图,BC是单位圆A的一条直径,F是线段AB上的点,且 eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,若DE是圆A中绕圆心A运动的一条直径,则 eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) 的值是( )A.- eq \f(3,4) B.- eq \f(8,9)C.- eq \f(1,4) D.不确定[答案] B[解析] ∵ eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,∴ eq \o(FA,\s\up6(→)) = eq \f(1,3) eq \o(BA,\s\up6(→)) ,∴| eq \o(FA,\s\up6(→)) |= eq \f(1,3) | eq \o(BA,\s\up6(→)) |= eq \f(1,3) ,eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) =( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) + eq \o(AE,\s\up6(→)) )=( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) - eq \o(AD,\s\up6(→)) )=| eq \o(FA,\s\up6(→)) |2-| eq \o(AD,\s\up6(→)) |2= eq \f(1,9) -1=- eq \f(8,9) .二、填空题11.(2010·苏北四市)如图,在平面四边形ABCD中,若AC=3,BD=2,则( eq \o(AB,\s\up6(→)) + eq\o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=______.[答案] 5[解析] 设AC与BD相交于点O,则( eq \o(AB,\s\up6(→)) + eq \o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OA,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OD,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OD,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OA,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=( eq \o(DB,\s\up6(→)) + eq \o(AC,\s\up6(→)) )( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=| eq \o(AC,\s\up6(→)) |2-| eq \o(BD,\s\up6(→)) |2=5.12.(文)(2010·江苏洪泽中学月考)已知O、A、B是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若| eq \o(OA,\s\up6(→)) |=7,| eq \o(OB,\s\up6(→)) |=5,则 eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) -eq \o(OB,\s\up6(→)) )的值为________.[答案] 12[解析] eq \o(PA,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) , eq \o(PB,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OB,\s\up6(→)) ,由条件知,| eq \o(OA,\s\up6(→)) |2=49,| eq \o(OB,\s\up6(→)) |2=25,| eq \o(PA,\s\up6(→)) |=| eq \o(PB,\s\up6(→)) |,∴| eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) |2=| eq \o(PO,\s\up6(→)) + eq\o(OB,\s\up6(→)) |2,即| eq \o(PO,\s\up6(→)) |2+| eq \o(OA,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OA,\s\up6(→)) =| eq \o(PO,\s\up6(→)) |2+| eq \o(OB,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OB,\s\up6(→)) ,∴ eq \o(PO,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=-12,∴ eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=12.13.(理)(2010·广东茂名市)O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足 eq\o(OP,\s\up6(→)) = eq \o(OA,\s\up6(→)) +λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),则λ= eq \f(1,2) 时, eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )的值为______.[答案] 0[解析] 由已知得 eq \o(OP,\s\up6(→)) - eq \o(OA,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),即 eq \o(AP,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),当λ= eq \f(1,2) 时,得 eq \o(AP,\s\up6(→)) = eq \f(1,2) ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),∴2 eq \o(AP,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ,即 eq \o(AP,\s\up6(→)) - eq \o(AB,\s\up6(→)) = eq \o(AC,\s\up6(→)) - eq \o(AP,\s\up6(→)) ,∴ eq \o(BP,\s\up6(→)) = eq \o(PC,\s\up6(→)) ,∴ eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) =eq \o(PB,\s\up6(→)) + eq \o(BP,\s\up6(→)) =0,∴ eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )= eq \o(PA,\s\up6(→)) ·0=0,故填0.三、解答题16.(文)(延边州质检)如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50.(1)求sin∠BAD的值;(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求 eq \f(S△ABD,S△BCD) 的值.