平面向量综合练习题集
平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量综合题答案

1、已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[).,0(+∞∈++=λλ则P 点的轨迹一定通过△ABC 的(A )A .重心B .垂心C .内心D .外心3、已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( C ) A. 等腰三角形 B. 等边三角形 C. 直角三角形D. 等腰直角三角形【方法】选择基底;数量积公式4、非零向量OA a =,OB b =,若点B 关于OA 所在直线的对称点为1B ,则向量1OB OB +为( A )A 、22(a b )aa⋅ B 、2(a b )aa⋅ C 、2(a b )aa⋅ D 、(a b )a a⋅【方法】待定系数法;向量三角形法则5、如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与线段AB交于圆内一点D ,若OC xOA yOB =+,则( C ) A .01x y <+< B .1x y +>C .1x y +<-D .10x y -<+<6、定义平面向量的正弦积为||||sin 2a b a b θ⋅=,(其中θ为a 、b 的夹角),已知△ABC 中,AB BC ⋅=BC CA ⋅,则此三角形一定是( A )A .等腰三角形B . 直角三角形C . 锐角三角形D . 钝角三角形7、已知四边形ABCD的对角线相交于一点,()1,3 AC=,()3,1BD=-,则AB CD⋅的取值范围是()A.()2,0B.(]4,0C.[)0,2-D.[)0,4-【答案】C.【解析】取(0,0)A,则(1,3)C;设11(,)B x y,22(,)D x y,则21213,1.x xy y⎧-=-⎪⎨-=⎪⎩所以()()1122,3,1AB x y x y==+-,()221,3CD x y=--,求得22223131()()2222AB CD x y-+⋅=++--≥-,当1131,231,2xy⎧+=⎪⎪⎨-⎪=⎪⎩且2231,231,2xy⎧-+=⎪⎪⎨+⎪=⎪⎩时,AB CD⋅取到最小值2-,此时四边形ABCD的对角线恰好相交于一点,故选C.9、已知点OAOQOPAyxyxyxyxP(sin),0,3(,13211294:),(∠⎪⎩⎪⎨⎧≤--≤-+≥-+则设的坐标满足为坐标原点)的最大值为 510、如图,已知1||=→OA,3||=→OB,0=⋅→→OBOA点C在线段AB上,且AOC∠=030,设→→→+=OBnOAmOC,)(Rnm∈,则mn等于 311、已知→→ba,为平面向量,若→→+ba与→a的夹角为3π,→→+ba与→b的夹角为4π,则→→||||ba=【解】图解法12、已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为 2或2-13、设O 为ABC ∆的外心,且543=++ ,则ABC ∆的内角C 的值为4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA15、设P 为ABC ∆所在平面内一点,且→→→→=--025AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比等于 15【方法】图解法;向量平行四边形法则16、在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是 ]1,222[- 【方法】建立坐标系18、在ABC ∆中,点D 在线段BC 的延长线上,且→→=CD BC 3,点O 在线段CD 上(与点C 、D 不重合),若→→→-+=AC x AB x AO )1(则x 的取值范围是 1(,0)3-【方法】选择基底;向量相等19、在△ABC 中,E 、F 分别为AB ,AC 中点.P 为EF 上任一点,实数x ,y 满足PA +x PB +y PC =0.设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,1S ,2S ,3S ,记11S S λ=,22SS λ=,33S Sλ=,则当λ2·λ3取最大值时,2x +y 的值为220、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解析】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλAB AC AC AB AC AB ,选D21、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλ,选D 22、已知点G 是ABC ∆的重心,AB μλ+=(λ, R ∈μ ),若0120=∠A ,2-=⋅AC AB3223、在矩形ABCD P若→→→+=AD AB AP μλ,24、P 是ABC ∆所在平面上一点,满足→→→→=++AB PC PB PA 2,若12ABC S ∆=,则PAB ∆的面积为4【解析】由()22PA PB PC AB PB PA ++==-,得3PA PB PC CB =-=,所以PABC ,且13PA BC=,ABC∆的边AB上的高是ABP∆边AB上的高的3倍,所以13ABPABCSS∆∆=,由12,4ABC ABPS S∆∆=∴=25、已知点O为ABC∆内一点,且→→→→=++0OCOBOA则:ABC BOCS S∆∆=________3:1.