光波导技术第一章分析

合集下载

光在波导中的传播

光在波导中的传播

由特征方程,波长越大,要求相应模式光波的入射角越小。因 此,截止波长实际上是波导内允许存在的光波的最大波长。
由于下界面处于全反射临界状态,因而不管对TE波还是TM波, 都有,
1 0
cos c1 1 (n2 / n1 ) 2
2 n12 n2 n1
因此截止波长表示为:
2 2h n12 n2 c m 0
一、平板光波导的射线理论 平板型波导是介质波导中最简单、最基本的结构,理论分 析也具有代表性。故本节就平板型波导从射线理论和电磁 场理论两个方面进行分析。
n0 θ x z 图 4-1 h n1 n2 平板波导及其中的射线路径
(一)
导波与辐射模
最简单的平板型光波导是由沉积在衬底上的一层均匀薄膜 构成(因而又叫做薄膜波导),如图 4-1 所示,它的折射 率 n1 比覆盖层(通常为空气)的折射率n0 及衬底层折射率 n2都高,且n1>n2>n0。设薄膜厚度为h,沿y方向薄膜不受限, 在薄膜与衬底的界面(下界面)上平面波产生全反射的临 界角为 ,而在薄膜与覆盖层的界面(上界面)上平面波 产生全反射的临界角为 ,根据全反射原理,有:
1s arctan
n sin n n1 cos
2 1 2 2 2
0 s arctan
2 n12 sin 2 n0
n1 cos
而对于TM波(即电场矢量E平行于纸面的p波),有:
1 p arctan
n sin n n cos / n1
2 1 2 2 2 2 2
其中: m 0,1,2, 全反射时相位变化
根据图中的几何关系,上式可变为:
2k0n1h cos 21 20 2m

光波导技术 第一章

光波导技术 第一章
3
光纤的发展
1966年,高锟和霍克哈姆发表的《用于光频的光纤表面波导》奠定 了现代光通信的基础。高锟被尊为光纤之父。
1970年,美国康宁公司制出对0.6328m波长的损耗为20dB/km的 石英光纤,从此介质波导在光纤通信、传感等领域得到了广泛的应 用。
之后爆炸性发展,从光纤损耗看
1970年,20dB/km 1972年,4dB/km 1974年,1.1dB/km 1976年,0.5dB/km 1979年,0.2dB/km
x
y
覆盖层
n3
导波层
n1
z
n2
衬底层
21
平板光波导分析方法
• 射线光学方法(几何光学) 射线理论分析法简单、直观、物理概念清 晰,并能得到一些光在光波导中的基本传 输特性。
• 波动方程方法(麦氏方程+边界条件) 要描述波导中的模场分布,则需用严格的 电磁场理论来分析
22
光的反射定律
[两种不同媒介的界面] 反射光线位于入射光线和法线所决定的平面内,反射光线和
1、当θ i< qc时,这时r<1为实数,只有部分反射
sinqi< sin qc = n2/n1,
n1sinqi< n2 , r为实数, 且 r<1, 只有部分反射
2、当θ i > qc时,会产生全反射现象。 sinqi>sinqc = n2/n1, n1sinqi>n2 ,r为复数。
tg1( b )
• 全内反射(Total Internal Reflection, TIR)-光波导的物理基础
– 光角从大光于密某介一质角(度时n1),射会向出光现疏全介反质射(现n象2)。时,当入射

全反射临界角(critical angle)

第一章光波导基本理论

第一章光波导基本理论

思考:光在1、2和1、3表面全反射时分别产生了一 个附加相位,为什么?
tan
12


p

tan
13


q

思考:全反射时相位是否会发生改变?
入射角对反射系数相位的影响
光疏光密
光密光疏
思考:全反射时发生的 相位变化大小怎么求?
只要想到反射折射的大小变化,首先 想到菲涅尔公式
rTE(或 rs)=n n1 1c co oss1 1 n n2 2c co oss2 2 代 入 折 射 定 律 n 1 s in 1 n 2 s in 2
13