[解析] (1)在Rt△ADC中,AD=8,CD=6,则AC=10,cos∠CAD= eq \f(4,5) ,sin∠CAD= eq \f(3,5) ,又∵ eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50,AB=13,∴cos∠BAC= eq \f(\o(AB,\s\up6(→))·\o(AC,\s\up6(→)),|\o(AB,\s\up6(→))|·|\o(AC,\s\up6(→))|) = eq \f(5,13) ,∵0<∠BAC∠180°,∴sin∠BAC= eq \f(12,13) ,∴sin∠BAD=sin(∠BAC+∠CAD)= eq \f(63,65) .(2)S△BAD= eq \f(1,2) AB·ADsin∠BAD= eq \f(252,5) ,S△BAC= eq \f(1,2) AB·ACsin∠BAC=60,S△ACD=24,则S△BCD=S△ABC+S△ACD-S△BAD= eq \f(168,5) ,∴ eq \f(S△ABD,S△BCD) = eq \f(3,2) .(理)点D是三角形ABC内一点,并且满足AB2+CD2=AC2+BD2,求证:AD⊥BC.[分析] 要证明AD⊥BC,则只需要证明 eq \o(AD,\s\up6(→)) · eq \o(BC,\s\up6(→)) =0,可设 eq\o(AD,\s\up6(→)) =m, eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b,将 eq \o(BC,\s\up6(→)) 用m,b,c线性表示,然后通过向量的运算解决.证明:设 eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b, eq \o(AD,\s\up6(→)) =m,则 eq \o(BD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AB,\s\up6(→)) =m-c, eq \o(CD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AC,\s\up6(→)) =m-b.∵AB2+CD2=AC2+BD2,∴c2+(m-b)2=b2+(m-c)2,即c2+m2-2m·b+b2=b2+m2-2m·c+c2,∴m·(c-b)=0,即 eq \o(AD,\s\up6(→)) ·( eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) )=0,∴ eq \o(AD,\s\u p6(→)) · eq \o(CB,\s\up6(→)) =0,∴AD⊥BC.17.(文)(2010·江苏)在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0,求t的值.[解析] (1)由题设知 eq \o(AB,\s\up6(→)) =(3,5), eq \o(AC,\s\up6(→)) =(-1,1),则 eq\o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) =(2,6), eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) =(4,4).所以| eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) |=2 eq \r(10) ,| eq \o(AB,\s\up6(→)) - eq\o(AC,\s\up6(→)) |=4 eq \r(2) .故所求的两条对角线长分别为4 eq \r(2) ,2 eq \r(10) .(2)由题设知 eq \o(OC,\s\up6(→)) =(-2,-1), eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) =(3+2t,5+t).由( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0得,(3+2t,5+t)·(-2,-1)=0,所以t=- eq \f(11,5) .(理)(安徽巢湖质检)已知A(- eq \r(3) ,0),B( eq \r(3) ,0),动点P满足| eq \o(PA,\s\up6(→)) |+| eq \o(PB,\s\up6(→)) |=4.(1)求动点P的轨迹C的方程;(2)过点(1,0)作直线l与曲线C交于M、N两点,求 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围.[解析] (1)动点P的轨迹C的方程为 eq \f(x2,4) +y2=1;(2)解法一:①当直线l的斜率不存在时,M(1, eq \f(\r(3),2) ),N(1,- eq \f(\r(3),2) ), eq\o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) = eq \f(1,4) ;②当直线l的斜率存在时,设过(1,0)的直线l:y=k(x-1),代入曲线C的方程得(1+4k2)x2-8k2x+4(k2-1)=0.设M(x1,y1)、N(x2,y2),则x1+x2= eq \f(8k2,1+4k2) ,x1x2= eq \f(4k2-1,1+4k2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=x1x2+k2(x1-1)(x2-1)=(1+k2)x1x2-k2(x1+x2)+k2= eq \f(k2-4,1+4k2) = eq \f(1,4) - eq \f(\f(17,4),1+4k2) < eq \f(1,4) .又当k=0时, eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 取最小值-4,∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) < eq \f(1,4) .根据①、②得 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].解法二:当直线l为x轴时,M(-2,0),N(2,0), eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =-4. 当直线l不为x轴时,设过(1,0)的直线l:x=λy+1,代入曲线C的方程得(4+λ2)y2+2λy-3=0.设M(x1,y1)、N(x2,y2),则y1+y2= eq \f(-2λ,4+λ2) ,y1y2= eq \f(-3,4+λ2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=(λ2+1)y1y2+λ(y1+y2)+1= eq \f(-4λ2+1,4+λ2) =-4+ eq \f(17,4+λ2) ∈(-4, eq \f(1,4) ].∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) ≤ eq \f(1,4) .∴ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].高中数学平面向量章末复习题(二)【提高篇】一、选择题1、下面给出的关系式中正确的个数是( C )① ②③④⑤(A) 0 (B) 1 (C) 2 (D) 32. 已知ABCD为矩形,E是DC的中点,且=,=,则=( B )(A) + (B)-(C)+(D)-3.已知ABCDEF是正六边形,且=,=,则=( D )(A)(B)(C)+(D)4. 设a,b为不共线向量,=a+2b,=-4 a-b,=-5 a-3 b,则下列关系式中正确的是(B )(A)=(B)=2 (C)=-(D)=-25. 设与是不共线的非零向量,且k+与+k共线,则k的值是( C )(A) 1 (B)-1 (C)(D)任意不为零的实数6. 在中,M是BC的中点,AM=1,点P在AM上且满足-,则等于 ( A )A. B. C. D.7.已知a、b均为单位向量,它们的夹角为60°,那么丨a+3b丨=( C )A.B.C. D.48.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于( D )。