【解】330OA OB OC OA OA AB OA AC OA AB AC OA AD++=++++=++=+=,即3AO AD=,又12AE AD=,所以有21,33AO AE OE AE==即,则:ABC BOCS S∆∆=3:1AE OE=:.26、已知菱形ABCD的边长为a,∠DAB=60°,2EC DE=,则.AE DB的值为32a-.27、如图,∆AOB为等腰直角三角形,1OA=,CO为斜边AB的高,点P在射线CO上,则AP⋅OP 的最小值为18-.【解析】如图所示,AP =OP -OA ,设0t OP =≥.∴()2AP ⋅OP =OP -OA ⋅OP =OP -OA ⋅OP2222112488t t t⎛⎫=-=--≥- ⎪ ⎪⎝⎭,当24t =时取等号,∴AP ⋅OP 的最小值为18-.28、在长方形ABCD 中,,,12==AD AB 点N M 、分别是CD BC 、边上的点,且._________,的取值范围是则AN AM CDCN BCBM ⋅=2),(4329、在ABC ∆中,若D 是AB 的中点,P 在线段CD 上移动,当222CP BP AP ++最小时,求:PC PD 的比值为 230、在ABC ∆中,D 是BC 上一点,→→-=DB DC 2,若2||=→AB ,3||=→AC ,则||→AD 的取值范围为 .)37,31(31、已知平面向量)(,βαβα≠满足2=α,且α与αβ-的夹角为120°,t R ∈,则βαt t +-)1( 的取值范围是 ),3[+∞.32、 设点M 是线段BC 的中点,点A 在直线BC 外,ABC ∆中BC 边上的高为h ,且216BC =||||→→→→-=+AC AB AC AB 则h 的最大值为_____________2.平面向量8.O 是ABC ∆所在平面内一点,动点P 满足(),0sin sin AB AC OP OA AB BAC Cλλ=++>,则动点P 的轨迹一定通过ABC ∆的 ( C )(A) 内心 (B) 外心 (C) 重心 (D) 垂心10.如图放置的正方形, 1.,ABCD AB A D =分别在x 轴、y 轴的正半轴(含原点) 上滑动,则OC OB ⋅的最大值是 ( D ) (A) 1 (B)2(C) 3 (D) 2ABOC第10题图13.已知正△ABC 的边长为1,点G 为边BC 的中点,点,D E 是线段,AB AC 上的动点,DE 中点为F .若AD AB λ=,(12)AE AC λ=-()λ∈R ,则FG 的取值范围为 17,24⎡⎤⎢⎥⎣⎦.14@.如图,//AB MN ,且2OA OM =,若OP xOA yOB =+,(其中,x y R ∈),则终点P 落在阴影部分(含边界) 时,21y x x +++的取值范围是 4[,4]3 .16.已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4316.已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=,(02)k <<,则cos()αβ-的最大值是 12-.14.已知向量,a b 满足:||13a =,||1b =,|5|12a b -≤,则b 在a 上的投影的取值范围是 5113[,].8.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选B 。
平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题一. 平面向量综合题1. 已知向量AB = 3i - 2j,向量AC = -4i + 3j,求向量BC。
解: 由向量相减得到向量BC = AC - AB。
BC = (-4i + 3j) - (3i - 2j)= -4i + 3j - 3i + 2j= -7i + 5j所以向量BC = -7i + 5j。
2. 已知向量AB = 2i + 3j,向量AC = 5i - j,求向量BA 和向量CA。
解:向量BA = -AB = -(2i + 3j) = -2i - 3j向量CA = -AC = -(5i - j) = -5i + j所以向量BA = -2i - 3j,向量CA = -5i + j。
二. 数列函数综合题1. 给定数列 {an} 的通项公式为 an = 3n + 2,计算前5项的和 Sn。
解:数列的前5项分别为 a1 = 3(1) + 2 = 5, a2 = 3(2) + 2 = 8, a3 = 3(3) + 2 = 11, a4 = 3(4) + 2 = 14, a5 = 3(5) + 2 = 17。
前5项的和 Sn = a1 + a2 + a3 + a4 + a5 = 5 + 8 + 11 + 14 + 17 = 55。
所以前5项的和 Sn = 55。
2. 给定数列 {bn} 的通项公式为 bn = 2n^2 + n,计算前4项的乘积Pn 和后4项的平均数 Mn。
解:数列的前4项分别为 b1 = 2(1^2) + 1 = 3, b2 = 2(2^2) + 2 = 10, b3 =2(3^2) + 3 = 21, b4 = 2(4^2) + 4 = 36。
前4项的乘积 Pn = b1 * b2 * b3 * b4 = 3 * 10 * 21 * 36 = 22680。
数列的后4项分别为 b5 = 2(5^2) + 5 = 55, b6 = 2(6^2) + 6 = 90, b7= 2(7^2) + 7 = 147, b8 = 2(8^2) + 8 = 232。
2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
平面向量复习综合练习题及答案

