金属材料与热处理

合集下载

金属材料及热处理(最新版)

金属材料及热处理(最新版)
7、索氏体:在等温转变C形线鼻尖所得到的较细片状铁素体+较细片状渗碳体叫之索氏 体。等温转变温度 600-670oC(珠光体的一种)HB250-320,HRC24-32。
8、屈氏体:同上是珠光体的一种,更细片状铁素体+更细片状渗碳体叫之为屈氏体, 形成温度 600-550oC。HB330-400(HRC32-38)。
6
生产中防止回火脆性的方法主要有: z 回火后进行快速冷却(油或水冷)为消除重新产生的热应力,则在回火后可再进行
Ms, γ Fe转变为α Fe,碳原子全部被保留在α Fe中,形成一种过饱和的固溶体组织,这就
是马氏体。这种转变也称非扩散形转变。马氏体金相显微组织呈针状,黑色针状物为马氏 体,白色基体称为残余奥氏体。性能十分脆硬。HB可达 600-700(HRC60-65)。淬火即可 获得这种组织。硬度取决于C含量,低C钢淬不硬,含C量高于 0.8%,硬度几乎不再增加了。 马氏体的转变随C含量增高而降低含碳量 0.5%时Mz约 0oC,Ms290oC随着含C增Ms下降,C量 小于 0.8%时Mz也随C ↑ 而下降,0.9 以上时Mz在-100oC附近下降不大。奥氏体向马氏体的转 变有一个很大的特点:奥氏体不能百分之百转化为马氏体总有较少的奥氏保留下来,称保 留下来的为残氏奥氏体。因奥氏体为γ Fe面心产方晶格,比容(单位重量的体积)较小,约 只有 0.122—0.125,而马氏体为α Fe过饱和固溶体,比容较大,约有 0.127-0.130,可见, 在转变过程中,在马氏体形成的同时还伴随着体积的膨胀,从而会对尚未转变的奥氏体造 成一内压力,合使其不易发生向马氏体的转变而被保留下来。Ms Mz点越低剩余奥氏体量也 就越多。
金属材料与热处理
一、金属材料及热处理

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料与热处理是机械工程学中的一个重要研究领域,它既涉及有关金属材料的诸多性能,又涉及各种热处理技术。

热处理是指在金属材料内部的改变或外观表现,从而改变材料的性质或性能的各种处理方法。

这种处理主要通过改变金属材料的内部成分和结构来实现。

金属材料和热处理技术在机械制造领域有着重要的应用,也是机械工程中重要的研究内容。

金属材料可以被应用于工程上有关设备的制造厂、汽车制造厂、船舶制造厂等。

热处理是钢和铁等材料性能调节的重要手段,是机械制造的一部分。

改变材料的热处理条件,可以改变工件的外观、物理性能和机械性能等,使之更加适用于某些工程上的要求。

热处理的发展主要集中在以下几个方面。

首先是改进材料的强度;其次是改善材料的韧性;第三是改善材料的韧度;最后是改善材料的冷硬度和抗疲劳性能,及提高材料的耐腐蚀、抗温度等性能。

在这些方面,近几年来取得了较大的进展。

强化冷却技术大大提高了普通钢的性能,提高退火质量的水冷却技术也取得了巨大进步,渗碳深色炼钢技术也得到了迅速发展。

热处理同时也涉及到热处理和控制系统的设计与应用。

控制系统对热处理过程起着至关重要的作用。

热处理过程涉及到温度控制、热源更替、室内条件变化等,这些都是控制系统关注的焦点。

控制系统不仅能提供相应数据和处理,而且还能检测设备运行状态,控制处理温度值,从而控制处理的质量和可靠性。

由于金属材料在机械系统中的重要性,热处理已经成为金属材料和机械系统设计中必不可少的一部分。

它可以改变金属材料的性能指标,并使其满足工程要求,这是关于金属材料和热处理的关键研究内容之一。

希望随着技术的发展,今后金属材料和热处理技术在机械领域乃至其他领域发挥更大的作用。

金属材料与热处理(最全)