(完整word版)《平面向量》综合测试题

(完整word版)《平面向量》综合测试题

《平面向量》综合测试题一、选择题1. 若A (2,-1),B (-1,3),则AB 的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (54,k k-) D.(5k , -4k ) 3. △ABC 中,BC =a , AC =b ,则AB 等于 ( ) A.a+b B.-(a+b ) C.a-b D.b-a 4.化简52(a -b )-31(2a +4b )+152(2a +13b )的结果是 ( ) A.51a ±51b B.0 C. 51a +51b D. 51a -51b 5.已知|p |=22,|q |=3, p 与q 的夹角为4π,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( )A.15B.15C. 16D.146.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥AB ,则k 的值为 ( ) A.109-B.109C.1019-D.1019 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( )A. P 在△ABC 的内部B. P 在△ABC 的外部C. P 是AB 边上的一个三等分点D. P 是AC 边上的一个三等分点 8.在△ABC 中,AB =c , BC = a , CA =b ,则下列推导中错误的是 ( ) A.若a ·b <0,则△ABC 为钝角三角形 B. 若a ·b =0,则△ABC 为直角三角形 C. 若a ·b =b ·c ,则△ABC 为等腰三角形 D. 若c ·( a +b +c )=0,则△ABC 为等腰三角形9.设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( )A.300B.450C.600D.750二、填空题11.在△ABC,4=且,8=⋅AC AB 则这个三角形的形状是 .12.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .13. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c ,则c= . 14.给出下列命题:①若a 2+b 2=0,则a =b =0;②已知A ),,(11y x B ),(22y x ,则);2,2(212121y y x x ++= ③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 . 三、解答题15.如图,ABCD 是一个梯形,CD AB ,//=, M 、N 分别是AB DC ,的中点,已知=AB a ,=AD b ,试用a 、b 表示,DC BC 和.MN16设两个非零向量e 1、e 2不共线.如果AB =e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线;⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.17.已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量AD 的坐标.18.已知二次函数f (x ) 对任意x ∈R,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2), b =(2sin x ,21),ABNMDCc =(cos2x ,1),d =(1,2)。

空间向量综合测试(含答案)

空间向量综合测试(含答案)