q

思考:该方程中各字母的物理意义
是相位 的单位
1、2界面 反射时产 生的相位
K为x方向的 波矢
2 h 2 m 2 1 2 2 1 3
1、3界面 反射时产 生的相位
从射线光学角度重新分析 TE偏振的本征方程
2 h 2 m 2 1 2 2 1 3 ,m 0 , 1 ,2 . . .
估 算 h的 值
h 1 .8 7 6 1 c o s
思考:波导芯层厚 度对解的数量有什 么影响?
思考:波导芯层折
射率n1对解的数量 有什么影响?
思考:解的数量还和什
hk0n1hcos 么因素有关?
还需满足解出的θ大于临界角
sin c

n2 n1
影响平板波导本征解数量的因素
对一个多模波导或光纤,你是否 能辨别出每个模式?
线性独立本征解的线性叠加
从量子力学的角度来看平板波导对光的束缚
Helmholtz equation:
[ 2 x k 0 2 n 22]U (x) 0

第1章 光波导原理与器件概述PPT课件

第1章 光波导原理与器件概述PPT课件
长春理工大学
第1章 光导波原理与器件概论
第三,空间上多道阵列、多频段以致三维立体的光 学存储及处理的特点,使光存储和处理的容量可达 到1018kbit的“海量信息”。如果用集成光路来实 现光信号的逻辑运算、传送和处理,则可制成体积 小、速度快、容量大的“全光计算机”。光子计算 机与电子计算机相比有着并行处理、信号互不干扰、 开关速度快、光速传递、宽带以及信息容量极大的 优点。
离散光学系统是将有一定几何尺寸的光学元器 件固定在大型的光学平台或光具座上所构成的光路 系统。系统的大小约是几平方米的数量级,光束的 粗细约为5-10mm的范围。光束一般通过空气在各 个光学元器件之间进行传输。由于受到介质对光的 吸收、色散和散射等因素的影响,系统光能损耗较 大,组装、调整也比较困难。
长春理工大学
第1章 光导波原理与器件概论
1.1 导波光学的发展概况
1.1.1 导波光学基本概念 1.1.2 导波光学产生及发展过程
长春理工大学
第1章 光导波原理与器件概论
二十世纪六十年代激光的出现,使半导体 电子学、导波光学、非线性光学等一系列新学 科涌现出来。
二十世纪七十年,由于半导体激光器和光 导纤维技术的重大突破,使以光通信、光信息 处理、光纤传感、光信息存储与显示等为代表 的光信息科学与技术得到迅速发展,导波光学 已经成为光信息科学与技术的基础。
1、分支型开关阵列。在器件长度比较短、适合于 集成化的器件中大都采用LiNbO3分支开关。当波 导宽4μm时,电极长度为0.8mm,即使做成如图 1.3所示的1×4光学开关阵列,开关工作部分的长 度也仅仅只有3mm。
长春理工大学
第1章 光导波原理与器件概论
2、方向耦合器型开关阵列。 通常方向耦合器器件 长度约为5mm,即使不要求比较严格的制作精度, 也可以在比较低的电压下获得比较高的消光比,因 而首先用于制作集成化光学开关阵列。图1.4所示是 以Z切割LiNbO3为衬底,制作出的用于1.3μm波长 的4X4光学开关阵列。

光波导理论2012-1

光波导理论2012-1

• 教材及主要参考书目 • 教材:
– 光波导理论与技术,李玉权 崔敏,人民邮电出版社,2002
• 参考书:
– – – – – – – 《Integrated Optics: Theory and Technology》 , sixth Edition, R.G.Hunsperger, Springer Verlag, 2009 介质光波导及其应用, 秦秉坤等, 北京理工大学出版社,1991 光波导技术理论基础, 叶培大等, 北京邮电大学出版社,2002 《Optical Integrated Circuits》 , Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Suhara,McGraw-Hill Professional, 1989 集成光学, 蔡伯荣主编 电子科技大学出版社出版,1998 徐国昌,《光电子物理基础》[M].东南大学出版社:2000. 光波导模式理论,马春生、刘式墉,吉林大学出版社科学技术手段。
平板波导几何光学分析 2012年2月
The first integrated circuit
• His idea founded a new industry
• Has Nobel price in physics year 2000
平板波导几何光学分析 2012年2月
平板波导几何光学分析 2012年2月
3.集成光学的定义
• (1)集成光学是在光电子学和微电子学基础 上,采用集成方法研究和发展光学器件和 混合光学-电子学器件系统的一门新的学 科。 • (2)集成光学是研究介质薄膜中的光学现象, 以及光学元器件集成化的一门学科。 • (3)集成光学是研究集成光路特性和制造技 术以及与微电子学相结合的学科。 平板波导几何光学分析 2012年2月