金属材料与热处理(最全)
PQ线-碳在铁素体中的固溶线,铁碳合金由727° 冷却至室温时,将从铁素体析出渗碳体,称为三 次渗碳体
典型铁碳合金的平衡结晶过程 及组织
A F+A F
L L+A
A+Fe3C
F+Fe3C
L+Fe3C
1.纯铁(﹤0.0218%C) 2.钢(0.0218%~2.11%C)
亚共析钢( 0.0218%~0.77%C) 共析钢(0.77%C) 过共析钢(0.77%C ~2.11%C )
3.5 铁碳相图在工业中的应用
1、在选材方面的应用 : 根据零件的不同性能要求 来合理地选择材料。 2、在铸造生产上的应用: 参照铁碳相图可以确定钢 铁的浇注温度,通常浇注 温度在液相线以上 50- 60℃。纯铁和共晶白口铸 铁的铸造性能最好。 3、在锻压生产上的应用: 锻扎温度控制在单相奥氏 体区。 4、在热处理生产上的应用 :热处理工艺的加热温度 依据铁碳相图确定。
金属材料与热处理(最全)
工程材料的分类
工程材料
黑色金属材料:钢和铸铁
金属材料
有色金属材料
铝及铝合金 铜及铜合金 滑动轴承合金
高分子材料
非金属材料 陶瓷材料 复合材料
当今社会科学技术突飞猛进,新材料层出不穷,但到目前为止,在 机械工业中使用最多的材料仍然是金属材料,其主要原因是因为 它具优良的使用性能和加工工艺性能。
F(%)=(6.69-0.77)÷6.69 ×100%=88%
Fe3C(%)=1-88%=12%
主要转变线
GS线-不同含碳量的合金,有奥氏体开始析出铁素 体(冷去时)或铁素体全部溶于奥氏体(加热时 )的转变线,常用A3表示
ES线-碳在奥氏体中的固溶体。常用A cm表示,含 碳量大于0.77%的铁碳合金,自1148°冷至727° 从奥氏体析出渗碳体,称二次渗碳体

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料是工程领域中使用最广泛的材料之一,其性能的优劣直接影响着工程产品的质量和使用寿命。

而热处理作为一种重要的金属材料加工工艺,对金属材料的性能改善起着至关重要的作用。

本文将从金属材料的特性、热处理的基本原理和常见的热处理工艺等方面进行介绍。

首先,金属材料的性能受到其组织结构的影响。

金属材料的晶粒结构、晶界、位错等微观结构对其力学性能、物理性能和化学性能有着重要的影响。

通过热处理工艺,可以改善金属材料的晶粒结构,消除内部应力,提高材料的硬度、强度和耐磨性,同时还可以改善材料的塑性和韧性。

其次,热处理是通过加热、保温和冷却等工艺对金属材料进行控制加工,以改善其组织结构和性能的工艺。

常见的热处理工艺包括退火、正火、淬火、回火等。

退火是将金属材料加热至一定温度后进行缓慢冷却,以消除材料的内应力、提高材料的塑性和韧性;正火是将金属材料加热至一定温度后进行保温一段时间,再进行空气冷却,以提高材料的硬度和强度;淬火是将金属材料加热至临界温度后迅速冷却,以获得高硬度和高强度;回火是在淬火后将金属材料加热至较低温度后进行保温一段时间,以降低材料的脆性。