空间向量综合测试一、选择题:本题共12小题,每小题5分1.已知A (3,2,1),B (1,0,4),则线段AB 的中点坐标和|AB →|是( )A.⎝⎛⎭⎫2,1,52,17B.⎝⎛⎭⎫2,-1,52,17C.⎝⎛⎭⎫2,1,-52,17D.⎝⎛⎭⎫2,-1,-52,17 2.直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →等于( ) A .a +b -c B .a -b +c C .-a +b +c D.-a +b -c3.平面α的法向量u =(1,2,-1),平面β的法向量v =(λ2,2,8),若α⊥β,则λ的值是( ) A .2 B .-2C .±2 D.不存在4.在空间四边形ABCD 中,若向量AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1) D.(-5,2,-1)5.已知四面体ABCD 的所有棱长都是2,点E ,F 分别是AD ,DC 的中点,则EF →·BA →=( ) A .1 B .-1C.3D.- 36.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则与直线CE 垂直的直线是( ) A .AC B .BD C .A 1D D.A 1A7.已知a =3m -2n -4p ≠0,b =(x +1)m +8n +2y p ,且m ,n ,p 不共面,若a ∥b ,则x ,y 的值为( )A .x =-13,y =8B .x =-13,y =5C .x =7,y =5 D.x =7,y =88.已知棱长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( )A .-1B .0C .1 D.29.已知直线l 的方向向量为n =(1,0,2),点A (0,1,1)在直线l 上,则点P (1,2,2)到直线l 的距离为( )A.305 B.30C.3010D.230 10.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h =( )A .1B .2C .13 D.2611.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP →=12BA →-12BC→+BD →,则|BP →|2的值为( )A.32 B .3C.74D.9412.三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,N 是BC 的中点,点P 在A 1B 1上,且满足:A 1P →=λA 1B 1→,则直线PN 与平面ABC 所成角θ取最大值时λ的值为( )A.12B.22C.32D.255一、选择题:本题共12小题,每小题5分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本题共4小题,每小题5分.13.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,则A 1B →·B 1C →=________.14.在空间直角坐标系Oxyz 中,已知A (1,-2,0),B (2,1,6),则向量AB →与平面xOz 的法向量的夹角的正弦值为________.15.点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM →·PN →的取值X 围是__________.16.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥平面B 1DE ,则AE =________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M -ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB →,b =AD →,c =AM →,试以a ,b ,c 为基向量表示出向量BN →,并求BN 的长.18.(12分)四边形ABCD 为矩形,P A ⊥平面ABCD ,P A =AD ,M 、N 分别是PC 、AB 的中点,求证:MN ⊥平面PCD .19.(12分)如图所示,平行四边形ABCD 中,∠DAB =60°,AB =2,AD =4,将△CBD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面ABD .(1)求证:AB ⊥DE ;(2)若点F 为BE 的中点,求直线AF 与平面ADE 所成角的正弦值.20.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点.