10、(全国2 理5)在?ABC中,已知D是AB边上一点,若 =2 , = ,则?=
(A) (B) (C) - (D) -
11、(北京理4)已知 是 所在平面内一点, 为 边中点,且 ,那么
A. B. C. D.
12、(福建理4文8)对于向量,a、b、c和实数 ,下列命题中真命题是
A.(2,14)B.(2,- )C.(-2, )D.(2,8)
答案:选B
16.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b= mq-np,下面说法错误的是( )
A.若a与b共线,则a⊙b =0B.a⊙b =b⊙a
C.对任意的 R,有( a)⊙b = (a⊙b)D.(a⊙b)2+(a·b)2= |a|2|b|2
求 。
31、已知A(2,0),B(0,2),C(cos ,sin ),且0< <
(1)若|OA+OC|= ,求OB与OC的夹角;
(2)若AC⊥BC,求tan 的值。
32、
求证:(1)A、B、D三点共线.
33、已知 之间有关系 ,其中k>0,
(1)k表示 ;(2)求 的最小值,并求此时 夹角的大小。
20.P是圆C: 上的一个动点,A( ,1),则 的最小值为______2( -1)
21.已知 =(3,2), =(-1,0),向量 + 与 -2 垂直,则实数 的值为_________1
22.在直角三角形 中, ,点 是斜边 上的一个三等分点,则
23、(江西理15)如图,在 中,点 是 的中点,过点 的直线分别交直线 , 于不同的两点 ,若 , ,则 的值为.
(1)求角 的大小;
平面向量练习题

1、AB BC AD +-=( )A.ADB.CDC.DBD.DC2、已知P ,A ,B ,C 是平面内四点,且P A →+P B →+P C →=A C →,那么一定有( )A .PB →=2CP → B .C P →=2PB → C .A P →=2PB →D .P B →=2AP →3、在△ABC 中,A D →=2DC →,B A →=a ,B D →=b ,B C →=c ,则下列等式成立的是( ) A .c =2b -a B .c =2a -b C .c =3a 2-b 2 D .c =3b 2-a 24、已知向量A B →=a +3b ,B C →=5a +3b ,C D →=-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线C .A ,C ,D 三点共线 D .B ,C ,D 三点共线5、已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( )A.(21)--, B.(21)-, C.(10)-, D.(12)-,6、已知向量(5,6)a =-,(6,5)b =,则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向7、已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的() A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8、已知,向量与垂直,则实数的值为 ( )A. B. C. D.9、在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5 D .1010、已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( )A .-32a 2B .-34a 2 C.34a 2 D.32a 211、已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m =12、设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线13、△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________()()3,2,1,0a b =-=-a b λ+2a b -λ17-1716-1614、已知11(1,),(0,),,22a b c a kb d a b==-=+=-,c与d的夹角为4π,则k等于____15、已知2,5,3a b a b===-,则a b+等于____。
平面向量综合题

1.若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