光波导理论与技术讲义2

光波导理论与技术讲义2

1.2.1 光线的传输路径及光线分类 光线在芯层中直线传 播,在芯层和衬底, 芯层和敷层的界面上 发生反射和折射
波导内的光线分为两类,即束缚光线和折射光线。
全反射临界角 c12
n2 sin n1
1
n3 c13 sin n1
1
衬底折射率n2大于敷层折射率n3,则必有 c12 > 在芯层中光线成为束缚光线的必要条件
式1.1 7

故对 S 求导式为:
切线方向上的单位 光程沿路径变化率
d ds
dr n(r) ds n(r)
光线方程
(1.1-8)
折射率梯度
光线方程是矢量方程,表示光线向折射率大的方向弯曲。
例1:光线在均匀媒质中的传播 dr 光线方程: d n(r) n(r) ds ds 因 n = 常数 d 2r n 0 改写成: 2
max n1 / c
可以估算不同路经传输导致的光脉冲展宽


式(1.1-6)称为程函方程; 相位梯度 r 方向与光波传播方向一致,其模等于 介质折射率; 程函方程给出波面变化规律: 在均匀介质中,光波传输方向不变; 在非均匀介质中,光波传输方向随折射率变。
1.1.2 光线传播路径方程


r :光线传播路径S上某点的矢径 dr/ds:传播路径切线方向上单位矢量, 根据相位梯度的定义,矢量dr/ds方向 与相位梯度方向一致,大小等于:
r0
( 3.6 ) 只要光纤折射率分布和入射点确定,就可计算光线轨迹。
x z
y
小结
程函方程:表示光波相位变化与介质折射率分布的关系
( r )2 n2 r
光线在均匀介质传播路径上无方向变化;在非均匀介质传 播路径上有方向变化。 光线方程: d ds