(1)求异面直线GE 与PC 所成角的余弦值;(2)若F 是棱PC 上一点,且DF ⊥GC ,求PFFC的值.21.(12分)在△A ′BC 中,A ′B =4,A ′C =42,∠BA ′C =45°,以A ′C 的中线BD 为折痕,将△A ′BD 沿BD 折起,构成二面角A -BD -C ,在平面BCD 内作CE ⊥CD ,且CE =2,连接DE ,AE ,AC ,如图所示.(1)求证:CE ∥平面ABD ;(2)若二面角A -BD -C 的大小为90°,求二面角B -AC -E 的余弦值.22.(12分)如图,四边形PDCE 为矩形,四边形ABCD 为梯形,平面PDCE ⊥平面ABCD ,∠BAD =∠ADC =90°,AB =AD =12CD =1,PD = 2.(1)若M 为P A 的中点,求证:AC ∥平面MDE ;(2)求直线P A 与平面PBC 所成角的正弦值;(3)在线段PC 上是否存在一点Q (除去端点),使得平面QAD 与平面PBC 所成的锐二面角的大小为π3?空间向量综合测试答案1.解析:选A.设P (x ,y ,z )是AB 中点,则OP →=12(OA →+OB →)=12[(3,2,1)+(1,0,4)]=⎝⎛⎭⎫2,1,52,d AB =|AB →|=〔3-1〕2+〔2-0〕2+〔1-4〕2=17.2.解析:选D.如图,A 1B →=AB →-AA 1→=CB →-CA →-AA 1→=CB →-CA →-CC 1→=b -a -c .3.解析:选C.α⊥β⇒u ⊥v ⇒u ·v =0⇒λ2+4-8=0⇒λ=±2.4.解析:选B.取AC 中点M ,连接ME ,MF ,则ME →=12AB →=⎝⎛⎭⎫-32,52,1,MF →=12CD →=⎝⎛⎭⎫-72,-12,-2,所以EF →=MF →-ME →=(-2,-3,-3),故选B. 5.解析:选B.如图所示,EF →=12AC →,所以EF →·BA →=12AC →·(-AB →)=-12×2×2cos60°=-1故选B.6.解析:选B.以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(图略).设正方体的棱长为1,则A (0,0,0),C (1,1,0),B (1,0,0),D (0,1,0),A 1(0,0,1),E ⎝⎛⎭⎫12,12,1,所以CE →=⎝⎛⎭⎫-12,-12,1,AC →=(1,1,0),BD →=(-1,1,0),A 1D →=(0,1,-1),A 1A →=(0,0,-1).显然CE →·BD →=12-12+0=0,所以CE →⊥BD →,即CE ⊥BD .7.解析:选A.因为a ∥b 且a ≠0,所以b =λa ,即(x +1)m +8n +2y p =3λm -2λn -4λp . 又因为m ,n ,p 不共面,所以x +13=8-2=2y-4,所以x =-13,y =8.8.解析:选C.由于AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1→·AC →=[AA 1→+12(AB →+AD →)]·(AB →+AD →)=12(AB →+AD →)2=12(AB →2+AD →2)=1.9.解析:选A.过P 点作PH ⊥l 于H 点,则PH →=P A →+AH →,由AH →∥n ,可设AH →=λn =(λ,0,2λ). 所以PH →=(-1,-1,-1)+(λ,0,2λ)=(λ-1,-1,2λ-1), 由PH →⊥n ,得λ-1+2(2λ-1)=0,解得λ=35所以PH →=⎝⎛⎭⎫-25,-1,15. 因此点P 到l 的距离为|PH →|=425+1+125=305,选A. 10.解析:选B.设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥AB →n ⊥AD →,即⎩⎪⎨⎪⎧4x -2y +3z =0-4x +y =0,设y=4,则n =⎝⎛⎭⎫1,4,43,所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,所以h =2626×226=2,故选B.11.解析:选D.由题可知|BA →|=1,|BC →|=1,|BD →|= 2. 〈BA →,BD →〉=45°,〈BD →,BC →〉=45°,〈BA →,BC →〉=60°.所以|BP →|2=(12BA →-12BC →+BD →)2=14BA →2+14BC →2+BD →2-12BA →·BC →+BA →·BD →-BC →·BD →=14+14+2-12×1×1×12+1×2×22-1×2×22=94.12.解析:选A.如图,分别以AB →,AC →,AA 1→为单位正交基底建立空间直角坐标系Axyz ,则P (λ,0,1),N ⎝⎛⎭⎫12,12,0,PN →=(12-λ,12,-1).