2.3、若b a ,是两个非零向量,且]1,33[|,|||||∈+==λλb a b a ,则b 与b a -的夹角的4.在△ABC 中,()||||AB AC AB AC + ·0,||BA BC BA = ·13||BC BC =,则△ABC 的形状为A .直角三角形B . 等边三角形C .三边均不相等的三角形D .等腰非等边三角形5.在ABC ∆中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C 、D 不重合),若(1),AO xAB x AC x =+-则的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭D .1,03⎛⎫- ⎪⎝⎭6.如图所示, A , B , C 是圆O 上的三点, CO 的延长线与线段BA 的延长线交于圆O 外的点D,若,则的取值范围是 ( ) A .B .C .D .OC mOA nOB =+m n +(0,1)(1,)+∞(,1)-∞-(1,0)-7.8.在△ABC 中,∠B=6π,,6||,33||==BC AB 设D 是AB 的中点,O 是△ABC 所在平面内一点, 且023=++OC OB OA ,则||DO 的值是A .21 B .1C .3D .29.已知O 是ABC ∆的外心,2,3AB AC ==,若AO x AB y AC =+且21x y +=,则cos BAC ∠=10. 已知的三个顶点C B A ,,及所在平面内一点P 满足,则点P 与的关系A .P 在内部B .P 在外部C .P 在边上D .P 在边上11.在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB 上的点,且,||||C A C B C P x y x yC A C B =⋅+⋅则的最大值为 A .1B .2C .3D .413. 已知非零向量,,a b c 满足||1,()()0,||a b a c b c c -=-⋅-=设的最大值与最小值分别为m ,n ,则m-n 值为 ( )A .1B .2C .12D .1414. 若 △ABC 内接于以O 为圆心,1为半径的圆,且 3450OA OB OC ++= ,则 OC AB⋅的值为 (A) 15-(B)15(C) 65-(D)6515ABC ∆PA PB PC AB ++=ABC ∆ABC ∆ABC ∆AB AC16. 如图,在ΔABC 中,,,,则=( )A .B .CD 17.已知平面内两个单位向量α,b ,设向量c =λα ,且| c | ≠ 1,α·(b – c )= 0, 则实数λ的取值范围是 . 18.19.在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,已知点D 是BC 边的中点,且21()2AD BC a ac ∙=- ,则角B = ▲ .20.已知35=+=-=,= ▲ .21.若向量(2,4),(1,1)a b ==,满足()b a b λ⊥+,则实数λ的值是 ___▲ . -22.已知)2,1(-=a ,)1,(λ=b ,若5|2|=-b a ,则=λ ▲ .AD AB ⊥BC BD1AD = AC AD ⋅21.设,x y 为实数,若2241xy xy ++=,则2x y +的最大值是 .2.已知,,x y z R +∈,230x y z-+=,则2y xz的最小值 .33.已知,a b R +∈,且21a b +=,则224s a b =-的最大值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列命题中正确的是( )
A.OA→-OB→=AB→
B.AB→+BA→=0
C.0·AB→=0
D.AB→+BC→+CD→=AD→
考点向量的概念
题点向量的性质
答案 D
解析起点相同的向量相减,则取终点,并指向被减向量,OA→-OB→=BA→;AB→,BA→是一对相反向量,它们的和应该为零向量,AB→+BA→=0;0·AB→=0.
2.已知A,B,C三点在一条直线上,且A(3,-6),B(-5,2),若C点的横坐标为6,则C 点的纵坐标为( )
A.-13 B.9 C.-9 D.13
考点向量共线的坐标表示的应用
题点已知三点共线求点的坐标
答案 C
解析设C点坐标(6,y),则AB→=(-8,8),AC→=(3,y+6).
∵A,B,C三点共线,∴3
-8=
y+6
8
,∴y=-9.
3.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB→=(1,-2),AD→=(2,1),则AD→·AC→等于( )
A.5 B.4 C.3 D.2
考点平面向量数量积的坐标表示与应用
题点坐标形式下的数量积运算
解析 ∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),
∴AD →·AC →=2×3+(-1)×1=5.
4.(2017·庄河高中高一期中)已知平面向量a =(1,-3),b =(4,-2),a +λb 与a 垂直,则λ等于( )
A .-2
B .1
C .-1
D .0
考点 向量平行与垂直的坐标表示的应用
题点 已知向量垂直求参数
答案 C
解析 a +λb =(1+4λ,-3-2λ),
因为a +λb 与a 垂直,
所以(a +λb )·a =0,
即1+4λ-3(-3-2λ)=0,解得λ=-1.
5.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( )
A .2
B .4
C .6
D .12
考点 平面向量模与夹角的坐标表示的应用
题点 利用坐标求向量的模
答案 C
解析 因为a ·b =|a |·|b |·cos 60°=2|a |,
所以(a +2b )·(a -3b )=|a |2-6|b |2-a ·b
=|a |2-2|a |-96=-72.
所以|a |=6.