最后,热处理工艺的选择需要根据金属材料的具体情况和要求来确定。

不同的金属材料对热处理工艺的要求也不同,因此在进行热处理前需要对金属材料的性能和组织结构进行全面的分析和测试,以确定最合适的热处理工艺。

同时,在进行热处理时需要严格控制加热温度、保温时间和冷却速度等参数,以确保热处理效果。

综上所述,金属材料与热处理是密不可分的关系,热处理工艺的选择和控制对金属材料的性能改善至关重要。

通过合理的热处理工艺,可以使金属材料获得更好的力学性能、物理性能和化学性能,从而满足不同工程产品对材料性能的要求。

希望本文的介绍对大家有所帮助,谢谢阅读!。

金属材料及热处理

金属材料及热处理

• 钢和铁的区别在于含碳量的多少: • 含碳量﹤0.02%为工业纯铁; • 含碳量在 0.02~2.06%为钢(共析 钢0.77%); • 含碳量>2.06%为生铁(铸铁) • 钢加热到高于723 ℃时出现A组织,则塑 性好的抗变形能力强。
1-3 钢的热处理
• • • • • • 一、概述 1.热处理的基本概念: 1)改善钢的性质,通常可以通过两种途径来实现: ①调整钢的化学成分; ②对钢进行热处理。 2)钢的热处理是指对钢在固态下加热,保温和冷 却,以改变其内部组织结构,从而改变钢的性能 的一种工艺法; • 3)目的在于充分发挥材料潜力、节约钢材、提高 产品质量、延长使用寿命;
临界
• 图中:V1— 相当于缓冷(退火)与“C”相交位置可以判断转变为P; • V2— 相当于空冷(正火)可判断转变为 氏体(细P) • V3— 相当于油冷(油淬)与“C”开始相交故一部分转变为T;另 一部分来不及转变,为过冷A最后转为Ms; • V4— 相当于水冷(水淬)不与“C”线相交,冷却时A来不及发生 分解,象马氏体转变。
例: 共析钢在冷却时的转变
• A等温转变曲线
过冷奥氏体 珠光体开始形成 珠光体形成中间 珠光体形成结束
珠光体形 马氏体形 贝氏体形
珠光体10~20 转 变
2 1 1
索氏体25~30
转 变 终 始
3
屈氏体30~40

温度/
上贝氏体40~45 了
≈240℃Ms
下贝氏体 50~60
时间/ 图1-21 共析碳钢的奥氏体等温转变曲线
三、钢的热处理工艺 • 1.退火— 将钢件加热到AC1或AC3以上 某一温度,保温一定时间后随炉冷却,从 而得到近似平衡组织的热处理方法。 • 目的:降低硬度,细化晶粒,提高强度, 塑性和韧性,消除内应力等 • ① 完全退火(重结晶退火):将钢加热到 AC3以上20~40 ℃使钢组织完全重结晶, 可细化晶粒、均匀组织、降低强度。

常用金属材料及热处理

常用金属材料及热处理

常用金属材料及热处理金属是人类社会重要的材料之一,广泛应用于各行各业。

常见的金属材料包括铁、铝、铜、钢等。

在使用金属材料的过程中,为了改善其性能,常常需要对其进行热处理。

下面将介绍一些常用的金属材料和其热处理方法。

1.铁:铁是一种性能优良的金属材料,常用于制作建筑结构、机械零件等。

铁的热处理方法有退火、正火、淬火和回火等。

退火可以降低材料的硬度,提高其塑性和延展性;正火可以提高材料的韧性和强度;淬火可以使材料获得高硬度和耐磨性;回火可以降低材料的脆性,并改善其强度和韧性。

2.铝:铝是一种轻质金属,常用于制造飞机、汽车等产品。

铝的热处理方法有固溶处理、时效硬化等。

固溶处理可以改善铝的强度和塑性;时效硬化可以在固溶处理基础上,进一步提高铝的强度和硬度。

3.铜:铜是一种导电性能优良的金属材料,常用于制造导线、电路板等。

铜的热处理方法有退火、退火软化等。

退火可以消除铜材料中的应力,改善其韧性和延展性;退火软化可以使铜材料变得更加易加工。

4.钢:钢是一种优质的金属材料,常用于制造建筑结构、机械零件等。

钢的热处理方法有退火、正火、淬火和回火等。

不同的钢材在热处理时的温度和时间以及冷却速度等参数都有所差异,可以根据具体需要来选择合适的热处理方法,以获得理想的性能。

此外,还有许多其他金属材料也需要经过热处理来改善其性能,比如镍、锌、锡等。

热处理方法的选择应根据具体的金属材料以及使用要求来确定。

综上所述,金属材料在使用过程中,经常需要进行热处理来改善其性能。

不同的金属材料有不同的热处理方法,通常包括退火、正火、淬火和回火等。

通过热处理可以改变金属材料的组织结构和性能,使其达到更加理想的状态。

热处理技术在金属材料的应用中起着重要的作用,对于提高产品质量和使用寿命具有重要意义。

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料是工业生产中常用的材料之一,其具有良好的导电性、导热性和机械性能,因此在各行各业中得到广泛应用。