易得平面ABC 的一个法向量n =(0,0,1),则直线PN 与平面ABC 所成的角θ满足:sin θ=|cos 〈PN →,n 〉|=1⎝⎛⎭⎫λ-122+54,于是问题转化为二次函数求最值,而θ∈⎣⎡⎦⎤0,π2,所以当sin θ最大时,θ最大.所以当λ=12时,sin θ最大,为255,同时直线PN 与平面ABC 所成的角θ取到最大值.13解析:A 1B →·B 1C →=A 1B →·A 1D →=|A 1B →|·|A 1D →|·cos 〈A 1B →,A 1D →〉=2a ×2a ×cos 60°=a 2.答案:a 214解析:设平面xOz 的法向量为n =(0,t ,0)(t ≠0).又AB →=(1,3,6),所以cos 〈n ,AB →〉=n ·AB →|n |·|AB →|=3t 4|t |,因为〈n ,AB →〉∈[0,π],所以sin 〈n ,AB →〉=1-⎝⎛⎭⎫3t 4|t |2=74答案:7415解析:由题意知内切球的半径为1,设球心为O ,则PM →·PN →=(PO →+OM →)·(PO →+ON →)=OP 2→+PO →·(OM →+ON →)+OM →·ON →=|PO →|2-1.因为1≤|OP →|≤5,所以PM →·PN →∈[0,4].答案:[0,4]16.解析:建立如图所示的空间直角坐标系,则A (2a ,0,0),B 1(0,0,3a ),C (0,2a ,0).设点E 的坐标为(2a ,0,z ),则CE →=(2a ,-2a ,z ),B 1E →=(2a ,0,z -3a ).由CE →⊥B 1E →,得2a 2+z 2-3az =0,解得z =a 或2a ,即AE =a 或2a .答案:a 或2a17.解:BN →=BC →+CN →=AD →+12CM →=AD →+12(AM →-AC →)=AD →+12[AM →-(AD →+AB →)]=-12AB →+12AD →+12AM →.所以BN →=-12a +12b +12c ,|BN →|2=BN →2=⎝⎛⎭⎫-12a +12b +12c 2=14(a 2+b 2+c 2-2a·b -2a·c +2b·c )=174, 所以|BN →|=172,即BN 的长为172.18.证明:建立空间直角坐标系如图所示,设P A =AD =a ,AB =b ,则P (0,0,a ),D (0,a ,0),B (b ,0,0),C (b ,a ,0),N ⎝⎛⎭⎫b 2,0,0,M ⎝⎛⎭⎫b 2,a 2,a2, 所以MN →=⎝⎛⎭⎫0,-a 2,-a 2,DC →=(b ,0,0),PC →=(b ,a ,-a ), 所以MN →·PC →=-a 22+a 22=0,MN →·DC →=0,所以MN →⊥PC →,MN →⊥DC →,即MN ⊥PC ,MN ⊥DC ,又因为PC ∩DC =C ,MN ⊄平面PCD ,所以MN ⊥平面PCD .19.解:(1)证明:在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠DAB ,即BD 2=4+16-16×12=12,所以BD =23,所以BD 2+AB 2=AD 2,所以△ABD 和△EBD 均为直角三角形,所以ED ⊥DB .又DB 是平面EBD 和平面ABD 的交线,且平面EBD ⊥平面ABD ,ED ⊂平面EBD ,所以ED ⊥平面ABD .又AB ⊂平面ABD ,所以AB ⊥DE .(2)由(1)知∠ABD =∠CDB =90°,以D 为坐标原点,DB ,DC ,DE 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(图略),则D (0,0,0),B (23,0,0),C (0,2,0),E (0,0,2),A (23,-2,0),F (3,0,1),所以DA →=(23,-2,0),DE →=(0,0,2),AF →=(-3,2,1).设平面ADE 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·DA →=0,n ·DE →=0,即⎩⎨⎧23x -2y =0,2z =0.令x =1,则y = 3.又z =0,所以n =(1,3,0).设直线AF 与平面ADE 所成的角为α,则有sin α=|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=32×22=68.20.解:(1)以G 点为原点,GB ,GC ,GP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE →=(1,1,0),PC →=(0,2,-4).因为cos 〈GE →,PC →〉=GE →·PC →|GE →||PC →|=22×25=1010,所以GE 与PC 所成角的余弦值为1010.