6.定义运算|a ×b |=|a |·|b |·sin θ,其中θ是向量a ,b 的夹角.若|x |=2,|y |=5,x ·y =-
6,则|x ×y |等于( )
A .8
B .-8
C .8或-8
D .6
考点 平面向量数量积的概念与几何意义
题点 平面向量数量积的概念与几何意义
答案 A
解析 ∵|x |=2,|y |=5,x ·y =-6,
∴cos θ=x ·y |x|·|y|=-6
2×5
=-35. 又θ∈[0,π],∴sin θ=45
, ∴|x ×y |=|x |·|y |·sin θ=2×5×45
=8. 7.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF
→=x a +y b ,则(x ,y )为( )
A.⎝ ⎛⎭
⎪⎫12,12 B.⎝ ⎛⎭⎪⎫23,23 C.⎝ ⎛⎭
⎪⎫13,13 D.⎝ ⎛⎭
⎪⎫23,12 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数
答案 C
解析 令BF →=λBE →.
由题可知,AF →=AB →+BF →=AB →+λBE →
=AB →
+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →. 令CF →=μCD →,
则AF →=AC →+CF →=AC →+μCD →
=AC →
+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →. 因为AB →与AC →不共线,
所以⎩
⎪⎨⎪⎧ 1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧ λ=23,μ=23, 所以AF →=13AB →+13
AC →,故选C. 二、填空题
8.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 考点 平面向量数量积的应用
题点 已知向量夹角求参数
答案 238
解析 由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a ·b -5b 2=0,即3m +(5m -
3)×2×cos 60°-5×4=0,解得m =238
. 9.若菱形ABCD 的边长为2,则||
AB →-CB →+CD →=________.
考点 向量加、减法的综合运算及应用
题点 利用向量的加、减法化简向量
答案 2
解析 ||AB
→-CB →+CD →=||AB →+BC →+CD →=||AC →+CD →=||AD →=2. 10.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 考点 平面向量数量积的应用
题点 利用数量积求向量的模
答案 3 2
解析 因为向量a ,b 夹角为45°,
且|a |=1,|2a -b |=
10. 所以4a 2+b 2-4a ·b =
10, 化为4+|b |2-4|b |cos 45°=10,
化为|b |2-22|b |-6=0,
因为|b |≥0,解得|b |=3
2. 11.已知a 是平面的单位向量,若向量b 满足b ·(a -b )=0,则|b |的取值围是________. 考点 平面向量数量积的应用
题点 利用数量积求向量的模
答案 [0,1]
解析 b ·(a -b )=a ·b -|b |2=|a||b |cos θ-|b |2=0,
∴|b |=|a |cos θ=cos θ (θ为a 与b 的夹角,θ∈⎣⎢⎡⎦
⎥⎤0,π2), ∴0≤|b |≤1.
三、解答题
12.(2017·三中高一月考)如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.
(1)若AP →=PB →,求x ,y 的值;
(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.
考点 平面向量数量积的概念与几何意义
题点 平面向量数量积的概念与几何意义
解 (1)若AP →=PB →,则OP →
=12OA →+12OB →, 故x =y =12
. (2)若AP →=3PB →,
则OP →
=14OA →+34OB →, OP →·AB →=⎝ ⎛⎭⎪⎫14OA →+34OB →·()
OB →-OA → =-14OA →2-12OA →·OB →+34
OB →2 =-14×42-12×4×2×cos 60°+34
×22 =-3.
13.若OA →=(sin θ,-1),OB →
=(2sin θ,2cos θ),其中θ∈⎣⎢⎡⎦⎥⎤0,π2,求|AB →|的最大值. 考点 平面向量模与夹角的坐标表示的应用
题点 利用坐标求向量的模
解 ∵AB →=OB →-OA →=(sin θ,2cos θ+1),
∴|AB →|=
sin 2θ+4cos 2θ+4cos θ+1 =
3cos 2θ+4cos θ+2 =3⎝
⎛⎭⎪⎫cos θ+232+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.
四、探究与拓展
14.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x
-y =________.
考点 向量共线定理及其应用
题点 利用向量共线定理求参数
答案 -2
解析 由|BO →|=3|CO →|,得BO →=3CO →,
则BO →
=32BC →, 所以AO →=AB →+BO →=AB →
+32BC →=AB →+32(AC →-AB →) =-12AB →+32
AC →. 所以x =-12,y =32,所以x -y =-12-32
=-2. 15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.
(1)若A ,B ,M 三点共线,求t 的值;
(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.
考点 向量共线的坐标表示的应用
题点 利用三点共线求参数
解 (1)AB →=OB →-OA →=(-1,1),
AM →=OM →-OA →=(t -1,t ).
∵A ,B ,M 三点共线,∴AB →与AM →共线,
∴-t -(t -1)=0,∴t =12.。