光波导技术基础

光波导技术基础

光波导技术基础光波导技术基础一、光波导的概念与分类光波导是一种利用光的全反射原理进行光信号传输的技术。

根据传输介质的不同,光波导可以分为光纤和光平板两种形式。

光纤波导是采用纤维材料进行传输,而光平板波导则利用具有高折射率的平板材料进行传输。

二、光波导技术的优点1. 大容量传输:光波导技术可以实现大容量的光信号传输,远远超过以往的传输方式。

这是因为光波导中的光信号可以在光纤或光平板中进行不断的全反射,几乎没有信号损失。

2. 抗干扰能力强:光波导传输的光信号在传输过程中不会受到外界电磁干扰的影响,从而保证了传输质量的稳定性。

3. 低衰减率:光波导技术中的光信号衰减率很低,可以减少信号在传输过程中的能量损耗,提高传输距离。

4. 高速传输:由于光波导中的光信号传输速度快,可达到光速的75%以上,因此光波导技术被广泛应用于高速通信领域。

三、光纤波导技术的基本原理光纤波导是利用纤维材料的全反射原理进行光信号传输的技术。

光纤是由内心区域(称为纤芯)和外层(称为包层)组成的。

光信号可以通过纤芯中的光波引导到目的地。

光纤波导的基本原理源于光的全反射现象。

当光从光纤的一端进入时,如果光线入射角度小于临界角,光会被光纤的纤芯全反射,然后沿着纤芯继续传输。

这种全反射的现象可以保证光信号不会损失,从而实现光信号在光纤中的传输。

四、光平板波导技术的基本原理光平板波导技术是利用具有高折射率的平板材料进行光信号传输的技术。

平板材料可以是晶体或者其他具有高折射率的材料,例如硅。

光平板波导的基本原理是将光信号引导在平板材料的表面上,形成一条被限制在平板内传播的光波。

当光信号被平板表面反射时,会发生总反射现象,并且沿着平板表面传播。

平板的结构和特殊设计可以控制光信号的传输路径和传输效果。

五、光波导技术的应用领域光波导技术在通信、光学传感、生物医学和光学计算等领域具有广泛的应用。

在通信领域,光波导技术被广泛应用于光纤通信和光纤传感领域。

光波导理论与技术讲义

光波导理论与技术讲义

04
光波导的应用
光纤通信
光纤通信概述
光纤通信是一种利用光波在光纤中传输信息的技术。由于光纤具有低损耗、高带宽和抗电 磁干扰等优点,因此光纤通信已成为现代通信的主要手段之一。
光纤通信系统
光纤通信系统主要由光源、光纤、光检测器和传输控制设备等组成。其中,光源用于产生 光信号,光纤作为传输介质,光检测器用于接收光信号,传输控制设备负责对整个系统进 行管理和控制。
03
光波导材料
玻璃光波导
玻璃光波导是一种以玻璃为介质的光 波导器件,其具有优秀的光学性能和 机械性能,被广泛应用于光纤通信、 光传感等领域。
玻璃光波导的主要优点是光学性能优 异、机械强度高、化学稳定性好等, 但其缺点是制备工艺复杂、成本较高。
玻璃光波导的制备工艺主要包括预制 棒制作、拉丝、涂覆等环节,这些工 艺过程需要精确控制,以保证光波导 的性能和稳定性。
聚合物光波导
1
聚合物光波导是一种以聚合物为介质的光波导器 件,其具有制备工艺简单、成本低、易于加工等 特点。
2
聚合物光波导的制备工艺主要包括薄膜制作、光 刻、刻蚀等环节,这些工艺过程相对简单,有利 于大规模生产。
3
聚合物光波导的主要优点是制备工艺简单、成本 低、易于加工等,但其缺点是光学性能较差、机 械强度较低。
A
B
C
D
模块化与小型化
为了适应现代通信系统的需求,光波导放 大器正朝着模块化和小型化方向发展。
增益均衡
由于不同波长的光信号在光纤中的传输损 耗不同,因此需要实现光波导放大器的增 益均衡,以保证信号的传输质量。
光波导开关
开关原理
光波导开关利用电场或热场对光 波的传播方向进行控制,实现光
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
光波导中用到的材料
光波导所用的材料:

具有一定的折射率,一般比衬底折射率高 传输损耗满足一定条件 应具有多种功能,工艺上便于成膜和器件制
作与集成

在外界各种环境下具有长期稳定工作的性能
9
光波导材料
材料 典型波导结构 主要特点 采用质子交换,金属扩散 等工艺,电光系数,非线 性效应高,但损耗较大 采用 PECVD,干法刻蚀等 工艺制作,损耗小,但只 能制作无源器件 高折射率对比,高集成度 与集成电路兼容,但不适 合制作发光器件 直接带隙,适合于发光器 件, 高速调制器, 光开光, 的制作,但损耗较大 采用旋涂,刻蚀等工艺,成 本较低,电光,热光效应 较高,稳定性较差,易老化
13
第一章 平面介质光波导
• 平面介质光波导概述 • 平板光波导的分析方法 射线光学法 波动方程法 • 条形光波导的分析方法 马卡梯里法 等效折射率法 数值方法
14
基本的光学定律和定义
光速 c = 3 108 m/s 波长: = c/v 当光在媒介中传播时,速度cn = c/n 常见物质的折射率:空气 1.00027; 水 1.33; 玻璃 (SiO2) 1.47; 钻石 2.42; 硅 3.5 折射率大的媒介称为光密媒介,反之称为光疏媒介 光在不同的介质中传输速度不同
3
光纤的发展
1966年,高锟和霍克哈姆发表的《用于光频的光纤表面波导》奠定 了现代光通信的基础。高锟被尊为光纤之父。 1970年,美国康宁公司制出对0.6328m波长的损耗为20dB/km的 石英光纤,从此介质波导在光纤通信、传感等领域得到了广泛的应 用。 之后爆炸性发展,从光纤损耗看
1970年,20dB/km 1972年,4dB/km
15
光波在各向同性介质中的传播
单色平面波的复数表达式
单色平面波是指电场强度E和磁场强度H都以单一 频率随时间作正弦变化(简谐振动)而传播的波。 在任意方向上传播的平面电磁波的复数表达式为:
E ( r , t ) E 0 exp{i[( k r t ) 0 ]}
式中,Φ0为初相位, k 为矢量(简称波矢), k 的方向即表示 波的传播方向,k 的大小,表示波在介质中的波数。上式中,指数 前取正或负是无关紧要的,按我们的表示法,指数上的正相位代 表相位落后,负相位代表相位超前。矢径r 表示空间各点的位置, 如图所示。
n=1.47
SiO2:Ge
SiO2 n=1.46
Si substrate
11
渐变折射率波导
• 渐变折射率光波导 Ti扩散LiNbO3波导,K+离子交换玻璃波导
LiNbO3:Ti
LiNbO3
12
渐变折射率波导
首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻, 形成所需要的光波导图形,再进行扩散。可以采用外扩散、内扩散、质子交换 和离子注入等方法来实现。
1974年,1.1dB/km
1976年,0.5dB/km 1979年,0.2dB/km 1990年,0.14dB/km
短短几十年之内,全世界铺设的光纤总长度已超过 10亿公里,足以绕地球赤道2.5万次
接近石英光纤的理论损耗 ~0.1 dB/km
4
平面光波导型器件
1969, S. E. Miller 提出了集成光学(Integrated Optics)的概念, 核心:平面光波导
第一章 平面介质光波导
• 平面介质光波导概述 • 平板光波导的分析方法 射线光学法 波动方程法 • 条形光波导的分析方法 马卡梯里法 等效折射率法 数值方法
1
平面介质光波导的发展历史:光纤的雏形
1870年,英国物理学家丁达尔演示太阳光随着水流发生弯曲; n水 > n空气,光发生全反射;
1955年,英国伦敦学院卡帕尼博士将此用于实际,发明了玻 璃光导纤维:芯层+包层 (n芯层>n包层) –光纤
Core--SiO2:Ge

铌酸锂 Ti+… Ge:SiO2 二氧化硅 SiO2 Si 基底 Si 波导 SiO2 Si 基底 InP InGaAsP InP 聚合物 聚合物 基底 LiNbO3
Si substrate

磷化铟
10
光波导折射率分布
• 折射率突变型(阶跃型) SiO2,SOI, InP, Polymer
n( x, y) n0 n g ( x) f ( y)
其中
w / 2 x 1 w/ 2 x g ( x) erf erf 2 hx hx
2 f ( y) exp( y 2 / hy )
• 其中n0为基片折射率,Δn为扩散引起的最大折射率变化,w为扩散源 的横向宽度,hx、hy分别为横向、高度方向的扩散深度
5
平面光波导型器件
6
光波的传输
在波导的包层中仍然存在光波的传输(倏逝波),但由于波导的限制作用, 光束不会像在自由空间中那样发散
7
光纤的折射率分布
50/125μm 62.5/125μm
单模光纤(Single-mode Fiber):一般光纤跳纤用黄色表示,接头和保护套为蓝色;传输距离较长。 多模光纤(Multi-mode Fiber):一般光纤跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传 输距离较短。
2
光纤的发展
“Father of Fiber Optic Communications” Charles Kuen Kao 高锟
2009 Nobel Prize winner “for groundbreaking achievements concerning the transmission of light in fibers for optical communication” K. C. Kao, G. A. Hockham (1966), "Dielectric-fibre surface waveguides for optical frequencies”, Proc. IEEE 113 (7): 1151–1158.
16




沿空间任意方向传播的平面波
在均匀介质中光沿直线传播。
(在非均匀介质中,光线向折射率大的方向弯曲)
相关文档
最新文档