然而,金属材料的性能在制造过程中往往不能达到最佳状态,这就需要进行热处理。

热处理是对金属材料进行加热或冷却处理,以改变其组织结构和性能的一种工艺。

通过控制材料的加热温度、冷却速率和保温时间等参数,可以使金属材料达到理想的机械性能、延展性和强度等特性。

金属材料的热处理可以分为多种类型,包括退火、淬火、回火等。

其中,退火是指将金属材料加热到一定温度,然后缓慢冷却,以降低硬度、改善延展性和强度等性能。

淬火则是指将金属材料加热到相变温度,然后迅速冷却,以提高硬度和强度等性能。

回火是在淬火后对材料进行再加热处理,以减轻淬火时的残余应力和脆性。

热处理的过程非常关键,不同的热处理工艺对金属材料的性能影响很大。

例如,合理的退火处理可以使金属材料获得较好的塑性和韧性,适用于制造弯曲、拉伸等工艺要求较高的产品;而淬火处理则适用于需要获得较高硬度和强度的零部件。

另外,金属材料的选择也会影响热处理效果。

不同金属材料具有不同的热处理特性和需求,因此需要根据具体情况选择合适的金属材料和热处理工艺。

一些常见的金属材料包括钢铁、铝、铜等,它们各自有不同的机械性能和热处理特点。

总的来说,金属材料与热处理密不可分。

通过合理的热处理工艺,可以改善金属材料的性能,提高产品的质量和使用寿命。

因此,在金属加工和制造领域,热处理是一项重要的工艺,需要专业人员严格控制各项参数,以保证金属材料的优良性能和性价比。

热处理在金属材料加工和制造中起着至关重要的作用,它可以改善金属材料的组织结构和性能,提高其强度、耐磨性、耐腐蚀性等特性,同时也能够消除金属材料制造过程中产生的应力、缩小尺寸误差等问题,从而提高产品的质量和使用寿命。

一种常见的热处理工艺是退火。

退火是指将金属材料加热到其临界温度以上,然后进行缓慢冷却。

通过退火处理,金属材料的晶粒可以重新长大,原来的晶界处的碎屑得到消除;同时,还能消除金属的内应力,提高塑性和韧性。

金属材料与热处理(全)精选全文

金属材料与热处理(全)精选全文

2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料与热处理
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
《金属材料与热处理》教学大纲
一、课程的性质和任务
本课程是一门专业技术基础课,实践性较强,必须经过生产实习增强感性认识,再通过理论学习才能理解和掌握常见金属材料性能、组织、结构和热处理方法的特点;了解非金属材料的基本知识。

为学后续的专业课打下坚实的基础。

二、课程教学目标
1、掌握机械工程材料的基本知识,能够正确选择材料。

2、掌握常见的金属热处理的方法、特点及应用范围
3、了解非金属材料基础知识。

三、教学内容和要求
1、金属材料基础知识
常见金属材料及其性能、金属的结构及结晶、合金的结构和组
织、铁碳合金相图、碳钢及合金钢、铸铁、有色金属。

2、热处理基础知识
钢在冷却(加热)时的转变过程、钢的普通热处理工艺、钢的表
面热处理工艺、钢的化学热处理工艺。

3、非金属材料
非金属材料的种类、特点、性能及应用。

四、《工程材料》课程的主要要求
1、常用金属材料及热处理工艺的基础知识,为后续相关专业课打下坚实基础。

2、通过本课程的学习,使学生能根据合理的选择材料和热处理方法。

3、在教学过程中贯彻理论联系实际的原则,在讲授理论时要注重和生产实习相结合,增强学生对理论知识的理解。

4、本课程建议安排在学生学完机械制图及计算机制图、工程力学、机械设计基础、金工实习课程之后讲授。

五、《金属材料与热处理》课程质量标准与考核方式
课程质量标准是培养学生掌握金属材料及热处理原理和非金属的基础知识,重点培养学生运用所学知识解决实际问题的能力。

成绩考核方式按照天津石油职业技术学院课程成绩考核评价管理制度执行,采用单独考查方式,平时考核占考核评价成绩30%,期末考试占考核评价成绩40%,实验占考核评价成绩30%,考查采用5级制。

六、课时分配表。

相关文档
最新文档