(2)因为GD →=34BC →=⎝⎛⎭⎫-32,32,0,所以D ⎝⎛⎭⎫-32,32,0. 设F (0,y ,z ),则DF →=(0,y ,z )-⎝⎛⎭⎫-32,32,0=⎝⎛⎭⎫32,y -32,z . 因为DF →⊥GC →,所以DF →·GC →=0,即⎝⎛⎭⎫32,y -32,z ·(0,2,0)=2y -3=0,所以y =32. 又点F 在PC 上,所以PF →=λPC →,即⎝⎛⎭⎫0,32,z -4=λ(0,2,-4),所以z =1,故F ⎝⎛⎭⎫0,32,1, 所以PF →=⎝⎛⎭⎫0,32,-3,FC →=⎝⎛⎭⎫0,12,-1,所以PF FC =35252=3. 21.解:(1)证明:由AB =4,A ′C =42,∠BA ′C =45°,得BC =4,所以△A ′BC 为等腰直角三角形,又D 为A ′C 的中点,所以BD ⊥A ′C .所以折起后BD ⊥CD .又CE ⊥CD ,所以CE ∥BD ,因为CE ⊄平面ABD ,BD ⊂平面ABD ,所以CE ∥平面ABD .(2)由二面角A -BD -C 的大小为90°,AD ⊥BD ,得AD ⊥平面BCD ,由(1)知BD ⊥CD , 于是以D 为坐标原点,分别以DB ,DC ,DA 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.设F 为AC 的中点,连接DF ,则DF ⊥AC ,且DF =2.因为CE ⊥CD ,AD ⊥平面BCD ,所以CE ⊥平面ACD ,所以DF ⊥CE ,所以DF ⊥平面ACE . 易求得BD =CD =AD =22,所以D (0,0,0),B (22,0,0),C (0,22,0),A (0,0,22),F (0,2,2).所以平面ACE 的一个法向量为DF →=(0,2,2).又AB →=(22,0,-22),AC →=(0,22,-22),设平面ABC 的法向量为n =(x ,y ,z ),则n ·AB →=0,n ·AC →=0,所以x =y =z ,取n =(1,1,1)为平面ABC 的一个法向量.所以cos 〈n ,DF →〉=n ·DF →|n ||DF →|=63,根据图形可知二面角B -AC -E 的余弦值为-63. 22.解:(1)证明:如图,在矩形PDCE 中,设PC 交DE 于点N ,则点N 为PC 的中点.连接MN .在△APC 中,点M 为P A 的中点,点N 为PC 的中点,所以AC ∥MN . 又MN ⊂平面MDE ,AC ⊄平面MDE ,所以AC ∥平面MDE .(2)由∠ADC =90°,得AD ⊥CD ,由平面PDCE ⊥平面ABCD ,且平面PDCE ∩平面ABCD =CD ,得AD ⊥平面PDCE , 所以AD ⊥PD .在矩形PDCE 中,PD ⊥CD ,则DA ,DC, DP 两两垂直.以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,则D (0,0,0),A (1,0,0),P (0,0,2),B (1,1,0),C (0,2,0),所以AP →=(-1,0,2),CP →=(0,-2,2),BC →=(-1,1,0). 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CP →·n =-2y +2z =0BC →·n =-x +y =0,取n =(1,1,2).设直线P A 与平面PBC 所成角为θ,则sin θ=|AP →·n ||AP →||n |=36.所以直线P A 与平面PBC 所成角的正弦值为36.(3)假设存在点Q 满足条件,则可设CQ →=λCP →(0<λ<1),得Q (0,2-2λ,2λ).又DA →=(1,0,0),DQ →=(0,2-2λ,2λ),设平面QAD 的法向量为n 1=(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧DA →·n 1=x 1=0DQ →·n 1=〔2-2λ〕y 1+2λz 1=0, 令y 1=2λ,则n 1=(0,2λ,2λ-2).由平面QAD 与平面PBC 所成的锐二面角为π3, 得cos π3=|n 1·n ||n 1||n |=|32λ-22|2×2λ2+4〔λ-1〕2=12,所以λ=13或λ=1(舍去), 所以所求点Q 为线段CP 上靠近点C 的一个三等分点,即在线段PC 上存在点Q 满足条件.4.〔2018全国卷Ⅲ〕如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.MDC B A5.(2018XX)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.NABC DEFGM。

向量高考经典试题(附详细答案)

向量高考经典试题(附详细答案)

向量⾼考经典试题(附详细答案)向量⾼考经典试题⼀、选择题1.(全国1⽂理)已知向量(5,6)a =-r ,(6,5)b =r,则a r 与b rA .垂直B .不垂直也不平⾏C .平⾏且同向D .平⾏且反向解.已知向量(5,6)a =-r ,(6,5)b =r,30300a b ?=-+=r r ,则a r 与b r 垂直,选A 。

2、(⽂5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ()A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ?-=-+=?= 2=a 。

3、(⽂4理10)若向量,a b r r 满⾜||||1a b ==r r ,,a b r r 的夹⾓为60°,则a a a b ?+?r r r r =______;答案:3 2;解析:1311122a a ab ?+?=+??=r r r r ,4、(天津理10)设两个向量22(2,cos )a λλα=+-r 和(,sin ),2mb m α=+r其中,,m λα为实数.若2,a b =r r 则mλ的取值围是C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-r ,(,sin ),2m b m α=+r 2,a b =r r 可得2222cos 2sin m m λλαα+=??-=+?,设k m λ=代⼊⽅程组可得22222cos 2sin km m k m m αα+=??-=+?消去m 化简得2222cos 2sin 22k k k αα??-=+ ?--??,再化简得22422cos 2sin 022k k αα??+-+-= ?--??再令12t k =-代⼊上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因⽽11128k -≤≤--解得61k -≤≤.故选A5、(理11)在直⾓ABC ?中,CD 是斜边AB 上的⾼,则下列等式不成⽴的是(A )2AC AC AB =?u u u r u u u r u u u r (B ) 2BC BA BC =?u u u r u u u r u u u r(C )2AB AC CD =?u u u r u u u r u u u r (D ) 22()()AC AB BA BC CD AB=u u u r u u u r u u u r u u u ru u u r u u u r 【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =-=??=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ?=?u u u r u u u r u u u r u u u r ,通过等积变换判断为正确.6、(全国2 理5)在?ABC 中,已知D 是AB 边上⼀点,若AD =2DB ,CD =CB CA λ+332(B)31(C) -31(D) -32 解.在?ABC 中,已知D 是AB 边上⼀点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r =1233CA CB +u u u r u u u r ,4 λ=32,选A 。

2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)

2020-2021学年人教A版必修4第二章平面向量综合测试卷(A)含答案(共3套)

必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:C
4.设 是不共线向量,若向量 与向量 共线,则 的值等于( )
A. B. C. D.
答案:A
5.若点 是 的重心,则下列向量中与 共线的是( )
A. B.
C. D.
答案:C
二、填空题
6.已知数轴上三点 ,其中点 的坐标分别为 ,且 ,则 ,
点 的坐标为.
答案:9;4或8
7.在 中, 是 边靠近 点的三等分点,若 ,则 .
高中苏教数学④2.1~2.2综合测试题
一、选择题
1.已知 , ,
,其中 为非零向量,则下列命题中错误的是( )
A. B.
C. D.
答案:B
2.化简以下各式:
① ;② ;③ ;④ .其结果为 的个数是( )
A.1B.2C.3D.4
答案:D
3.若 , , , ,则四边形 是( )
A.平行四边形B.菱形C.等腰梯形D.直角梯形
解:假设存在满足条件的 ,
则 .
与 共线,则存在实数 ,使 .
即 .
解得 .
存在实数 ,满足 时, 与 共线.
11.如图1,在 中, , , 与 交于点 ,且 ,用 表示 .
解如图1,由 , ,
有 , .
三点共线,
设 ,

同理:由 三点共线,可设 ,

解得

12.如图2所示,已知 的两边 的中点分别为 ,在 的延长线上取点 ,使 ,在 的延长线上取点 ,使 .试证明: 三点共线.
证明:如图2

同理可得, .

与 平行且有公共点 .
三点共线.
答案:
8. 是边长为1的正三角形,点 是平面上任意一点,则 .
答案:
三、解答题
9. 是 内一点, ,试证 为 的重心.
证明:如图,延长 到 ,
使 ,交 于 ,
则 .
而由 ,
有 ,

四边形 为平行四边形.
平分 ,即 所在的直线为 的边 上的中线.
同理可证, 所在的直线分别为 边上的中线.
为 的重心.
10.已知 ,其中 不共线,向量 ,问是否存在这样的实数 ,使 与 共线.
相关文档
最新文档